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Abstract: The 4-NPHyd (4-nitrophenylhydrazine) electrochemical sensor assembled using

wet-chemically prepared ZnO/SnO2 nanoparticle (NPs) decorated a glassy carbon electrode

(GCE) with conductive Nafion binder. The synthesized NPs characterized by XPS, ESEM,

EDS, and XRD analysis. The calibration of the proposed sensor obtained from current versus

concentration of 4-NPHyd found linear over a concentration (0.1 nM ∼ 0.01 mM) of 4-NPHyd,

which denoted as the dynamic range (LDR) for detection of 4-NPHyd. The 4-NPHyd sensor

sensitivity calculated using the LDR slope considering the active surface of GCE (0.0316 cm2),

which is equal to be 7.6930 µAµM/cm2, an appreciable value. The detection limit (LOD) at

signal/noise (S/N = 3) estimated, and outstanding lower value at 94.63±4.73 pM perceived.

The analytical parameters such as reproducibility, long-term performing ability and response

time are found as appreciable. Finally, the projected sensor shows exceptional performances in

the detection of 4-NPHyd in environmental samples.

Keywords: ZnO/SnO2 nanoparticles, glassy carbon electrode, 4-Nitrophenylhydrazine sensor,

sensitivity, environmental protection

1 Introduction

Generally, ZnO (zinc oxide) is a fascinating semi-conductor oxide (metal ) to the material

researcher for its promising physio-opto-electrochemical characteristics and terrifically it found

to potentially apply in opt-electronic and electronic devices like light-emitting diodes [1], photo-

detectors [2], photovoltaic cells [3], piezoelectric nano-generators [4], electroluminescence

devices [5], gas sensor [6], chemical and biosensor [7, 8], nano-lasers [9] and flat display

devices [10] and so on. Particularly, ZnO has a wider optical band gap of 3.3 eV and 60 meV

binding for exciton [11, 12], the resistivity of 1×10−3
∼ 1×105 W cm [13], stability [14]

with optical transparency in the visible range. The conductivity of ZnO depends on intrinsic

imperfectness like zinc interstitials and oxygen vacancies. The resistivity of ZnO for it,s wide

bandgap energy can lower due to doping with the metal oxides of group III (B, Al, Ga, and In)

and IV (Pb, Sn) in periodic-table [15, 16].

Several studies have shown that the nanocomposites of ZnO/SnO2 have the better physio-

electro-chemical properties compared to individual metal oxide in the application as Li-ion

battery [17, 18], electrochemical sensors [19, 20] and catalyst [21, 22]. As the electrochemical

sensing elements, the heterostructure of ZnO and SnO2 can enhance the inner-electric fields

within the nanoparticle interfaces. As a result, the electros transfer rate between the nanoparticles

increase. Due to synergistic effects the ZnO and SnO2 effects, the nanocomposites act like a

buffer-matrix each to other for removing the stress and strain during electrochemical-reactions

[23,24]. Thus, this approach performed to develop an electrochemical sensor by wet-chemically

prepared ZnO/SnO2 NPs coated on GCE.

Due to the increasing the industrial activities, the water-soluble aromatic derivative of hy-

drazine coming from the untreated industrial effluent such as dyes, pesticides, photographic,

plant-growth regulators, pharmaceuticals, colour and pigment industries. Besides this, the

aromatic hydrazines use in explosive, rocket fuel and spacecraft fuel [25, 26]. The aromatic

and aliphatic both hydrazine are poisonous for plants, animals, human and aquatic lives. Thus,

hydrazine (aromatic and aliphatic) is known as carcinogenic, nephrotoxic, and environmental

hazardous substance even at very lower concentration [27, 28]. The primary syndromes due to
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exposure of hydrazine are respiratory oedema, Sight loss for short-term, vomiting-tendency,

burning in eyes and nose. The long-term exposure of hydrazine might cause a serious ef-

fect on the liver and kidney, and it also affects the central nervous system, which leads to

unconsciousness [29–31]. Therefore, a reliable technique for the detection of hydrazine (4-

nitrophenylhydrazine) is necessary. In recent, many kinds of research have been conducted

based on CoS2-CNT nanocomposites [26], SrO.CNT NCs [27], Fe2O3 NPs [28], Co-doped

ZSM-5 zeolites [25], TiO2 nanoparticles [32], Fe2O3/CeO2 nanocubes [33] and ZnO nano-

urchins [29] coated on GCE for precious hydrazines detection (both aromatic and aliphatic)

applying electrochemical (I-V) approach.

This experimental work performed to assemble a sensor in I-V approach selective to 4-NPHyd

with ZnO/SnO2 NPs coated on GCE. A calibration plot (current versus concentration of analyte)

established satisfied by linearity regression co-efficient value (R2 = 99). From the slope of

the calibration curve, the sensor sensitivity measured. A signal/noise (S/N) ratio of 3 used to

calculate the lower detection limit (LOD). In future, applying this technique to develop the

electrochemical sensor using semi-conductive binary metal oxides on GCE will be prospective

in the field of environment, on a large scale.

2 Experimental

2.1 Materials and methods

The analytical grade chemicals from Sigma-Andrich such as zinc acetate dihydrate, Zn(CH3-

COO)2.2H2O and tin tetrachloride (SnCl4) were used to synthesize ZnO/SnO2 NPs applying

wet-chemical method in alkaline phase. The other necessary toxic chemicals known as haz-

ardous to environment such as benzaldehyde, 4-aminophenol (4-AP), 4-nitrophenylhydrazine (4-

NPHyd), 2,4-diphenyldihydrochloride (2,4-DPDHCl), 3-chlorophenol(3-CP), 3-methoxyphenol

(3-MP), M-tolyl hydrazine hydrochloride (M-THydHCl), zimtaldehyde, 4-methoxyphenol (4-

MP) and 3-methoxyphenylhydrazinehydrochloride (3-MPHydHCl) in analytical grade were

also procured from the Sigma-Andrich USA. The auxiliary chemicals supporting to the study

such mono- & disodium phosphate buffer and 5% nafion in ethanol were obtained from Sigma-

Andrich also. The Thermo-Scientific XPS instrument containing A1-k-α1 radiation sources

with a beam of 300.0 µm performed at 200.0 eV, and pressure 10-8 Torre was applied on

the synthesized microstructures (nanomaterials) for the investigation of ionization states and

binding energy of existing atoms. To confirm the structure and elemental compositions of

synthesized metal oxides, the FESEM and EDS analysis were executed by an instrument model-

JEOL, JSM-7600F (Japan). The grain size and crystalline plans of Ag2O-doped ZnO NSs were

assessed by the implementation of powder X-ray diffraction analysis. The electrochemical

characterization of ZnO/SnO2 NPs on GCE was examined through a Keithley electrometer as

the source of constant supply of potential (volts).

2.2 Preparation method of ZnO/SnO2 NPs

ZnO/SnO2 NPs was prepared by homogenous precipitation method using Zn(CH3COO)2.

2H2O and SnCl4 as precursors, and urea as a precipitating agent to form the alkaline phase.

Following this typical method, 5.0 mL of SnCl4 and 3.12 g (0.074 M) of Zn(CH3COO)2. 2H2O

dissolved in 200 mL sized beaker and kept on a heater fixed at 90◦C with the magnetic-stirring

facility. Then, 30.0 g urea was added into the mixture and continued for 4 hours at these

conditions. The co-precipitate of Zn(OH)2.Sn(OH)4.nH2O obtain, and it assumed that the

metal ions precipitated out totally at this high alkaline phase. Then, the resulted precipitates

filtrated from the aqueous phase and successively washed with water (deionized) to remove

alkalinity. Subsequently, the resultant mass placed inside an oven at 110◦C overnight to execute

the complete dry. Finally, the dry metal hydroxides mixture calcined at 500◦C in a muffle

furnace tentatively 6 hours at a flow of atmospheric air. At this elevated temperature, the metal

hydroxides oxidize into oxides form as ZnO/SnO2 nanomaterials. The obtained mixture of

metal oxides then subjected to characterize by XRD, FESEM and XPS spectrometric analysis.

2.3 Modification of working electrode by ZnO/SnO2 NPs

The central dominating part of the electrochemical sensor is working electrode. It assembled

by a GCE coated with the synthesized ZnO/SnO2 NPs. At the GCE modification process,

ethanol used to form a slurry of ZnO/SnO2 NPs and deposits on the flat part of GCE to obtain a

thin layer of NPs. Then, the drying of it done by keeping at the laboratory ambient conditions.
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For the long-time stability of deposited NPs layer on the GCE, the Nafion added. After that,

the drying of modified GCE did by keeping into an oven at 35◦C for an hour. A Keithley

electrometer procured from Unite States (USA) used to connect ZnO/SnO2 NPs/GCE and Pt-

wire to perform as a working and counter electrodes. Then, 4-NPHyd solution at 0.1 mM diluted

to several solutions varying concentrating in a range of 0.1n M ∼ 0.1 mM to electrochemical

(I-V) analyze. A calibration of the 4-NPHyd sensor using current versus concentration relation

executed, and linearly confirmed by regression coefficient R2. By identifying the concentration

range fitted with R2 = 0.99, the dynamic range (LDR) for 4-NPHyd detection denoted. The

sensor sensitivity calculated applying the LDR slope over the active surface area of GCE (0.0316

cm2). The signal/noise ratio (S/N = 3) employed to find-out the low limit of detection (LOD) of

4-NPHyd. The mono- & disodium phosphate used as an equimolar concentration to prepare the

buffer phase for electrochemical investigation. At electrochemical characterization of 4-NPHyd,

the buffer phase in the investigation beaker taken 10.0 mL as constant throughout the study.

3 Results and discussion

3.1 Characterizations of ZnO/SnO2 NPs by XPS analysis

The XPS analysis executed to evaluate the binding-energy and their oxidation number of

atoms within the prepared ZnO/SnO2 NPs in Figure 1. As the survey XPS spectrum perceived

in Figure 1 (d), the obtained NPs contains only Zn2p, O1s and Sn3d orbitals. The Zn2p orbital is

further sub-divided in the two asymmetric orbitals termed as Zn2p3/2 and Zn2p1/2 spin orbitals

and located at 1022 and 1045 eV respectively with a separation of 23 eV, confirmed the Zn2+

ionization state in the NPs of ZnO/SnO2 NPs demonstrated in Figure 1 (a) [34–37].

Figure 1 The XPS spectra of wet-chemically synthesized ZnO/SnO2 NPs in alkaline phase.

(a) The asymmetric spin orbitals of Zn2p level, (b) O1s peak, (c) the core level Sn3d orbited

splitting into two spin orbitals of Sn3d5/2 and Sn3d3/2 and (d) the survey XPS spectra of

ZnO/SnO2 NPs.

The XPS spectral peak showing the high intensity located at 530.8 eV in Figure 1 (b) is

identified of O1s and identified to lattice oxygen of ionization state of O2- in the prepared

ZnO/SnO2 NPs [38–40]. Besides this, the Sn3d level orbital in Figure 1 (c) is sub-divided in

the two spin orbitals shown the binding energies of 486.5 and 495.25 eV related to Sn3d5/2 and

Sn3d3/2 orbitals respectively. These spin orbitals separate with 8.7 eV a typical value confirms

the Sn4+oxidation identified by the earlier articles [41, 42].
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3.2 The morphology of elemental compositions analysis of ZnO/

SnO2 NPs

The structural and atomic compositions of ZnO/SnO2 nanomaterials identified by FESEM

and EDS analysis.

Figure 2 (a,b) The low and high magnifying images of ZnO/SnO2NPs and (c,d) the EDS

image and elemental analysis of NPs

A pictorial in Figure 2 (a) and Figure 2 (b), the magnifying (low and high) images of

prepared nanomaterials, the ZnO, and SnO2 nanomaterials are aggregated irregularly to form

the nanoparticle shape with distinct sizes and shapes. The EDS image shown in Figure 2 (c) is

conformed the same observation as in Figure 1 (a, b). The EDS elemental analysis illustrated in

Figure 2 (d), the synthesized NPs contains 28.61% O, 33.7% Zn and 37.69% Sn only and the

peaks associated with impurities are not detected.

3.3 The evaluation of phase crystallinity and particles size by XRD

pattern

The XRD pattern of ZnO/SnO2 NPs shows in Figure 3, and X-ray powder diffraction (XRD)

taken to identify the crystalline phases of ZnO-SnO2 at the range of 20◦

∼ 80◦ with Cu Kα1

radiation (λ = 1.5406 Å ). The reflected peaks regarding ZnO such as (002), (101), (110), (201),

(004) and (202) plans can index following JCPDS (Joint Committee on Powder Diffraction

Standards) card no 0089-1397 and previously reported articles of ZnO nanoparticles [43, 44].

Besides this, the identified peaks for SnO2 such as (110), (211), (220), (311) and (301) plans

are conformed by JCPDD No. 0036-1451 and previous authors [45, 46]. The average crystal

size of synthesized NPs calculates applying the Scherer formula as D = (0.94λ)/(βCosθ), and

the estimated crystal size using ZnO(002) is 10.85 nm.

Figure 3 The XRD pattern of wet-chemically prepared ZnO/SnO2 NPs

Advances in Biochips © 2021 by SyncSci Publishing & All rights reserved 27 of 34

https://www.syncsci.com/journal/AB
https://www.syncsci.com
https://www.syncsci.com/copyright-and-oa-policy


Volume 2 Issue 1, July 1, 2021 M. Mahmud Alam, M.T. Uddin, Mohammed M. Rahman, et al.

3.4 Sensor application of ZnO/SnO2NPs/GCE Assembly

The selective 4-NPHyd sensor assembled by the coating of a GCE with ZnO/SnO2 NPs as

a layer of NPs and applied to the detection of 4-NPHyd at a buffer of pH 7.0. The long-time

stability of NPs layer on GCE boosted by the addition of Nafion suspension. It should know that

the Nafion used as a binder is a copolymer with conductive in nature. Thus, the use of Nafion

on the modified GCE improves the conductance and the electron transfer rate of the resultant

sensor. The similar characteristic of the sensor assembled using Nafion has reported in several

articles to detect toxic chemicals [47–51]. The wet-chemically prepared ZnO/SnO2 NPs on

GCE as an electrochemical sensor to selective detection of 4-NPHyd is new and the information

regarding its not available. During the electrochemical (I-V) sensing of 4-NPHyd in the buffer

solution, the holding time in Keithley electrometer set 1.0 s as constant throughout the study.

The amount of buffer solution for each I-V investigation took 10 mL in the measuring beaker.

The toxic chemicals in analytical grade such as benzaldehyde, 4-AP, 4-NPHyd, 2,4-DPDHCl,

3-CP, 3-MP, M-THydHCl, zimtaldehyde, 4-MP and 3-MPHydHCl were subjected to I-V

investigation by assembled sensor based on ZnO/SnO2 NPs/GCE at first illustrated in Figure 3

(a). The 4-NPHyd shows the supreme I-V outcome among the investigating toxics chemicals,

which performed at 0.1µM and 0 ∼ +1.5 V in 7.0 pH buffer phase presented in Figure 4 (a).

Therefore, considering the highest I-V outcome, 4-NPHyd is categorised to selective toxic for

the sensor assembly. Then, 4-NPHyd solutions in a range of 0.1 nM ∼ 0.1 mM applied to

analysis electrochemically at 0 ∼ +1.5 V potential range in a buffer solution, and the resulted

data represents in Figure 4 (b). The illustrated data in Figure 4 (b) exhibits a pattern to increase

the I-V intensity with the increasing concentration of 4-NPHyd from lower to higher. This

patter has described by previous authors in the detection of toxic chemicals in earlier [52–57].

The calibration of the 4-NPHyd sensor plotted in Figure 4 (c) known as a calibration curve. To

execute this calibration, the current data separated from Figure 4 (b) at +1.5 volt. From the

observation of Figure 4 (c), the current data are distributed linearly on the calibration curve

from 0.1nM to 0.01 mM of 4-NPHyd defined as the dynamic range of detection (LDR) and the

linearity is satisfied by the regression co-efficient R2 = 0.9976. The defined LDR has quite a

wide range of detection of 4-NPHyd.

Figure 4 The electrochemical characterization of assembled sensor with ZnO/SnO2 NPs/GCE.

(a) the investigation of electrochemical responses of toxics chemical of 0.1µM in buffer phase,

(b) I-V outcome of 4-NPHyd based on concentration, (c) the calibration of 4-NPHyd sensor and

(d) current versus conc.

The sensor sensitivity using the calibration curve slope and active surface area of GCE

(0.0316 cm2) is calculated and an appreciable sensitivity at 7.6930 µAµM/cm2 perceive. The

detection limit (LOD)of the 4-NPHyd sensor estimates by considering the signal/noise (S/N =

3) and the satisfactory LOD around 94.63±4.73 pM achieve.

The sensor response time expresses as a time to require the completion of an I-V analysis of
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an analyte, and it is an efficiency measuring parameter. The response time of 4-NPHyd sensor

tested at 0.1µM of 4-NPHyd in the buffer phase of pH 7.0 shown in Figure 5 (a). As perceived

in Figure 5 (a), the current responses become steady around 22.0 s. Thus, the 4-NPHyd sensor

needs 22.0 s to complete the I-V analysis of 4-NPHyd in the buffer phase. 22.0 s is quite enough

to prove the high efficiency of the 4-NPHyd sensor with ZnO/SnO2 NPs/GCE. The GCE was

modified with SnO2 NPs and ZnO/SnO2 NPs to execute control experiments at 0.1µ 4-NPHyd

and 0 ∼ +1.5 V in a buffer solution as illustrated in Figure 5 (b). As in Figure 5 (b), ZnO/SnO2

NPs/GCE electrode is exhibited the higher electrochemical activity compared to single SnO2

NPs. It happens due to the combinational effects of both metal oxides. The reproducibility

is reliability measuring parameter of the sensor and defines as the capability of the sensor to

generate the unique I-V outcome in the identical conditions. The reproducibility test at 0.1µM

of 4-NPHyd and 0 ∼ +1.5V in buffer phase of pH 7.0 was performed demonstrated in Figure 5

(c) in successive seven hours in a day. As shown in Figure 5 (c), the seven tests are unique and

impossible to distinguish each to other. Thus, the 4-NPHyd sensor shows notable information

that it is well enough to detect 4-NPHyd in unknown samples reliably. To measure the precision

of reproducibility parameter in term of %RSD (relative standard deviation), the current data at

+1.5 V were subjected to check its precision and found 1.39% RSD, provides the high precision

of reproducibility parameter. The stability of the sensor in the buffer phase is a very important

criterion. To check this parameter of the 4-NPHyd sensor, the similar reproducibility tests but in

successive seven days were executed illustrated in Figure 5 (d). The results alike reproducibility

are perceived. This test conforms to the long-term stability of the sensor in the buffer phase

with consistency in performance.

Figure 5 The tests of 4-NPHyd sensor based on ZnO/SnO2 NPs/GCE to execute its reliability.

(a) Response time, (b) the control experiments for 4-NPHyd sensor at 0.1µ 4-NPHyd and 0

∼+1.5 V in buffer solution, (c) reproducibility test at 0.1µ 4-NPHyd and 0 ∼ +1.5 V in buffer

solution and (d) stability of 4-NPHyd sensor.

During the electrochemical detection of 4-nitrophenylhydrazine in buffer phase at applied po-

tential, the 4-nitrophenylhydrazine molecules are adsorbed on the layered surface of ZnO/SnO2

NPs and influence of potential, it is oxidized to 1,4-diaminobenzene and ammonium ion. Some-

time, a number of free electrons are generated, which are responsible to enhance the conductance

of sensing buffer medium and finally, I-V response is recorded in Keithely electrometer. Similar

electrochemical oxidation has been mentioned in the earlier reports [58–60].

To execute the validation of this study, the researches of similar are compared with this study

in-term of parameters such as sensitivity, LDR and detection limit (DL) as illustrated in Table

1 [61–63] and considering the parameters, the performances of this study is found as quite

satisfactory and appreciable.
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Figure 6 The electrochemical detection of 4-nitrophenylhydrazine in buffer phase with

ZnO/SnO2 NPs/GCE sensor probe.

Table 1 The comparison of analytical performances of 4-NPHyd sensors based on ZnO/SnO2 NPs/GCE

Modified GCE Analyte *DL #LDR Sensitivity Ref.

CoS2/CNT NCs/GCE Hyd 0.1 nM 0.1 nM ∼ 1.0 mM 0.0044 µAµM/m2 [61]

Sn/ZnO NPs/GCE Hyd 18.9 pM 2.0 nM ∼ 20.0 mM 5.0108 µAµM/m2 [62]

T-PANI/Ag NCs/GCE Hyd 2.8 nM 0.01µM ∼ 10 mM 12.5 µAµM/m2 [63]

ZnO/SnO2 NPs/GCE 4-NPHyd 94.6 pM 0.1nM ∼ 0.01mM 7.6930 µAµM/m2 This work

Notes: *DL (detection limit), #LDR (linear dynamic range), pM(picomole), mM(millimole)

3.5 Analysis of real environmental samples

The validation of the proposed 4-NPHyd sensor based on ZnO/SnO2 NPs/GCE in detecting

4-NPHyd was performed by applying recovery method. For this experiment, the samples known

as real environmental samples collected as the extract of PC-water bottle, food packaging bag

and sea and tape water. The analyzed data are presented in Table 2 and found as satisfactory.

Table 2 The analysis of real environmental samples using ZnO/SnO2 NPs/GCE chemical sensor by

recovery method

Sample
Added 4-NPHyd

concentration

(µM)

Measured 4-NPHyd conc.a

by ZnO/SnO2 NPs/GCE(µM) Average recoveryb

(%)

RSDc

(%)

(n = 3)R1 R2 R3

Sea water 0.01 0.0104 0.0104 0.0106 104.54 1.1

PC- water bottle 0.01 0.0096 0.0094 0.0094 95.17 1.22

PVC- food packaging bag 0.01 0.0105 0.0106 0.0109 106.89 1.95

Tape water 0.01 0.0104 0.0103 0.0103 103.08 0.56

Notes: a Mean of three repeated determination (signal to noise ratio 3) ZnO/SnO2 NPs/GCE; b Concentration of

4-NPHyd determined/Concentration taken. (Unit: nM); c Relative standard deviation value indicates precision among

three repeated measurements(R1,R2,R3).

4 Conclusion

The wet-chemical prepared ZnO/SnO2 NPs in alkaline phase were characterized by XPS,

FESEM, EDS and X-ray diffraction at ambient condition. The prepared NPs were deposited on

GCE to result 4-NPHyd sensor in buffer phase. A plot executed from concentration of 4-NPHyd

versus current known as calibration curve and used to calculate sensor sensitivity, LDR and DL

found as appreciable. The 4-NPHyd sensor parameters such as reproducibility, response time

and long-time performing ability were tested and outstanding outcomes were exhibited.
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