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REVIEW

The most cited articles on the topic of health behaviors in Google Trends
research: a systematic review

Wei Chih Kan1,2 Tsair Wei Chien3 Hsien Yi Wang1,4 Willy Chou5,6∗

Abstract: Background: Over the past decade, the use of Web-based data in public health issues has
been proven useful in assessing various aspects of human behavior. Google Trends is the most popular tool to
gather such information and has been applied to several topics with the most focused subject related to health
and medicine. However, the most cited articles and the popular medical subject headings (MESH terms) on
health behaviors in Google Trends research remain unknown. The web-based behavior requires to monitor and
analyze on-line data for examining actual human behavior to predict and even prevent health-related issues that
constantly arise in daily life. Objective: This systematic review aimed at reporting and further presenting
the most cited articles and the popular MESH terms on health behaviors in Google Trends (infodemiology)
researches in health-related topics since 2009 to provide an overview of the topic burst for future research on
the subject of health behavior. Methods: Following the Meta-Analyses guidelines for selecting studies, we
searched for the term “Google Trends [Title]” in PubMed databases since 2009, applying specific criteria for
types of journal articles. A total of 86 published papers were extracted, excluding those that did not fall inside
the topics of health and medicine or the selected article types. We then further categorized the published papers
according to MESH terms using social network analysis (SNA) and selected the most cited articles that related
to the health behavior in Google Trends. Results: The most cited articles are those from the US in 2009
(PMID= 19845471 cited 88 times) and the UK in 2013 (PMID= 23619126 cited 74 times). The MESH term
represented by Internet earns the highest impact factor (IF) and presents significantly different among term
clusters (F (3,20)=15.79, p<0.001). The most number of citing journals is from PloS One. The most number
of author affiliations is from the US. Conclusion: The monitoring of online queries can provide insight into
human behavior, as the phenomenon is significantly and continuously growing at present and in the future for
assessing behavioral changes in health topics.

Keywords: health behavior, infodemiology, Google Trends, medical subject headings, social network
analysis

1 Introduction

Big data are characterized by the eight Vs[1–5](i.e., vol-
ume, variety, velocity, veracity, value, variability, volatil-
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ity, and validity and have shown great potential in fore-
casting and better decision making. Handling these data
with conventional ways is inadequate[6] and hence re-
quires novel approaches and methods applied to health-
care research.[7]

The online search queries have been popular in big
data analytics for academic research.[8, 9] The use of
search traffic data from web-based sources can assist in
facilitating a better understanding the Web-based behav-
ior and behavioral changes.[10] Online search traffic data
have been deemed as a good analyzer of internet behav-
ior, while Google Trends[11] acts as a reliable tool in
predicting changes in human behavior and as an accu-
rate measure which is the publics interest.[12] What are
the most popular topics in health behavior using Google
Trends remain unknown. The monitoring of web-based
activity (or health behavior) can be thus a valid indicator
of public behavior.[13]
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Healthcare is one of the top fields to which big data are
widely applied[14, 15] with many publications showing a
high increase.[16] Researchers have also placed their ef-
forts on examining Web-based search queries for health
behavior and medicine related topics.[17] However, few
were reported on the most cited articles and topics which
were searched in Google Trends. Which author affilia-
tions or regions searching health topics in Google Trends
research are most prominent in the world are required to
investigate.

As the use of Google Trends in examining human be-
havior is relatively novel, the search health topics of be-
haviors are constantly arising. Many topics have been
examined, such as epilepsy,[18, 19] cancer,[20] thrombo-
sis,[21] silicosis,[22] and various medical procedures in-
cluding cancer screening examinations,[23, 24] bariatric
surgery,[25] and laser eye surgery.[26] We are thus inter-
ested in exploring (1) Which topics are most searched
in healthcare; (2) which types of MESH terms are most
characterized in Google Trends; (3) which articles are
cited most in the past; (4) which regions in research af-
filiations are most in use of Google Trends in the world.

2 Methods

2.1 Data Collection

This review aimed to include all articles on the topics
of health and medicine that have used Google Trends in
the literature. We searched for the term “Google Trends”
in article Title on PubMed[27] since 2009, and following
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines, the total number of pub-
lications included in this review was 86.

2.2 Search in Pubmed

First, we searched for the keyword “Google Trends”
in the “Abstract-Title-Keywords” field for the journal ar-
ticles. The first two articles using Google Trends were
begun in 2009. The search returned 96 publications.

2.3 Social network analysis and Pajek soft-
ware

Social network analysis (SNA)[28] was applied to ex-
plore the pattern of entities in a system using the soft-
ware of Pajek.[29] In keeping with the Pajek guidelines,
we defined an author (or paper keyword) as a node that
is connected to other nodes through the edge (or say the
relation). Usually, the weight between two nodes is de-
fined by the number of connections.

Centrality is a vital index to analyze the network. Any
individual or keyword lies in the center of the social net-

work will determine its influence on the network and its
speed to gain information.[30, 31]

2.4 Tasks to report the feature on health be-
haviors in Google Trends research

2.4.1 What are the most number of author-defined
keywords in the network

Author-defined keywords were collected and analyzed
using SNA to separate clusters. The most number of be-
tweenness centrality in each cluster is presentative which
is the most occurred frequency in the respective cluster.
2.4.2 What are the most number of MESH terms in

the network
Similarly, the MESH terms were used to character-

ize the feature for each cluster, which is significantly
different from the author-defined keywords and actu-
ally and objectively represents the feature clusters of ar-
ticles using Google Trends. Furthermore, all articles
were grouped into the respective MESH terms through
the maximum likelihood method (MLM). That is, the
highest score among MESH cluster is the one article be-
longed to. Whether the types of MESH clusters are dif-
ferent in the number of the citation will be examined us-
ing the one-way ANOVA. The article citations were re-
trieved from the Pubmed Central (PMC). The most cited
articles will be reported in this study.
2.4.3 What are the most number of citing jour-

nals related to the searching topics in Google
Trends research

After retrieving the citing journals for articles from
PMC, the association of journal citation can be analyzed
using SNA. The most number of betweenness central-
ity were given to the journal representing the designated
cluster of citing journals.
2.4.4 What are the most influential research re-

gions regarding health behavior using Google
Trends

The most influential research regions based on the or-
der of author affiliations using the authorship-weighted
scheme.[32] That is, the first (i.e., primary) and the last
(i.e., corresponding) authors gain higher weighted con-
tributions to the given article.[33, 34] The visual display
will be shown with a dashboard on Google Maps.

2.5 Statistical tools and methods used in this
study

The Kendalls coefficient of concordance (W)[35] was
computed to examine the internal consistency(IC) of the
data(i.e., the four indices of h, g, x, and L indexes as well
as author impact factor (AIF))[36–41] related to MeSH
clusters. If the agreement is accepted by the statistical al-
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pha level (<0.05),[42] the following analysis of one-way
ANOVA for inspecting the difference in mean of indices
is meaningful.

3 Results

3.1 Task 1: the most number of author-
defined keywords in the network

Author-defined keywords displaying the top three rep-
resentatives of clusters are Google trends, digital epi-
demiology, and infodemiology (Figure 1). It implies that
many are methodology except for the only one topic of
cosmetic surgery in the network.

Figure 1. Author-defined keywords dispersed on a dashboard

3.2 Task 2: the most number of MESH terms
in the network

As to the MESH terms, we see the MESH terms con-
stituting the top five topics of the internet, trends, statis-
tics & numerical data, information seeking behavior, and
web browser (Figure 2), which indicate that all arti-
cles regarding health behaviors in Google Trends can be
formed by the five types of clusters.

The relevant bibliometric indices (i.e., the four of h,
g, x, and L indexes as well as AIF) to the MESH clus-
ters are closely associated with each other (i.e., having
high correlation coefficients). The Kendalls W is 0.67
with three degrees of freedom (χ3=12.05, p=0.01), in-
dicating data with acceptable internal consistency (IC).
The MESH term represented by Internet earns the high-
est impact factor (IF) and presents significantly different
among term clusters ( F(3,20)=15.79, p<0.001).

Figure 2. MESH terms dispersed on a dashboard

3.3 Task 3: the most number of citing jour-
nals

The most number of citing journals is from PloS
One (Figure 3) followed by the journals of JMIR Pub-
lic Health Surveill and J Med Internet Res. The most
cited articles are those from the US in 2009 (PMID=
19845471 cited 88 times) and the UK in 2013 (PMID=
23619126 cited 74 times).[43]

Figure 3. Clusters of citing journals related to the topic of health
behaviors on Google trends

3.4 Task 4: the most influential research re-
gions

The most number of author affiliations is from the
US (Figure 4) followed by Italy and the UK as well as
China, indicating the most influential research regions
using Google Trends on healthcare are from the US, Eu-
rope, and China.

4 Discussion

This study found that (1) the most cited articles are
those from the US in 2009 (PMID= 19845471 cited 88
times) and the UK in 2013 (PMID= 23619126 cited
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Figure 4. Distribution of author affiliations related to the topic
of health behaviors on Google trends

74 times); (2) the MESH term represented by Internet
earns the highest impact factor (IF) and presents signifi-
cantly different among MESH clusters (F (3,20)=15.79,
p<0.001); (3) the most number of citing journals is from
PloS One; (4) the most number of author affiliations is
from the US.

Referring the previous study[13] which assessed the
methods, tools, and statistical approaches in Google
Trends Research, a total of 23.1% (24/104) studies used
Google Trends data for examining seasonality, while
39.4% (41/104) and 32.7% (34/104) used correlations
and modeling, respectively. A few around 8.7% (9/104)
used for predictions and forecasting in health-related
topics. All the 104 examined papers but two included
data visualization to present the study results. For in-
stance, a worldwide map examined country for assess-
ing health and medicine related issues and found that
the US data have been employed in the most (60) stud-
ies, while other countries include the UK (15), Australia
(13), Canada (9), Germany (8), and Italy (7). The re-
sults are somewhat different from the visualization of our
study (i.e., the US, Italy, the UK and China has shown in
Figure 4. It is because we emphasize the author collabo-
ration instead of the regions applied by Google Trends.

Many studies have employed Google Trends for vi-
sualizing the changes of interest or discussing peaks
and spikes,[44–47] such as the search volumes for related
terms, terms related to the studied topic,[48, 49] and the
related internet searches.[50] Others include the report-
ing of the polynomial trend lines and the investigating of
statistically significant differences in yearly increases.[51]

Even Google Correlate has also been used to explore re-
lated terms,[52] we have not found any applying author-
defined keywords or MESH terms to visualize the related
terms, as we show them in Figure 1 and Figure 2.

The vast majority of studies using Google Trends
in health assessment have employed data visualization,
such as figures, maps, or screenshots. The most pop-
ular way is correlating them with official data on dis-

ease occurrence, spreading, and outbreaks. For instance,
the assessment of suicide tendencies and (prescription or
illegal) drug-related queries has been popular over the
past years. However, the gap in the existing literature
is the lack in use of Google Trends for predictions and
forecasting in health-related topics which can benefit the
general public by using and analyzing web-based data to
provide insight to better assess health issues and topics
in healthcare settings.

Finally, we particularly provided citation analysis to
illustrated the most number of citing journals and proved
that the MESH term of Internet earns the highest im-
pact factor(IF) and presents significantly different among
MESH clusters ( F (3,20)=15.79, p<0.001). Another
feature in this study is about the usage of Kendalls coeffi-
cient of concordance (W) which told us the bibliometric
indices closely related to each other in Table 1, which is
also rarely seen in the literature, particularly for data not
following the normal distribution.

Table 1. Features of MESH clusters across bibliometric indices
MESH cluster Output Cited number IF h g x L Ag

internet 20 374 18.7 9 13 14.14 19.34 28.62
trends 11 33 3 5 5 5 5.74 6.2
statistics & numerical data 16 55 3.44 4 7 4.69 7.42 7.29
information seeking behavior 2 2 1 4 7 1.41 1.41 7.29
web browser 1 0 0

Mean 10 92.8 5.23 5.5 8 6.31 8.48 12.35

Correlation Coefficient
IF 1
h 0.98 1
g 0.94 0.89 1
x 0.98 0.97 0.87 1
L 0.98 0.94 0.89 0.99 1
Ag 0.99 0.97 0.97 0.95 0.94 1
Kendall's consistence 
W 0.67

12.05
df 3
prob. 0.01

Cluster ANOVA:   F(3,20)=15.79, p<0.001

3

5 Limitations and Future study

The interpretation and generalization of the conclu-
sions should be cautious. First, the data were extracted
from Medline. It is worth noting that any generalization
should be made in similar fields of paper related con-
tents.

Second, several studies have used other sources
of big data, namely, Google News,[53–55, 58] Twit-
ter,[56, 57, 59] Yandex,[60] Baidu,[61] Wikipedia, Facebook
and Google+, and YouTube. Even Google is the most
popular search engine, other Web-based sources are used
or even preferred to Google in some regions (e.g., in
China) which is worthy of study in the future.

Third, although the data were carefully extracted from
Medline and were professionally dealt with in every link-
age, the originally downloaded contexts with some errors
in symbols might affect the resulting reports.
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Fourth, there are many algorithms used for SNA. We
just applied community cluster and betweenness central-
ity with weighted degrees in Figures. Any changes made
with the specific algorithm will present different pattern
and inference making.

Fifth, the social network analysis is not subject to the
Pajeck software we used in this study, Others such as
Ucinet[62] and Gephi[63] are suggested to readers for use
in the future.

6 Conclusion

This review consists of the studies published from
2009 to 2018 on Google Trends research in the PubMed
databases based on the selected criteria. This review
aimed to provide a point of reference for future research
in health behaviors using Google Trends. Google Trends
data are commonly used in infodemiology research and
have been shown to empirically correlate with official
health data in many topics. Using Google Trends be-
come increasingly popular in health behavior assessment
that can be crucial in monitoring and analyzing seasonal
diseases as well as epidemics and outbreaks in healthcare
settings.

7 List of abbreviations

AIF: author impact factor
BC: Betweenness centrality
IC: internal consistency
IF: impact factor
MESH: medical subject headings
PMC: Pubmed Central
SNA: Social network analysis
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