

RESEARCH ARTICLE

Epexegesis to the Norwegian Orthopaedic Register

Joshua Mallets¹ Tarun Goswami^{1*}

¹ Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA

Check for updates

Correspondence to: Tarun Goswami, Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA; E-mail: Tarun.goswami@wright.edu

Received: April 16, 2025; **Accepted:** July 2, 2025; **Published:** July 8, 2025.

Citation: Mallets J, Goswami T. Epexegesis to the Norwegian Orthopaedic Register. Adv Gen Pract Med, 2025, 6(1): 134-149. https://doi.org/10.25082/AGPM.2024.01.004

Copyright: © 2025 Joshua Mallets *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 International License, which permits all noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract: National orthopaedic registries compile databases regarding the procedures and outcomes. Registers while used in policy development, projecting future trends and resource allocation also provide a means to monitor patient care, implant performance, support evidencebased practices and a scale in which to assess quality improvement in orthopaedic surgery. These databases can also facilitate shared decision-making between patients and surgeons. Since international databases exist on joint prostheses that can be used to generate a comparative analysis between different countries. By standardizing data collection among countries, one can compare various geographical and demographic factors that may play a role in data variation. In this paper, data from the "Norwegian National Network for Arthroplasty and Hip Fracture" registry was collected, and statistical analysis performed to identify differences and trends in the Norwegian data. The focus of this paper is on knee arthroplasties and, more specifically, the reasons for primary arthroplasty, revision surgery, and reoperation surgery. We compared the Norwegian data with Sweden, Switzerland, England, and Australian registries, however, due to reporting inconsistencies, no comparison was generated. Thus, this paper adds an epexegesis to the Norwegian National Registry on reasons for revisions data and constitutes a part of course work in Experimental Orthopaedic Engineering (BME 7220).

Keywords: orthopaedic registries, knee arthroplasty, comparative analysis, revision surgery, data standardization

1 Introduction

Norway, It is home to approximately 5.5 million people, with a projected population growth of 6.9 million by the year 2100 [1, 2]. A majority of the population is between 30 and 55 years old, with approximately 102 males per 100 females and a density of 18.2 people per square kilometer [2]. Many people live in the southern region of the country around the capital, Oslo, and in cities such as Bergen and Trondheim [1]. Ethnically, roughly 83.2% of the population is Nordic, exhibiting the physical and cultural attributes of Norwegians [1]. People originating from other European countries compose about 8.3% of the population, and the remaining 8.5% originate from other countries around the world [1]. Due to Norway's terrain, however, many of the cities and, consequently, much of the population are located on the coastline [1].

Much of mainland Norway is heavily mountainous with extreme climates and rough terrain, with the highest mountains measuring over 8,000 ft [1]. These mountains block coastal weather, resulting in cold winters, warmer summers, and little precipitation [1, 3]. On the contrary, the coastlines, where a majority of the population lives, are jagged fjords that were formed by glaciers thousands of years ago, as well as over 50,000 islands [1].

Healthcare in Norway is government-regulated, providing Norwegian citizens with access to free hospital care and medicine [1]. Most hospitals, where a majority of the country's doctors work, are owned by local and national government organizations [1]. Due to these government efforts, the people of Norway have one of the highest standards of living in the world [1].

1.1 Norwegian National Arthroplasty Registry

In the early 1980s, it was discovered that inferior hip implants were being used in Norwegian hospitals [4]. This subsequently prompted the creation of a national registry for hip arthroplasties in 1987, which grew to encompass all arthroplasties in 1994 [4]. In 2009, it was added to a national medical quality register, which now includes the arthroplasty register, hip fracture register, knee ligament register, and paediatric hip registry [4]. The Ministry of Health and Care Services changed the arthroplasty register to a National Advisory Unit in 2002 and changed the name to The Norwegian National Network for Arthroplasty and Hip Fractures in 2023 [4]. The

goal of the registries was to identify shortcomings of joint prostheses and observe related trends over time [4]. These registries are operated by The National Network and funded by Helse Vest RHF and Helse Bergen HF [4]. The most recent completeness reporting was for the years 2019 through 2020. For primary knee prostheses, the reporting rate is 96.6%, and the reporting rate for knee revisions was 92.9% [5].

2 Methodology

Data from the Norwegian Arthroplasty Registry was collected for the ten most recently reported years [5–8]. These reports were published in 2024, 2023, 2022, and 2021 but contain data from the year prior [5–8]. Data was classified into the following categories: demographics, operation overview, and reasons for operation. Demographic data has been obtained for the past four years from graphs provided in the past four years' reports. As such, discrepancies in the recorded values may be derived from human error. Data for the operation overview and reasons for operation were provided for the past ten years in various tables in the most recent annual report. All data was compiled and analyzed in Microsoft Excel.

Data regarding reasons for revision of total knee prostheses with the patellar component, total knee prostheses without the patellar component, and unicondylar prostheses were analyzed using statistical methods to determine significant differences between reasons for each group, respectively. A square root variance stabilization was performed for each, followed by a one-way analysis of variance (ANOVA) and a Tukey-Kramer pair-wise comparison. The Tukey-Kramer test is a modified version of the post-hoc Tukey test that allows for uneven data sets [9, 10]. Rather than using the normal mean, it uses the harmonic mean to determine pair-wise differences under a studentized distribution [9,10]. This test is considered a stepwise procedure as it assumes one type I error, and each comparison is performed under one critical value, making each pair-wise comparison independent of one another [10]. Similar tests include Fisher's least significant difference test and the Bonferroni test [10].

Based on the results of this test, the three reasons for revision with the highest ten-year mean, or average, were further analyzed via regression models to determine if there is a predictable trend in the data. Regression models are used in statistics to determine a mathematical function that relates one or more independent variables to a single dependent variable [11, 12]. In this case, the independent variable is the year, and the dependent variable is the number of specific revisions performed. The efficiency of the regression model can be assessed with the coefficient of determination (R^2) [11, 12]. This coefficient explains the proportion of variation in the dependent variable that is considered by the model [11, 12]. Thus, an \mathbb{R}^2 value closer to one means that there is less error in the variance and can be considered a better prediction model than that of a regression model with an \mathbb{R}^2 closer to zero [11, 12]. In this article, the type of regression model was chosen based on which gave the highest R^2 value. In most cases, this model was polynomial, but in one case it was a linear model. The concern of overfitting the model was considered; hence, only a second-order polynomial model was fit, even though in some cases, a higher-order model produced a higher R² value. According to literature, an acceptable \mathbb{R}^2 value is dependent on the field of study [13]. In engineering, it is stated that a $\geq 0.7 \text{ R}^2$ value is acceptable, but the article concludes that in clinical medicine, a $\geq 0.15 \text{ R}^2$ is acceptable [13].

Numerous other countries publish annual arthroplasty registry reports. An effort to find an annual report from another country that could be used in comparison to Norway was made; however, of the ones examined, none published their reasons for revision data in a manner that could be used in a one-to-one fashion. Countries such as Sweden, Switzerland, and England were reviewed as each, in some form, included reasons for revision in their annual report [14–16]. The country that had the closest method of publishing their reasons for revision data to that of Norway's, however, was Australia [17–26].

3 Results

3.1 Registry Report Data

The first section for which data was collected was demographics. Any information regarding the population was compiled in this section. It was noted, however, that there seemed to be missing information for 2021, as seen in Table 1. It was also noted that some information seemed to be copied directly from one annual report to the other, as seen in the proportion of men and women who received primary total and unicondylar arthroplasties in 2020 and 2021.

These noted peculiarities could have been a result of the COVID-19 pandemic that peaked in those years. Table 1 shows the number of arthroplasties per 100,000 in both men and women for the indicated years and the total incidence for men and women [5-8]. Table 2 and 3 show the proportion of primary total and unicondylar prostheses, respectively, for the age at which it was implanted [5-8]. Table 4 and 5 show the proportion of different age ranges that received total or unicondylar prostheses, respectively, for men and women each year [5-8].

		-	-								
Number of Operations per 100,000 (Incidence)											
	<39 yrs	40-49 yrs 50-59 yrs		60-69 yrs	70-79 yrs	>80 yrs					
2023 M	0	20	160	410	600	350					
2023 W	0	30	210	430	730	350					
2022 M	0	30	150	430	590	310					
2022 W	0	30	190	440	720	320					
2021 M	n/a	n/a	n/a	n/a	n/a	n/a					
2021 W	n/a	n/a	n/a	n/a	n/a	n/a					

140

180

2021

140

350

360

2020

125

500

600

290

300

30

30

2022

145

n/a

0

0 2023

150

2020 M

2020 W

Annual Total

 Table 1
 Number of Operations per 100,000 (Incidence) [5–8]

Proportion % of Primary Total Knee Prosthesis										
	<45 yrs	45-59 yrs	60-69 yrs	70-79 yrs	>79 yrs					
2023	0	18	33	37	12					
2022	1	15	33	40	11					
2021	1	17	34	37	11					
2020	1	16	35	36	12					

Table 3 Proportion % of Primary Unicondylar Knee Prosthesis [5–8]

Proportion % of Primary Unicondylar Knee Prosthesis										
	70-79 yrs	>79 yrs								
2023	3	22	37	30	8					
2022	2	22	39	31	6					
2021	1	23	39	31	6					
2020	2	25	38	31	4					

 Table 4
 Proportion % of Primary Total Knee Prosthesis [5–8]

Proportion	Proportion % of Primary Total Knee Prosthesis											
	<45 yrs	45-59 yrs	60-69 yrs	70-79 yrs	>79 yrs							
2023 M	2	17	34	38	9							
2023 W	2	15	31	39	13							
2022 M	3	16	36	36	9							
2022 W	2	15	31	40	12							
2021 M	3	16	36	35	10							
2021 W	2	15	31	40	12							
2020 M	3	16	36	35	10							
2020 W	2	15	31	40	12							

 Table 5
 Proportion % of Primary Unicondylar Knee Prosthesis [5–8]

Proportion	% of Primar	y Unicondyl	ar Knee Pro	sthesis	
	<45 yrs	45-59 yrs	60-69 yrs	70-79 yrs	>79 yrs
2023 M	2	24	42	28	4
2023 W	3	25	40	27	5
2022 M	2	25	41	28	4
2022 W	3	26	39	27	5
2021 M	2	25	41	28	4
2021 W	3	26	38	28	5
2020 M	2	25	41	28	4
2020 W	3	26	38	28	5

The second section was the operation overview, which contained general information and data about the number and types of arthroplasty operations. Table 6 contains an overview of the number and type of knee arthroplasties performed [5]. It was noted that data for the year 2014 was not available. Table 7 and 8report the classification of stability and modularity for primary and revision total prostheses, respectively [5]. Table 9 provides the legend for the abbreviations in Table 7 and 8 [5].

	Number of	Operations			Primary Op	eration Type	es					
	Primary			Total	Total w/	Total w/o		Patello-	Partial	Hinged		Total Primary
	Operations	Reoperations	Revisions	Operations	Patella	Patella	Unicondylar	Femoral	Resurfacing	Prosthesis	Total Stab.	Operations
2023	8653	62	647	9362	940	6241	1344	54	0	44	29	8653
2022	7868	58	580	8506	790	5798	1138	69	0	53	20	7868
2021	7637	53	595	8285	659	5834	1007	71	0	53	4	7628
2020	6707	36	550	7293	527	5248	842	44	1	45	0	6707
2019	7256	32	619	7907	586	5589	995	53	0	33	0	7256
2018	6933	29	637	7599	504	5338	1001	58	0	31	1	6933
2017	6581	26	605	7212	454	5152	868	75	0	32	0	6581
2016	6514	25	579	7118	221	5329	863	68	1	32	0	6514
2015	6120	14	542	6676	160	5134	753	39	0	33	0	6119
2014												

 Table 7
 Classification of Stability and Modularity: primary total prosthesis [5]

Classificati	Classification of Stability and Modularity: PRIMARY total prosthesis											
			MS			Р	S					
	CR UC											
	All poly	MT	All poly	MT	MP	All poly	MT	ССК	Rotat. Plat.	Hin. Pros.	Seg. Pros.	Total
2023	1	4931	217	583	187	0	820	55	420	42	3	7277
2022	0	4102	182	460	139	0	895	38	778	47	5	6657
2021	0	4158	207	240	121	1	775	33	945	50	4	6547
2020	21	3699	224	234	129	1	608	33	821	43	3	5820
2019	92	4024	11	175	233	1	607	33	989	28	4	6206
2018	1	3579	0	137	269	1	568	26	1244	28	3	5870
2017	0	3201	0	130	331	0	544	42	1348	31	1	5637
2016	4	3165	0	95	408	0	472	19	1370	27	5	5578
2015	2	3140	0	37	332	0	348	23	1403	30	3	5326
2014	2	3077	0	34	251	0	150	23	1416	18	2	4988

 Table 8
 Classification of Stability and Modularity: revision total prosthesis [5]

Classificati	Classification of Stability and Modularity: REVISION total prosthesis											
			MS			P	S					
		CR	ι	IC								
	All poly	MT	All poly	MT	MP	All poly	MT	ССК	Rotat. Plat.	Hin. Pros.	Seg. Pros.	Total
2023	(97	0	38	11	0	115	66	62	93	10	492
2022	(93	0	30	9	0	105	64	53	86	6	446
2021	(0 101	0	19	11	0	106	63	71	80	7	459
2020	() 85	0	11	10	0	108	94	62	58	4	432
2019	:	L 88	0	30	18	0	120	80	82	72	9	500
2018	:	l 109	0	25	15	0	113	109	93	42	2	509
2017	(87	0	17	20	0	134	66	89	63	2	478
2016	() 72	0	23	15	0	96	67	80	72	7	432
2015	() 82	0	29	16	0	102	50	75	59	7	420
2014	() 79	0	19	16	0	59	69	90	56	6	395

 Table 9
 Classification of Stability and Modularity Legend [5]

CR=Posterior cruciate retaining										
MS=Minimally stabilized=Posterior cruciate retaining prosthesis and deep dish										
UC=Ultra congruent (dished)										
MP=Medial Pivot knee has no all p										
PS=Posterior cruciate stabilizing p	rosthesis									
CCK=Constrained Condylar Knee=	High level	stabilization								
MT=Metal backed tibia										
All poly=All polyethylene tibial cor										

The last section for which data was collected was the reasons for operation. This section, as the name implies, provides the number of operations performed for a specific reason related

to primary, revision, or reoperation. Table 10 and 11 show the reasons for primary total and unicondylar knee prostheses, respectively [5]. Table 12, 13, and 14 show the reasons for revision of total knee prostheses with the patella component, total knee prostheses without the patella component, and unicondylar knee prostheses, respectively [5]. Similarly, Table 15, 16, and 17 show the reasons for reoperation of total knee prostheses with the patella component, total knee prostheses without the patella component, total knee prostheses with the patella component, total knee prostheses with the patella component, and unicondylar knee prostheses, respectively [5]. It was noted that data was missing from the report for various years, as seen in Table 15 and 17.

Reasons fo	r PRIMARY	FOTAL Knee	Prostheses	;								
-	Idiopathic	Rheumatoid	Sequelae after	Mb.	Sequelae,	Sequelae,		Sequelae	Psoriasis			
	Osteoarthritis	Arthritis	fracture	Bechterew	ligament tear	meniscaltear	Acute fracture	infection	arthritis	Osteonecrosis	Other	Missing
2023	6557	139	146	16	302	455	21	20	62	34	155	9
2022	6061	147	118	17	274	427	9	26	41	29	145	3
2021	5971	134	140	15	254	410	10	14	30	23	100	5
2020	5320	130	131	22	216	332	5	11	28	20	86	0
2019	5694	134	145	14	239	350	7	13	29	16	101	0
2018	5376	146	139	13	235	365	5	13	28	13	96	0
2017	5134	159	153	19	191	339	3	18	39	14	78	0
2016	5076	139	126	18	232	368	2	11	40	15	86	0
2015	4811	166	122	16	205	321	1	18	36	10	107	2
2014	4504	142	126	22	144	308	3	7	30	16	94	2

 Table 10
 Reasons for primary total knee prostheses [5]

 Table 11
 Reasons for primary unicondylar knee prostheses [5]

Reasons fo	r PRIMARY I	UNICONDY	LAR Knee Pi	rostheses						
	Idiopathic	Rheumatoid	Sequelae after	Mb.	Sequelae,	Sequelae,	Sequelae			
	Osteoarthritis	Arthritis	fracture	Bechterew	ligament tear	meniscal tear	infection	Osteonecrosis	Other	Missing
2023	1251	0	4	1	2	113	0	21	58	0
2022	1066	0	2	0	2	104	1	22	49	0
2021	967	0	2	1	0	61	0	11	13	2
2020	804	0	3	0	2	54	0	14	17	0
2019	948	1	2	0	2	64	0	18	20	0
2018	954	2	8	0	2	80	0	14	18	0
2017	833	1	4	0	3	71	0	13	22	0
2016	830	1	2	1	1	54	1	16	13	0
2015	706	0	4	2	5	70	0	11	13	0
2014	575	2	2	0	0	50	0	13	20	0

 Table 12
 Reasons for revision: total knee prostheses with patella [5]

Reasons fo	r REVISION	TOTAL Kne	e Prosthese	es W/ PATEL	LA										
	Loose								Prolonged						
	proximal	Loose distal	Loose patella	Dislocation of	Dislocation				wound	Fracture near		Defect	Arthrofibrosis		
	comp.	comp.	comp.	patella	(not patella)	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	/fibrosis	Other	Missing
2023	4	6	1	1	2	10	2	8	2	3	9	2	2	4	0
2022	3	4	0	0	0	2	1	11	3	1	0	2	0	2	1
2021	1	5	1	0	0	8	2	6	0	3	3	1	0	1	0
2020	1	7	2	1	0	7	3	9	1	0	10	1	1	2	0
2019	2	7	1	1	2	5	2	10	0	3	4	2	1	4	0
2018	0	2	0	0	0	5	1	9	0	2	4	1	0	2	0
2017	0	0	0	0	1	3	1	6	0	0	2	2	0	0	0
2016	1	1	1	1	0	1	1	6	0	1	3	1	0	1	0
2015	3	1	2	0	1	5	1	2	0	0	4	1	0	1	0
2014	2	1	1	0	0	3	2	1	1	0	5	2	0	1	0

 Table 13
 Reasons for revision: total knee prostheses without patella [5]

Reasons fo	r REVISION	TOTAL Kne	e Prosthese	s W/O PATE	LLA										
	Loose							Prolonged							
	proximal	Loose distal	Dislocation of	Dislocation				wound	Fracture near		Defect	Progression of	Arthrofibrosis		
	comp.	comp.	patella	(not patella)	Instability	Malalign ment	Deep infection	drainage	implant	Pain	polyethylene	Osteoarthritis	/fibrosis	Other	Missing
2023	21	36	5	6	89	15	64	5	7	67	11	31	14	25	1
2022	16	42	5	1	87	16	60	6	9	81	14	19	11	22	0
2021	12	43	12	3	89	25	75	2	15	103	13	22	3	28	0
2020	21	46	6	0	63	27	72	1	13	58	12	10	0	31	0
2019	21	42	7	2	68	31	76	0	16	71	7	12	. 8	34	0
2018	33	68	6	0	84	26	83	0	15	74	8	6	4	30	0
2017	19	49	4	3	79	30	70	3	20	90	13	8	3	25	0
2016	19	39	3	3	81	33	73	1	9	92	13	8	0	30	0
2015	15	47	3	3	73	30	58	1	7	95	9	10	3	26	0
2014	16	60	2	4	75	31	57	2	14	67	4	2	2	24	0

Reasons fo	r REVISION	UNICONDY	LAR Knee P	rostheses										
	Loose						Prolonged							
	proximal	Loose distal					wound	Fracture near		Defect	Progression of			
	comp.	comp.	Dislocation	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	Osteoarthritis	Subluxation	Other	Missing
2023	13	14	3	33	6	15	1	5	31	10	60	7	9	1
2022	8	16	3	24	6	9	0	4	37	5	53	4	10	2
2021	6	12	6	20	8	7	1	2	23	4	52	3	7	0
2020	8	17	6	19	10	5	0	1	21	10	46	1	10	0
2019	9	13	9	20	18	13	0	6	26	12	40	3	14	0
2018	12	15	11	16	12	9	0	3	37	8	53	2	9	0
2017	12	15	7	10	5	7	0	4	37	8	48	0	4	0
2016	9	8	9	7	5	13	1	4	25	6	36	3	4	0
2015	5	8	4	10	9	4	0	4	37	6	43	1	5	0
2014	14	15	3	15	8	4	0	0	37	6	33	1	6	0

Table 14Reasons for revision: unicondylar knee prostheses [5]

Table 15 Reasons for reoperation: total knee prostheses with patella [5]

Reasons to	REOPERA	IION IOTAL	L Knee Prost	ineses W/P	AIELLA										
	Loose								Prolonged						
	proximal	Loose distal	Loose patella	Dislocation of	Dislocation				wound	Fracture near		Defect	Arthrofibrosis		
	comp.	comp.	comp.	patella	(not patella)	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	/fibrosis	Other	Missing
2023	0	0	0	0	0	1	1	0	0	2	1	0	2	1	0
2022	0	0	0	0	0	0	0	1	0	2	0	0	1	0	1
2021	0	0	0	0	0	0	0	1	0	2	0	0	0	1	1
2020	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
2019	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
2018	0	0	0	0	0	0	0	0	0	0	2	0	0	3	0
2017	0	0	0	0	0	0	0	1	0	1	1	0	0	1	0
2016	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
2015															
2014	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Fable 16	Reasons	for reoper	ration:	total	knee	prostheses	without	patella	[5]	l
----------	---------	------------	---------	-------	------	------------	---------	---------	-----	---

Reasons fo	r REOPERA	ΓΙΟΝ ΤΟΤΑΙ	L Knee Prost	heses W/O	PATELLA										
	Loose							Prolonged							
	proximal	Loose distal	Dislocation of	Dislocation				wound	Fracture near		Defect	Progression of	Arthrofibrosis		
	comp.	comp.	patella	(not patella)	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	Osteoarthritis	/fibrosis	Other	Missing
2023	0	0	1	1	1	0	8	0	30	1	0	0	16	8	0
2022	0	0	0	0	1	0	6	0	25	1	0	0	6	10	0
2021	0	0	1	0	0	0	4	0	23	1	0	0	2	6	0
2020	0	0	0	0	0	0	4	0	11	0	0	0	0	10	0
2019	0	0	2	1	1	1	2	1	11	0	0	0	3	3	0
2018	0	0	1	1	0	0	6	2	5	1	0	0	1	3	0
2017	1	0	2	0	0	0	7	0	3	2	0	0	0	5	0
2016	0	0	0	0	0	0	5	0	5	0	0	0	1	5	0
2015	0	0	0	0	0	0	5	1	0	2	0	0	1	1	0
2014	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0

 Table 17
 Reasons for reoperation: unicondylar knee prostheses [5]

Reasons fo	r REOPERA	TION UNICO	ONDYLAR K	nee Prosthe	eses									
	Loose						Prolonged							
	proximal	Loose distal					wound	Fracture near		Defect	Progression of			
	comp.	comp.	Dislocation	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	Osteoarthritis	Subluxation	Other	Missing
2023	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2022	0	0	0	0	0	0	0	0	0	0	0	0	2	0
2021	0	0	0	0	0	0	0	0	2	0	0	0	0	0
2020														
2019														
2018	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2017	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2016	0	0	1	0	0	1	0	0	0	0	0	1	0	0
2015	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2014														

3.2 Reasons for Revision Pair-Wise Statistical Analysis

The reasons for revision of total knee prostheses with the patellar component, total knee prostheses without the patellar component, and unicondylar prostheses were further investigated due to their impact on prosthesis design. Insight into the reasons for revision allows for a focused approach when engineering improvements for these devices. The first group analyzed was the reasons for revision of total knee prostheses with the patellar component (TK w/ P). Table 18 shows the square root stabilized transformation of the raw data. Table 19 shows the one-way ANOVA performed on this transformed data. Similarly, Figure 1 and 2 show a scatter plot and a box and whisker plot of the transformed data. Table 20 shows the results of the Tukey-Kramer pair-wise comparison.

Sqrt Varian	ce Stabilizir	ig Transforn	nation												
	Loose								Prolonged						
	proximal	Loose distal	Loose patella	Dislocation of	Dislocation				wound	Fracture near		Defect	Arthrofibrosis		
	comp.	comp.	comp.	patella	(not patella)	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	/fibrosis	Other	Missing
2023	2.00	2.45	1.00	1.00	1.41	3.16	1.41	2.83	1.41	1.73	3.00	1.41	1.41	2.00	0.00
2022	1.73	2.00	0.00	0.00	0.00	1.41	1.00	3.32	1.73	1.00	0.00	1.41	0.00	1.41	1.00
2021	1.00	2.24	1.00	0.00	0.00	2.83	1.41	2.45	0.00	1.73	1.73	1.00	0.00	1.00	0.00
2020	1.00	2.65	1.41	1.00	0.00	2.65	1.73	3.00	1.00	0.00	3.16	1.00	1.00	1.41	0.00
2019	1.41	2.65	1.00	1.00	1.41	2.24	1.41	3.16	0.00	1.73	2.00	1.41	1.00	2.00	0.00
2018	0.00	1.41	0.00	0.00	0.00	2.24	1.00	3.00	0.00	1.41	2.00	1.00	0.00	1.41	0.00
2017	0.00	0.00	0.00	0.00	1.00	1.73	1.00	2.45	0.00	0.00	1.41	1.41	0.00	0.00	0.00
2016	1.00	1.00	1.00	1.00	0.00	1.00	1.00	2.45	0.00	1.00	1.73	1.00	0.00	1.00	0.00
2015	1.73	1.00	1.41	0.00	1.00	2.24	1.00	1.41	0.00	0.00	2.00	1.00	0.00	1.00	0.00
2014	1.41	1.00	1.00	0.00	0.00	1.73	1.41	1.00	1.00	0.00	2.24	1.41	0.00	1.00	0.00

 Table 18
 TK w/P Square Root Stabilized Transformation

 Table 19
 TK w/P One-way ANOVA

Sqrt Variance Stabilized Data	a					
Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Loose proximal comp.	10	11.29253	1.129253	0.471987		
Loose distal comp.	10	16.39127	1.639127	0.792513		
Loose patella comp.	10	7.828427	0.782843	0.319064		
Dislocation of patella	10	4	0.4	0.266667		
Dislocation (not patella)	10	4.828427	0.482843	0.407625		
Instability	10	21.22298	2.122298	0.439837		
Malalignment	10	12.38891	1.238891	0.072389		
Deep infection	10	25.07001	2.507001	0.572161		
Prolonged wound drainage	10	5.146264	0.514626	0.483511		
Fracture near implant	10	8.610366	0.861037	0.620684		
Pain	10	19.27666	1.927666	0.760115		
Defect polyethylene	10	12.07107	1.207107	0.047659		
Arthrofibrosis/fibrosis	10	3.414214	0.341421	0.314924		
Other	10	12.24264	1.224264	0.334642		
Missing	10	1	0.1	0.1		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	69.94142	14	4.995816	12.48168	2.77E-18	1.765688
Within Groups	54.03399	135	0.400252			
Total	123.9754	149				

Figure 1 TK w/ P Scatter Plot

Figure 2 TK w/P Box and Whisker Plot

Table 20 TK w/P Tukey-Kramer Comparison

Group							Tuk	cey-K	iram	er Pa	air-w	ise (Com	paris	ion - '	Tota	l Kne	e w	Pat	ella								Average
	Deep infect	Instability	Pain		Loose	e dista	Mala	lignme	Othe	r	Defe	ct pol	Loos	e prox	Fract	ure ne	Loos	e pate	Prolo	nged	Dislo	catior	Dislo	catior	Arthr	ofibro	Missing	
Deep infection	÷																											2.507001
Instability		4																										2.122298
Pain				Ļ																								1.927666
Loose distal comp.						r																						1.639127
Malalignment								Ļ																				1.238891
Other									4	L																		1.224264
Defect polyethylene												Ŷ																1.207107
Loose proximal comp.														i.														1.129253
Fracture near implant															4	L												0.861037
Loose patella comp.																		i										0.782843
Prolonged wound drainage																				Ļ								0.514626
Dislocation (not patella)																					4	Ļ						0.482843
Dislocation of patella																								Ŷ				0.400000
Arthrofibrosis/fibrosis																										r		0.341421
Missing																											¥	0.100000

The second group analyzed was the reasons for revision of total knee prostheses without the patellar component (TK w/o P). Table 21 shows the square root stabilized transformation of the raw data. Table 22 shows the one-way ANOVA performed on this transformed data. Similarly, Figure 3 and 4 show a scatter plot and a box and whisker plot of the transformed data. Table 23 shows the results of the Tukey-Kramer pair-wise comparison.

Table 21	TK w/o P Square Ro	oot Stabilized '	Transformation

Synt Vallan	dir variance Stabilizing Hansionnauon														
								Prolonged							
	Loose proximal	Loose distal	Dislocation of	Dislocation				wound	Fracture near		Defect	Progression of	Arthrofibrosis		
	comp.	comp.	patella	(not patella)	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	Osteoarthritis	/fibrosis	Other	Missing
2023	4.58	6.00	2.24	2.45	9.43	3.87	8.00	2.24	2.65	8.19	3.32	5.57	3.74	5.00	1.00
2022	4.00	6.48	2.24	1.00	9.33	4.00	7.75	2.45	3.00	9.00	3.74	4.36	3.32	4.69	0.00
2021	3.46	6.56	3.46	1.73	9.43	5.00	8.66	1.41	3.87	10.15	3.61	4.69	1.73	5.29	0.00
2020	4.58	6.78	2.45	0.00	7.94	5.20	8.49	1.00	3.61	7.62	3.46	3.16	0.00	5.57	0.00
2019	4.58	6.48	2.65	1.41	8.25	5.57	8.72	0.00	4.00	8.43	2.65	3.46	2.83	5.83	0.00
2018	5.74	8.25	2.45	0.00	9.17	5.10	9.11	0.00	3.87	8.60	2.83	2.45	2.00	5.48	0.00
2017	4.36	7.00	2.00	1.73	8.89	5.48	8.37	1.73	4.47	9.49	3.61	2.83	1.73	5.00	0.00
2016	4.36	6.24	1.73	1.73	9.00	5.74	8.54	1.00	3.00	9.59	3.61	2.83	0.00	5.48	0.00
2015	3.87	6.86	1.73	1.73	8.54	5.48	7.62	1.00	2.65	9.75	3.00	3.16	1.73	5.10	0.00
2014	4.00	7.75	1.41	2.00	8.66	5.57	7.55	1.41	3.74	8.19	2.00	1.41	1.41	4.90	0.00

Table 22 TK w/o P One-way ANOVA

Sqrt Variance Stabilized Data						
Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Loose proximal comp.	10	43.547173	4.354717	0.37382		
Loose distal comp.	10	68.39408	6.839408	0.469442		
Dislocation of patella	10	22.359284	2.235928	0.334027		
Dislocation (not patella)	10	13.791907	1.379191	0.664259		
Instability	10	88.63641	8.863641	0.262076		
Malalignment	10	51.002698	5.10027	0.430276		
Deep infection	10	82.795945	8.279595	0.275905		
Prolonged wound drainage	10	12.246036	1.224604	0.667051		
Fracture near implant	10	34.856814	3.485681	0.388917		
Pain	10	88.989136	8.898914	0.677042		
Defect polyethylene	10	31.813216	3.181322	0.310214		
Progression of Osteoarthritis	10	33.926294	3.392629	1.433407		
Arthrofibrosis/fibrosis	10	18.497075	1.849708	1.531758		
Other	10	52.333085	5.233308	0.12498		
Missing	10	1	0.1	0.1		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	Fcrit
Between Groups	1144.08	14	81.72003	152.4026	2.37361E-75	1.765688
Within Groups	72.38856	135	0.536212			
Total	1216 469	149				

Figure 3 TK w/o P Scatter Plot

Figure 4 TK w/o P Box and Whisker Plot

Group							Tuke	ey-K	-Kramer Pair-wise Comparison - Total Knee w/o Patella													Average						
	Pain	Instability	Deep	infect	Loos	e dista	Other	r	Mala	lignme	Loos	e pro>	Fract	ture ne	Progr	essio	Defec	ct poly	Dislo	catior	Arthro	fibro	Dislo	catior	Prolo	nged	Missing	
Pain	4																											8.898914
Instability		↓ ↓																										8.863641
Deep infection			4																									8.279595
Loose distal comp.					4	r																						6.839408
Other							4	L																				5.233308
Malalignment										t																		5.100270
Loose proximal comp.												Ļ																4.354717
Fracture near implant														Ŷ														3.485681
Progression of Osteoarthritis																r												3.392629
Defect polyethylene																	4	L										3.181322
Dislocation of patella																				L I								2.235928
Arthrofibrosis/fibrosis																					4							1.849708
Dislocation (not patella)																								Ψ				1.379191
Prolonged wound drainage																										r		1.224604
Missing																											+	0.100000

The final group analyzed was the reasons for revision of unicondylar prostheses. Table 24 shows the square root stabilized transformation of the raw data. Table 25 shows the one-way ANOVA performed on this transformed data. Similarly, Figure 5 and 6 show a scatter plot and a box and whisker plot of the transformed data. Table 26 shows the results of the Tukey-Kramer pair-wise comparison.

Sqrt Variand	qrt Variance Stabilizing Transformation													
	Loose						Prolonged							
	proximal	Loose distal					wound	Fracture near		Defect	Progression of			
	comp.	comp.	Dislocation	Instability	Malalignment	Deep infection	drainage	implant	Pain	polyethylene	Osteoarthritis	Subluxation	Other	Missing
2023	3.61	3.74	1.73	5.74	2.45	3.87	1.00	2.24	5.57	3.16	7.75	2.65	3.00	1.00
2022	2.83	4.00	1.73	4.90	2.45	3.00	0.00	2.00	6.08	2.24	7.28	2.00	3.16	1.41
2021	2.45	3.46	2.45	4.47	2.83	2.65	1.00	1.41	4.80	2.00	7.21	1.73	2.65	0.00
2020	2.83	4.12	2.45	4.36	3.16	2.24	0.00	1.00	4.58	3.16	6.78	1.00	3.16	0.00
2019	3.00	3.61	3.00	4.47	4.24	3.61	0.00	2.45	5.10	3.46	6.32	1.73	3.74	0.00
2018	3.46	3.87	3.32	4.00	3.46	3.00	0.00	1.73	6.08	2.83	7.28	1.41	3.00	0.00
2017	3.46	3.87	2.65	3.16	2.24	2.65	0.00	2.00	6.08	2.83	6.93	0.00	2.00	0.00
2016	3.00	2.83	3.00	2.65	2.24	3.61	1.00	2.00	5.00	2.45	6.00	1.73	2.00	0.00
2015	2.24	2.83	2.00	3.16	3.00	2.00	0.00	2.00	6.08	2.45	6.56	1.00	2.24	0.00
2014	3.74	3.87	1.73	3.87	2.83	2.00	0.00	0.00	6.08	2.45	5.74	1.00	2.45	0.00

 Table 24
 Unicondylar Square Root Stabilized Transformation

Table 25Unicondylar One-way ANOVA

Sqrt Variance Stabilized Data						
Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Loose proximal comp.	10	30.61782	3.061782	0.250543		
Loose distal comp.	10	36.21022	3.621022	0.209111		
Dislocation	10	24.05751	2.405751	0.34707		
Instability	10	40.79	4.079	0.846396		
Malalignment	10	28.89699	2.889699	0.388489		
Deep infection	10	28.61166	2.861166	0.459701		
Prolonged wound drainage	10	3	0.3	0.233333		
Fracture near implant	10	16.83182	1.683182	0.518775		
Pain	10	55.459	5.5459	0.381099		
Defect polyethylene	10	27.03005	2.703005	0.215294		
Progression of Osteoarthritis	10	67.85438	6.785438	0.397592		
Subluxation	10	14.25612	1.425612	0.51959		
Other	10	27.39752	2.739752	0.326398		
Missing	10	2.414214	0.241421	0.268573		
ΑΝΟVΑ						
Source of Variation	SS	df	MS	F	P-value	E crit
Between Groups	418,2167	13	32,17051	83.99667	1.69298E-55	1.798584
Within Groups	48.25768	126	0.382997	20.0000/	1.002002.00	2 00004
·						
Total	466.4743	139				

Table 26Unicondylar Tukey-Kramer Comparison

Figure 5 Unicondylar Scatter Plot

Figure 6 Unicondylar Box and Whisker Plot

3.3 Reasons for Revision Regression Statistical Analysis

In order to identify an equation that can be used to predict the future outcome of the top three reasons for revision of each group of knee arthroplasties, a regression model was used. Figure 7, 8, and 9 show a plot of deep infection, instability, and pain, respectively, over time for total knee prostheses with the patella. Each plot also displays the regression model trendline, equation, and R^2 value.

Figure 7 TK w/P Deep Infection Regression

Figure 8 TK w/P Instability Regression

Figure 10, 11, and 12 show a plot of pain, instability, and deep infection, respectively, over time for total knee prostheses without the patella. Each plot also displays the regression model trendline, equation, and R^2 value.

Figure 13, 14, and 15 show a plot of the progression of osteoarthritis, pain, and instability, respectively, over time for unicondylar knee prostheses. Each plot also displays the regression model trendline, equation, and R^2 value.

Figure 9 TK w/P Pain Regression

Figure 10 TK w/o P Pain Regression

Figure 11 TK w/o P Instability Regression

Figure 12 TK w/o P Deep Infection Regression

Figure 13 Unicondylar Progression of Osteoarthritis Regression

Figure 14 Unicondylar Pain Regression

Figure 15 Unicondylar Instability Regression

Table 27 below summarizes each of the regression models above. It includes the category, the reason for revision, the regression model equation, the R^2 value, and a prediction for the year 2030. This prediction, since the regression models are based on the square root stabilized data, is a square root prediction. Since the number of revisions cannot go below zero, any negative predictions can be considered as zero as well.

Regression Su	mmary			
Category	Reason for Revision	Equation	R2	2030 Sqrt. Prediction
	Deep Infection	$y = -0.0510012117x^2 + 206.0833253363x - 208,179.8726166400$	0.8538	-2
TK w/ P	Instability	y = 0.0068793810x ² - 27.6568956785x + 27,798.5567839701	0.2827	4
	Pain	y = 0.0084198204x ² - 34.0022113852x + 34,330.0919423860	0.0070	3
	Pain	y = -0.0130471632x ² + 52.6215142867x - 53,048.9118467462	0.0484	7
TK w/o P	Instability	y = 0.0217893934x ² - 87.8980521333x + 88,653.4558168395	0.2574	12
	Deep Infection	$y = -0.0570088726x^2 + 230.1781973811x - 232,332.2833570350$	0.7281	2
	Progression of Osteoarthritis	y = 0.1680828752x - 332.4898457672	0.6514	9
Unicondylar	Pain	y = 0.0292243830x ² - 118.0463500047x + 119,211.7239997480	0.2411	8
	Instability	y = 0.0388554142x ² - 156.6035795825x + 157,797.8280839540	0.8129	12

3.4 Australian Reasons for Revision Data

The Australian arthroplasty registry had the reasons for revision data reported in the most similar manner to Norway among other countries examined. Table 28 below shows the number of each reason for revision of total knee arthroplasties (TKA) for each year, cumulatively [17–26]. Similarly, Table 29 below shows the number of each reason for revision of unicondylar knee arthroplasties (UKA) for each year, cumulatively [17–26].

Table 28Australian TKA Reasons for Revision [17–26]

Tota	otal Reasons for Revision														
						Patellofemora	Patella				Wear Tibial		Incorrect	Metal Related	
		Infection	Loosening	Instability	Pain	l Pain	Erosion	Arthrofibrosis	Fracture	Malalignment	Insert	Lysis	Sizing	pathology	Other
2	023	6740	5134	2501	1798	1585	1751	1013	938	505	334	275	223	96	1233
2	022	7089	5844	2543	1995	1878	1745	1027	973	582	355	324	255	104	1290
2	021	6724	5667	2427	2020	1994	1655	989	893	584	351	340	253	113	1241
2	020	6055	5194	2170	1846	1931	1451	879	789	532	294	304	244	109	1101
2	019	6539	6805	2345	2250	2519	1645	990	860	592	521	541	295	354	1324
2	018	5766	6183	1994	2024	2425	1427	884	736	537	459	487	273	340	1187
2	017	5085	5620	1734	1838	2304	1218	787	649	487	391	428	260	327	1077
2	016	4412	5074	1429	1694	2143	992	689	541	428	331	389	239	304	962
2	015	3985	4990	1194	1535	2059	772	611	486	403	290	4990	222	286	897
2	014	3522	4503	982	1382	1894	591	559	416	357	245	4503	204	267	781

Table 29	Australian	UKA	Reasons	for	Revision	[1	7-20	5]
----------	------------	-----	---------	-----	----------	----	------	----

Unicondyla	Jnicondylar Reasons for Revision													
												Implant		
1	Progression of				Bearing				Wear Tibial			Breakage		Patellofemora
	Disease	Loosening	Pain	Infection	Dislocation	Fracture	Instability	Lysis	Insert	Malalignment	Other	Tibial	Wear Tibial	l Pain
2023	1867	1545	357	269	187	151	98	91	79	63	221	50		
2022	1776	1527	359	251	179	141	89	88	76	60	267			
2021	1602	1443	342	232	166	130	81	81	67	60	245			
2020	1691	1567	364	224	153	129	71	110	71	59	251			
2019	2704	2958	613	298	161	175	99	223	138	84	261	51	51	48
2018	2413	2765	583	271	147	157	84	197	119	76	237	46	51	47
2017	2116	2566	559	246	132	145	74	177	103	69	311		50	
2016	1844	2352	524	232	117	136	62	147	83	66	283		48	
2015	1566	2317	508	220	108	122	55	2317	65	56	260		47	
2014	1384	2143	482	200	102	112	47	2143	54	54	252		44	

4 Discussion

Analyzing the data collected allows one to identify reasons for revision that differ significantly from others and identify trends between these reasons. Table 20 analyses the reasons for revision of total knee prostheses with the patellar component in a pair-wise fashion. Deep infection appears to have the highest average over the past ten years, however, only 35 out of the 105 pair-wise comparisons (33.33%) were significantly different. This suggests that not many of the reasons differ significantly for the 305 revision procedures over the past ten years. Table 23 analyses the reasons for revision of total knee prostheses without the patellar component in a pair-wise manner. Pain appears to have the highest average over the past ten years, and 86 out of 105 pair-wise comparisons (81.90%) were significantly different. Unlike previously, this suggests that many of the reasons differ significantly for the 3,983 revision procedures over the past ten years. Table 26 analyses the reasons for revision of unicondylar knee prostheses in a pair-wise method. Progression of osteoarthritis appears to have the highest average over the past ten years, with 67 out of 91 pair-wise comparisons (73.63%) differing significantly. This suggests that a majority of the reasons differ significantly for the 1,629 revision procedures over the past ten years. The Scatter plots (Figure 2 through Figure 4) and the Box & Whisker plots (Figure 5 through Figure 7) visualize the distribution of the square root stabilized data. Thus, based on data from the past ten years in Norway, deep infection, pain, and progression of osteoarthritis have the highest average for total knee prostheses with the patellar component, total knee prostheses without the patellar component, and unicondylar knee prostheses, respectively. Additionally, 81.90%, 73.63%, and 33.33% of the pair-wise comparisons differed significantly for total knee prostheses without the patellar component, unicondylar knee prostheses, and total knee prostheses with the patellar component, respectively.

The regression models give insight into the trends of the top three reasons for revision for each of the three categories of knee prostheses. As mentioned above, for engineering studies, an acceptable R^2 value is considered 0.7 or above [13]. The only regression models that meet this criterion are total knee prostheses with the patella deep infection at 0.8538, total knee prostheses without the patella deep infection at 0.7281, and unicondylar knee prostheses instability at 0.8129. On the other hand, clinical medicine considers an R^2 value of 0.15 or greater to be

acceptable. In this case, only the pain models for total knee prostheses with and without the patella at 0.007 and 0.0484, respectively, did not meet this criterion. Thus, by engineering standards, only three of the regression models had what could be considered acceptable models, whereas by clinical medicine standards, seven of the models could be considered acceptable. The prediction for the year 2030 for deep infection of total knee prostheses with the patella suggests that if the current trend continues, and the regression model is correct, then the number of this reason for revision should be minimal, if not eliminated.

The Australian registry data has many similarities to the Norwegian registry [17-26]. Many of the reasons for revision are similar or could be grouped into similar reasons, such as pain, loosening, infection, instability, fracture, patella issues, malalignment, arthrofibrosis, and others. The Australian registry also divides the data between total knee arthroplasties and unicondylar arthroplasties. While the Norwegian registry categorizes the total knee arthroplasties even further into those with and without the patella, having the split between total and unicondylar is sufficient, as some countries like England that did report reasons for revision only gave a total across all arthroplasties [16]. The problem with the way in which the Australian registry reports the reasons for revision data is that for each year from 2000 to 2019, the cumulative sum was reported. Then, after 2019, a 20-year sum was reported. This contrasts with the year-to-year discrete number reported in the Norwegian registry. Logically, one would reason that the year-to-year value could be calculated by subtracting the cumulative sum from the year prior. Yet, this means that to calculate the 2020 value, the value from the year 2000 is needed. However, in the early years of the registry, including the year 2000, the total number across all types of knee arthroplasties was reported for each reason, similar to the way England reports their values now [?, 16]. This makes it impossible, for an outsider, to calculate the year-to-year value for 2020 and onward based on the yearly reports. Again, of the countries' annual reports that were examined, Australia reported its reasons for revision data the most similar to the way Norway reports theirs. Thus, while it is beneficial for countries to have and report their registry data, it is crucial that a uniform method of reporting data be established so that research on multinational differences can be conducted.

5 Conclusion

In this article, knee arthroplasty data from national registries were analyzed with a focus on Norway's registry and reasons for revision. Data on knee arthroplasties regarding demographics, the type of operations, and the reasons for operation for the ten most recently reported years were collected from Norway's national registry. The focus of this report was to analyze the reasons for revision, as this data could give insight into future development in knee prosthesis design and studies into geographical and demographic factors that may influence the data. The reasons for revision data were analyzed using the Tukey-Kramer test to identify statistically significant differences between reasons in a pair-wise manner. From this analysis, it was found that 81.90%, 73.63%, and 33.33% of the pair-wise comparisons differed significantly for total knee prostheses without the patellar component, unicondylar knee prostheses, and total knee prostheses with the patellar component, respectively. The three reasons for revision that had the highest mean for each type of knee arthroplasty were further analyzed via regression modeling to identify possible trends. R^2 values, offer a prediction for the year 2030 based on the formulas. By engineering standards, only three of the nine models had acceptably high enough R^2 values, while by clinical medicine standards, seven of the nine models are acceptable . Finally, an attempt to compare Norway's data to other countries' data was made. Of the countries investigated, Australia had the closest format to that of Norway; however, due to how the country reported its data in years past, a comparison could not be made. This necessitates a standardization of the way in which countries report their arthroplasty data in their annual reports. Only then can comparative analysis be done between countries that may give insight into differences between trends, demographics, and geographic factors.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

 Norway. Encyclopædia Britannica, 2025. https://www.britannica.com/place/Norway

- [2] Population Clock Norway, 2025. https://www.census.gov
- [3] Norway topographic map, elevation, terrain, Topographic maps, 2025. https://en-gb.topographic-map.com
- [4] The Norwegian National Network for Arthroplasty and hip fractures, Helse Bergen HF, 2025. https://www.helse-bergen.no
- [5] REPORT 2024 Norwegian National Network for Arthroplasty and Hip Fractures: Norwegian Arthroplasty Register, Norwegian Hip Fracture Register, Norwegian Knee Ligament Register, Norwegian Paediatric Hip Register. Helse Bergen HF, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway, Jun. 2024.
- [6] REPORT 2023 Norwegian National Network for Arthroplasty and Hip Fractures: Norwegian Arthroplasty Register, Norwegian Hip Fracture Register, Norwegian Knee Ligament Register, Norwegian Paediatric Hip Register. Helse Bergen HF, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway, Jun. 2023.
- [7] REPORT 2022 Norwegian National Network for Arthroplasty and Hip Fractures: Norwegian Arthroplasty Register, Norwegian Hip Fracture Register, Norwegian Knee Ligament Register, Norwegian Paediatric Hip Register. Helse Bergen HF, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway, Jun. 2022.
- [8] REPORT 2021 Norwegian National Network for Arthroplasty and Hip Fractures: Norwegian Arthroplasty Register, Norwegian Hip Fracture Register, Norwegian Knee Ligament Register, Norwegian Paediatric Hip Register." Helse Bergen HF, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway, Jun. 2021.
- Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean Journal of Anesthesiology. 2018, 71(5): 353-360. https://doi.org/10.4097/kja.d.18.00242
- [10] Kim HY. Statistical notes for clinical researchers: post-hocmultiple comparisons. Restorative Dentistry & Endodontics. 2015, 40(2): 172. https://doi.org/10.5395/rde.2015.40.2.172
- [11] Palmer PB, O'Connell DG. Research Corner: Regression Analysis for Prediction: Understanding the Process. Cardiopulmonary Physical Therapy Journal. 2009, 20(3): 23-26. https://doi.org/10.1097/01823246-200920030-00004
- [12] Bewick V, Cheek L, Ball J. Critical Care. 2003, 7(6): 451. https://doi.org/10.1186/cc2401
- [13] Gupta A, Stead TS, Ganti L. Determining a Meaningful R-squared Value in Clinical Medicine. Academic Medicine & Surgery. Published online October 27, 2024. https://doi.org/10.62186/001c.125154
- [14] W-Dahl A, et al. Annual report 2022. Swedish Arthroplasty Register Ola Rolfson, 2022.
- [15] Swiss National Hip & Knee Joint Registry Report 2023. SIRIS Foundation for Quality Assurance in Implant Surgery, Dec. 2023.
- [16] Reed M, et al. National Joint Registry 21st Annual Report 2024. NJR National Joint Registry Healthcare Quality Improvement Partnership, London, 2024.
- [17] Lewis PL, et al. Hip, Knee and Shoulder Arthroplasty: 2024 Annual Report. Australian Orthopaedic Association, 2024. https://doi.org/10.25310/glo17776
- [18] Smith PN, et al. Hip, Knee & Shoulder Arthroplasty: 2023 Annual Report. Australian Orthopaedic Association, 2023.

https://doi.org/10.25310/ywqz9375

- [19] Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2022 Annual Report, Adelaide; AOA, 2022: 1-487. https://aoanjrr.sahmri.com/annual-reports-2022
- [20] Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2021 Annual Report, Adelaide; AOA, 2021: 1-432. https://aoanjrr.sahmri.com/annual-reports-2021
- [21] Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2020 Annual Report, Adelaide; AOA, 2020: 1-474. https://aoanjrr.sahmri.com/annual-reports-2020
- [22] Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2019 Annual Report. Adelaide: AOA, 2019. https://aoanjrr.sahmri.com/annual-reports-2019
- [23] Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2018 Annual Report. Adelaide: AOA, 2018. https://aoanjrr.sahmri.com/annual-reports-2018
- [24] Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2017 Annual Report. Adelaide: AOA, 2017. https://aoanjrr.sahmri.com/annual-reports-2017
- [25] Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. Adelaide: AOA; 2016.

https://aoanjrr.sahmri.com/annual-reports-2016

[26] Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. Adelaide: AOA, 2015.

https://aoanjrr.sahmri.com/annual-reports-2015