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Abstract: Sleep deprivation is gradually becoming a common phenomenon in modern societies,
especially among chronic users of social media, night shifts workers, students and some less-
privileged populations. The erroneous perception among certain subgroups of the population
that time spent to sleep is time wasted is of great concern, because sleep is indeed critical for
good health and survival. Of greater concern are the effects of alcohol, beverages like caffeine,
and environmental toxicants like heavy metals and pesticides, on normal sleep mechanisms. The
consequences of sleep disorder are dire as it alters immune responses and have been reported
to increase the risk of some non-communicable diseases. The inter-individual differences in
sleep requirements may present a challenge in determining adequate sleep duration. On the
average, most adults need about seven to eight hours of sleep each night while teens and children
need more. Accumulation of sleep debt for individuals sleeping less than the required sleeping
duration may lead to chronic health and behavioural problems. We opine that the mechanisms
underlying sleep disruption by some foods and toxicants have toxicogenic link. There is need,
therefore, to consider sleep deprivation as a public health issue with a view to ensuring proper
advocacy among risk groups in order to improve quality of life and economy of nations. Given
the prevalence of alcohol and caffeine consumption, exposures to heavy metals and pesticides,
and increasing neurodegenerative disorders, there is need to elucidate the precise mechanisms
of sleep disruption and exposures to the aforementioned chemicals.

Keywords: environmental toxicants, neurodegenerative diseases, public health, sleep depriva-
tion, toxicogenic drive

1 Introduction

Sleep is generally defined based on the physiological characteristics observed in mammals
including reduced body movement and electromyographic activity, reduced responsiveness to
external stimuli, closed eyes, reduced breathing rates, and altered body position and brain wave
architecture assessed by polysomnography. Sleep could, therefore, be said to be a complex
biological state characterized by behavioural, physiological, and electrophysiological parameters.
Two mechanisms have been reported to underlie the sleep regulation: the neurophysiological,
and biochemical mechanisms (homeostatic nature of sleep). In this opinion presentation, the
indications for sleep deprivation as a toxic-mediated neurodegenerative process and need to
consider it as a public health issue are examined. It will also examine the mechanistic interplay
between sleep and some foods and toxicants.

Ramon y Cajal first speculated that neurons release signaling molecules that are involved in
physiological functions [1]. Excitatory neurotransmitters (examples: acetylcholine, dopamine,
norepinephrine, histamine, serotonin, hypocretins [orexin], neuropeptide S and glutamate),
typically enhance arousal or wakefulness, and hypocretin is recognized as a sleep regulatory
molecule located in the hypothalamus [2,3]. Hypocretins in the hypothalamus have also been
found to regulate feeding behavior [4]. These molecules stimulate and maintain wakefulness,
in part, through stimulating the release of wake-promoting neurotransmitters including nore-
pinephrine, dopamine, acetylcholine, and histamine [5S]. Hypocretins activate the G-protein
coupled receptors: hypocretin receptor 1 and hypocretin receptor 2 (orexin 1 and 2 receptors
respectively). The hypocretin receptors are activated, in part, through phospholipase C and
Ca®T-dependent and Ca?Tindependent pathways to activate protein kinase C, protein kinase
A, and mitogen-activated protein kinase (MAPK) signaling pathways, all of which are inflam-
matory and metabolic pathways that affect sleep/wakefulness. Enhanced wakefulness activates
the hypocretin 1 receptor, further supporting the role of hypocretins in promoting wakefulness.
Moreover, hypocretin antagonists inhibit arousal. Neurons that produce hypocretins also co-
express multiple receptors, including glutamatergic receptors [6], adenosinergic A1 receptors [7],
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muscarinic M3 receptors [8], and serotonergic 5-HT 4 receptors [9]; thus, allowing hypocretin
the ability to induce changes in sleep-wake states.

Gamma amino butyric acid (GABA) is one of the well-characterized neurotransmitters that is
known to induce sleep and slow wave activity (SWA), which occurs, in part, through its ability to
modulate the neuronal release of excitatory neurotransmitters including glutamate, acetylcholine,
norepinephrine, and hypocretin [3]. To produce this effect, GABA functions to largely inhibit
the activity of glutamatergic neurons and their respective receptors, thus enhancing non-rapid
eye movement (NREM) sleep. Glutamate is present in most neurons and, acting as an excitatory
neurotransmitter through either the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) or N-methyl-D-aspartate (NMDA) receptor, predominantly promotes arousal and
inhibits sleep. Gamma amino butyric acid acts on both ligand-gated ion channel complex
GABA-A receptors, and G protein-coupled GABA-B receptors. Both GABA-A and GABA-
B receptor antagonists enhance wakefulness, while GABAergic receptor agonists promote
NREM sleep. Moreover, well-known GABA-A receptor agonists, including benzodiazepines,
barbiturates, imidazopyridines, and cyclopyrrolones, enhance NREM sleep [10].

Substance P is a neuropeptide that is derived from the preprotachykinin A gene, which is
produced by many cell types including neurons and microglia [11]. It acts primarily through
the neurokinin-1 (NK-1) receptor (also called tachykinin receptor 1) and is found throughout
the body including the central nervous system, peripheral nervous system, pulmonary tissue,
and immune and vascular endothelial cells [12]. Substance P regulates SWA and possibly
sleep duration [13]. Its release is well-known to induce cytokines like interleukin-1beta (IL-
1) and tumor necrosis factor-alpha (TNF-«), that enhance sleep duration and SWA [14,15].
Neurokinin-1 receptors have also been found to be co-expressed on cortical sleep-active neurons
that express neuronal nitric oxide synthase (nNOS), whose activity is positively correlated with
change in SWA [16, 17]. Moreover, injections of substance P fragment 1,7 enhance SWA locally
in the cortical hemisphere where the substance was applied, and NK-1 receptor antagonists
attenuated SWA locally, indicating that substance P and the NK-1 receptor regulate SWA [13].

2 Sleep deprivation

Sleep deprivation occurs when an individual fail to get enough sleep. The latest guidelines
published by the National Sleep Foundation in United States of America recommend that adults
(18-64 years) obtain 7-9 h of sleep per night, teenagers (14-17 years) 8-10 h per night and
school-aged children (6-13 years) 9-11 h per night [18]. The recommendation also recognizes
the inter-individual variability in sleep need and suggested that for some adults, as little as 6 h
may suffice, while others may require 10-11 h. Sleep deprivation is known to lead to significant
decrements in cognitive function, including lapses of attention, alertness, vigilance, and the
speed of cognitive and psychomotor responses [19]. Laboratory studies have shown that a
deficit in nocturnal sleep of as little as 90 min for just one night can lead to a reduction of
daytime objective alertness by one-third [20]. Sleep deprivation can be caused by voluntary
behaviours, personal obligation, work hours and medical problems. Risk groups include male
and female of all ages, adolescents, caregivers and individuals having sleep disorders [21]. Of
special interest among these risk groups are the occupationally-exposed individuals; a group
that cuts across many workers, including the healthcare workers. Beyond the excessive daytime
sleepiness that is usually experienced after sleep deprivation, both acute and chronic sleep
deprivations have been implicated in neurodegenerative diseases, especially Alzheimer’s, and
other non-communicable diseases.

For more than 25 years now, sleep disorders have been associated with Alzheimer’s disease,
with about 25-66% of the patients that exhibit sleep disturbances being considered one of the
leading causes of patient institutionalization [22]. With the growing interest in the preclinical
stage of Alzheimer’s disease, however, the role of sleep in association with Alzheimer’s disease
has radically changed. Sleep changes occur many years before the appearance of cognitive
symptoms, together with the early pathophysiological events. The presence of sleep disturbances,
since the preclinical stage of the disease, underlines a possible crucial role of sleep in Alzheimer’s
disease pathology and progression. This growing interest in the preclinical stage of Alzheimer’s
disease has led researchers to identify modifiable risk and predictive factors useful to design
early intervention strategies [23]. The preclinical stage of Alzheimer’s disease has been found to
be characterized by S-amyloid (Af3) aggregation into amyloid plaques and tau phosphorylation,
and aggregation into neurofibrillary tangles. Also, evidence has lent support to the notion that
sleep-related disorders like insomnia, excessive daytime sleepiness, sleep-disordered breathing,
and circadian sleep—wake alterations all seem to increase the risk of Alzheimer’s disease. Sleep
disorders modify the activity of some neurotransmitters that could cause consequent dysfunction
of the “default mode network”, which has a crucial role in the pathophysiology of Alzheimer’s
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disease [24].

3 Interactions between sleep and some foods and
toxicants

Generally, toxicants tend to affect normal sleep mechanisms by disrupting sleep initiation
or duration. Some of the foods and toxicants that have been shown to affect normal sleep
mechanisms include alcohol, caffeine, some heavy metals, pesticides, phthalates, polyaromatic
hydrocarbons, polyfluoroalkyl compounds, among others. These toxicants interact with sleep
via various mechanisms.

3.1 Alcohol

Preclinical studies have provided some understandings as to how alcohol may mingle with
the sleep-wake system. The molecule, adenosine has been reported to be involved in the
pathophysiology of both sleep disorders and chronic alcoholism [25]. Administration of alcohol
tends to induce an increase in extracellular adenosine level in some regions of the brain,
thus leading to increased inhibition [26]. Cell culture studies, on the other hand, indicate
that acute alcohol intake inhibits transporter-mediated (equilibrative nucleoside transporter
1, ENT1) reuptake of adenosine. Animal studies with rodents propose that alcohol induces
dose-dependent adenosine accumulation in the basal forebrain which inhibits wake-promoting
neurons [27]. Downregulation of both ENT1 and adenosine A; receptor expression in the basal
forebrain has been demonstrated during acute withdrawal following development of alcohol
dependency [26, 28,29]. During alcohol withdrawal, insomnia has been noted to be due, in part,
to reduced inhibition of basal forebrain wake-promoting neurons disrupting sleep homeostasis.
Thus, acute administration of alcohol enhances inhibition by increasing GABA activity and
decreasing glutamate activity possibly mediating some of the sedative properties [30,31]. It
has been proposed, therefore, that inhibition of wake-promoting neurons through activation of
GABA 4 receptors is the underlying mechanism of increased nonrapid eye movement (NREM)
sleep resulting from acute alcohol consumption, while decreased REM sleep may be due to the
activation of GABA p receptors and/or inhibition of kainate receptors on brainstem cholinergic
cells [32].

Ingestion of moderate amount of alcohol before bedtime has been found, by laboratory
studies, to be usually associated with decreased sleep latency, increased NREM sleep, increased
total sleep time, and reduced or fragmented REM sleep, which leads to decreased sleep efficiency
[27,30,31,33]. This is followed by rebound increases of REM sleep on the following nights [34].
Likewise, another study that examined associations between daily alcohol use and each night’s
sleep found a positive association with sleep duration and a negative association with sleep
quality [35]. The most common problems of chronic alcohol use include increased sleep
latency, poor sleep quality and daytime sleepiness. These problems, often, will persist through
withdrawal but resolve after protracted abstinence [36]. In essence, the effects of alcohol on
sleep have detrimental socio-economic consequences, as alcohol-related sleep problems have
been reported to account for about 10% of the annual costs related to alcohol use disorders [37].

3.2 Caffeine

Caffeine (1,3,7-trimethylxanthine) is a central nervous system stimulant and the most widely
consumed psychoactive substance, being consumed by about 80 % of the world’s population
[38,39]. It is readily available in coffee and other foods and beverages, and used to mitigate
sleepiness and enhance performance. Acute caffeine intake can delay sleep initiation and reduce
sleep intensity, particularly when consumed in the evening. The sleep-disrupting effects of
caffeine are mainly attributed to its influence on the homeostatic component of sleep-wake
regulations. Sleep homeostasis describes the increase in sleep pressure during time awake
and its dissipation during the following sleep episode, which has been suggested to be related
to rising and decreasing concentrations of adenosine [40]. Caffeine is an adenosine receptor
antagonist, blocking the A; and A2 4 adenosine receptors in the central nervous system [41],
and may, thus, attenuate the increase in sleep pressure during wakefulness and lead to delayed
sleep initiation and more superficial sleep [42]. The effects of caffeine intake on sleep are
known to be dependent on the timing of its consumption. Caffeine, taken in the evening hours,
tend to prolong sleep latency [43—45], reduces total sleep time (TST) [43,45,46], shortens deep
sleep [43—46], and decreases electroencephalographically (EEG)-derived slow-wave activity
(SWA), while activity in the sigma range is increased [43]. Recent finding has shown that daily
caffeine intake in the morning and afternoon hours does not necessarily impair nighttime sleep
structure nor subjective sleep quality in healthy good sleepers who regularly consume caffeine.
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The reduced EEG power density in the sigma range might represent early signs of overnight
withdrawal from the continuous presence of the stimulant during the day [47].

3.3 Heavy metals
3.3.1 Lead

Lead toxicity is one potentially important but understudied biological factor that could be
related to sleep disturbance [48]. Exposure to Pb is known to be associated with hyperactivity
and insomnia. However, occupational exposure to Pb among workers has been reported to
be associated with self-reported sleep disturbances [49]. Kordas et al. reported that blood
lead levels (BLL) > 10 ug/dL were associated with later waking time and decreased sleep
duration in 550 Mexican children aged 6-8 years old [48]. According to Liu et al., elevated
BLL in early childhood are associated with increased risk for sleep problems and excessive
daytime sleepiness in later childhood [50]. The mechanism by which Pb exposure could cause
sleep problems is not yet elucidated. However, Pb is a well-known neurotoxin that damages,
destroys, or impairs the function of the developing nervous system in multiple ways, including
reduction in brain plasticity, disruption of the blood-brain barrier, negative alterations in cellular
concentration of calcium, and induction of oxidative stress [51,52]. Lead exposure can result
in disruption and dysregulation of some neurochemicals like serotonin [53], which contributes
to negative psychological and physical outcomes with prolonged exposure, including sleep
problems [54]. Dysregulation of catecholamines can increase the likelihood of depression
and panic disorders which are associated with poor sleep [55]. Also, environmental lead
exposure can cause oxidative stress, which has also been linked to sleep disorders such as sleep
apnea [53,56]. Excessive daytime sleepiness (EDS) has been characterized in patients exhibiting
obstructive sleep apnea syndrome [57]. Thus, Pb exposure-induced oxidative stress could be a
mechanism linked to sleep problems such as EDS among children with BLL > 10 pg/dL, with
other mediating factors including neurobehavioral impairments, which have been found to be
both a consequence of Pb toxicity and correlated with sleep quality [58,59].

3.3.2 Mercury

Joannes Antonius Scopoli first described Hg poisoning in Venice in 1761. He recognized
difficulty in sleeping, restless sleep, dream disturbances, and restless leg syndrome, and thus
identified sleep disorders as a prominent sign of Hg toxicity [60]. Mercury accumulation has
been shown in the pineal gland, which participates in circadian function through the secretion
of melatonin and serotonin [61]. Arito and his colleagues showed that methylmercury exposure
resulted in circadian sleep-wake disruption in rats [62]. Mercury exposure also results in changes
in cytokine production. In children, mercury exposure has been found to be associated with
reduced levels of TNF-alpha and shorter sleep duration [63]. One possible mechanism of sleep
disruption by Hg is the effect on glutamate, which results in increased extracellular glutamate
and a possible excitotoxic effect [64].

3.3.3 Arsenic

Low level of arsenic exposure has been associated with sleep disturbance in copper smelter
workers [65]. Also, long-term poisoning with As was later found to cause sleep disorder in
children [66]. Shiue recently found that higher levels of urinary arsenic were associated with
wake-up at night and leg jerk while sleeping [67]. However, the biological mechanism of As
disruption of sleep is not yet confirmed.

3.4 Pesticides

Exposure to pesticides, especially 2,4,5-trichlorophenol, was found to influence idiopathic
REM sleep behaviour disorder in older adults [68]. In male mice, pesticides exposure seemed
to reduce sleep time [69]. Using the United States National Health and Nutrition Examination
Surveys’ (2005-2006) national representative human sample, 2,5-dichlorophenol and 2,4-
dichlorophenol were shown to have borderline associations with leg cramps in sleeping [67].

The mechanisms linking pesticides and sleep disorders are not yet elucidated.

4 Public health perspectives of sleep deprivation

Xie et al. showed that the restorative effect of sleep is as a result of the removal of neurotoxic
waste products, especially amyloid protein, during sleep [70]. In line with this observation, Ju
et al. [71] tested whether 5-amyloid deposition in preclinical Alzheimer’s disease, prior to the
appearance of cognitive impairment is associated with changes in quality and quantity of sleep.
The results from 142 cohorts suggest that poor sleep may increase the risk of the Alzheimer’s
disease. Further studies among 22 healthy participants showed that sleep deprivation increases
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amyloid-/, thus suggesting that chronically disrupted sleep may promote amyloid plaques and
other downstream Alzheimer’s disease pathologies including tauopathy or inflammation, thus
making sleep deprivation a public health issue [72]; an observation that has been corroborated by
recent study correlating one-night sleep deprivation to amyloid-/3 burden [73]. Sleep deprivation
has also been associated with some chronic conditions like type-2 diabetes, heart diseases,
elevated blood pressures, increased metabolic changes and risk for depression. The link between
sleep deprivation and these conditions may be due to oxidative stress or other toxicity pathways.
Villafuerte et al. [74] reviewed 44 research articles and concluded that sleep deprivation promotes
oxidative stress in animal models. Recent observation in humans has also implicated oxidative
stress in sleep deprivation as Trivedi et al. [75] and Jowko et al. [76] have shown that acute
sleep deprivation results in redox-based global DNA methylation changes in human plasma
samples with low level of antioxidant defenses. Also, Teixeira et al. [77] confirmed that sleep
deprivation in night shift workers lowers antioxidant defenses and increase lipid oxidation and
muscle damage. These growing evidences supporting the negative impact of sleep deprivation
present a task to public health professionals.

5 Conclusion

Sleep acts as a garbage collector that removes the waste products like 5-amyloid and tau
proteins, which are left by the brain, by night. These waste products tend to accumulate in the
brains of Alzheimer’s disease patients, indicating that they play a role in neurodegenerative
disorders. It has now been discovered that these toxic by-products are flushed out in waves by
cerebrospinal fluid during the slow-wave sleep phase. Sleep deprivation may thus lead to increase
in the accumulation of these waste products and consequently contribute to neurodegenerative
disorders like Alzheimer’s disease and mental illnesses among vulnerable individuals. In the
opinion of the authors, the mechanisms underlying the disruption of normal sleep by toxicants
have some toxicogenic association. Given the wide range of risk groups involved, it is opined,
herein, that sleep deprivation be considered a public health problem, since getting enough sleep
is a preventive therapy for many diseases. Mitigating the adverse effects of sleep deprivation
is a collective responsibility and should be of public health concern considering the economic
importance of its consequences. We recommend, therefore, that efforts be intensified towards
reducing exposures to sleep-disrupting chemicals like alcohol, caffeine, lead, mercury and
pesticides, among others, as means of improving sleep. Further research into the precise
biological mechanisms however, is advocated.
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