
Adv Mobile Learn Educ Res, 2022, 2(1): 187-200
DOI: 10.25082/AMLER.2022.01.003

RESEARCH ARTICLE

Strengthening the coding skills of teachers in a low dropout Python MOOC
Fotis Lazarinis1

∗
Anthi Karatrantou2 Christos Panagiotakopoulos2 Vassilis Daloukas2 Theodor Panagiotakopoulos1

1 School of Technology and Science, Hellenic Open University, Patras, Greece
2 Department of Education and Social Work, University of Patras, Patras, Greece

Correspondence to: Fotis Lazarinis, School of Tech-
nology and Science, Hellenic Open University, Patras, 
Greece; Email: fotis.lazarinis@ac.eap.gr

Received: December 21, 2021;
Accepted: January 2, 2022;
Published: January 6, 2022.

Citation: Lazarinis, F., Karatrantou, A., Panagiotako-
poulos, C., Daloukas, V., & Panagiotakopoulos, T.
(2022). Strengthening the coding skills of teachers 
in a low dropout Python MOOC. Adv Mobile Learn 
Educ Res, 2(1), 187-200.
https://doi.org/10.25082/AMLER.2022.01.003

Copyright: © 2022 Fotis Lazarinis et al. This is an 
open access article distributed under the terms of the 
Creative Commons Attribution-Noncommercial 4.0 
International License, which permits all non-
commercial use, distribution, and reproduction in any 
medium, provided the original author and source are 
credited.

Abstract: In this paper, we present a structured approach to developing an outreach program
aimed at improving the coding abilities of pre- and in-service teachers. The paper presents the
design and development decisions made using the ADDIE model. External evaluators assessed
the material’s quality, confirmed the estimated workload, and examined the material’s relevance
to the educational goals. Learners’ active participation was encouraged through multiple quizzes,
and learners were assisted in their learning activities by means of practical examples. Based on
the number of people who actually logged into the course, a completion rate of 70.84 percent is
achieved. The paper presents and discusses the findings of an evaluation conducted with the
assistance of experienced teachers and course participants.

Keywords: programming skills, coding, Python, teacher professional development, MOOC
completion

1 Introduction
The core dimensions of Computational Thinking (CT) are analysis and design abilities,

problem-solving skills, and logical thinking (ISTE, 2014). These skills are critical in today’s
fast-paced world, where the ability to adapt, deal with new challenges, and formulate structured
solutions is a constant. Coding is a component of CT (Corradini et al., 2018), or a tool for
promoting CT. It is the process that allows the solutions to be expressed in a computer encoded
form, allowing the proposed logical steps to be tested. Coding is regarded as an important
skill in today’s society (Tuomi et al., 2018; Barr et al., 2011). Producing coding blocks will
gradually assist individuals in understanding technical limitations, identifying potential flaws in
their algorithmic thinking, and eventually allowing them to generalize their approaches. Coding
also assists students in improving their cognitive abilities (Scherer et al., 2018).

At the same time, since digital technology is penetrating our daily lives, it is important
to educate digitally literate citizens. Representing the disciplinary formalism of computer
science, programming is considered a core practice, and this leads programming to the focus
of computer science education (Krishnamurthi & Fisler, 2019). However, it is widely known
that programming, by nature, is notoriously challenging for novices (Robins, 2019). Making
an effective and engaging learning environment for novices has received a substantial interest
(Lazarinis et al., 2019; Kim et al., 2018; Kwon, 2017). Therefore, it is critical to teach coding
to pre-service and in-service teachers so that they can introduce coding and problem-solving
skills to their students (Yadav et al., 2017). According to Rick et al. (2018), rather than hiring
specialists to teach coding and computing, school principals primarily rely on already hired
teachers to teach computer science topics. Some projects use primarily face-to-face sessions to
accomplish this (Lamprou et al., 2017); others use block-based languages in e-learning settings;
and still others use text-based languages (Klimeková & Tomcsányiová, 2018; An & Lee, 2014).

The terms CS, CT, programming, and coding are frequently used in CS research. The last
three terms are sometimes used interchangeably which is incorrect. CS encompasses the entire
scientific field, including all subfields such as hardware, software, networks, databases, etc.
CT is primarily concerned with algorithmic problem-solving skills. Coding is the process of
converting natural language into machine commands via an intermediary coding language.
Coding is a subset of programming, and both are needed to develop CT. Coding is the preferred
method in school education, where the goal is to help students think more algorithmically.
Students and teachers code in block and text-based languages to solve short problems.

In this paper we present the motivation, design decisions, implementation details, and
evaluation of a University outreach program. The remainder of the paper is organized as follows:
in section 2, we review papers on computational thinking in order to establish its importance

Advances in Mobile Learning Educational Research • SyncSci Publishing 187 of 200

https://doi.org/10.25082/AMLER.2022.01.003
https://crossmark.crossref.org/dialog/?doi=10.25082/AMLER.2022.01.003&domain=pdf
fotis.lazarinis@ac.eap.gr
https://doi.org/10.25082/AMLER.2022.01.003
https://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

for school students and teachers. We also look at papers on which programming language to
teach, what approach to take, and which medium to use to reach out to potential students more
effectively. Section 3 presents the research objectives, design decisions, and implementation
details for the Python MOOC (Massively Open Online Course). Section 4 is devoted to course
evaluation, and the final section concludes the paper.

2 Literature review
Facilitating the incorporation of CT into school education is a common goal shared by both re-

searchers and practitioners. Some of the initiatives promoting CT in schools include the Hour of
Code (https://hourofcode.com), Google’s programs (https://edu.google.com/code-with-google),
and the Wolfram Foundation’s Computational Thinking Initiatives (https://www.computationini-
tiative.org).

Developing CT and learning to code have specific benefits in terms of student engagement,
motivation, confidence, problem-solving, and communication (Scherer et al., 2018). Appropriate
interventions are required to improve teachers’ problem-solving abilities, self-efficacy, attitudes,
and knowledge (Poultsakis, 2021; Mason & Rich, 2019). According to a Google and Gallup
report, there is a positive growth in computer science (CS) classes in the United States, with
more principals reporting that their school offers a CS class with programming or coding.
Furthermore, the study demonstrates that key concepts, such as CT, are being integrated into
classrooms. A large percentage of parents (84%) and principals (66%) believe that offering CS
is more important than or equal to required courses such as math, science, history, and English.

CT in schools research focuses on novel approaches to preparing students and teachers to be
a part of this new reality. CT development approaches include data collection, analysis, and
representation, problem decomposition, the use of algorithms and procedures, and simulation
(Gretter & Yadav, 2016). A review of the literature was conducted to synthesize research
on pre-service and in-service programs that improve K–6 teachers’ attitudes, self-efficacy, or
knowledge of coding and CT (Mason & Rich, 2019). The study’s findings suggest that training
that encourages active participation can boost teachers’ computing self-efficacy, attitudes, and
knowledge. Semi-structured interviews with Australian teachers revealed that participants had
varying levels of CT competence. According to the study, coding and CT are still relatively new
topics that should be integrated into the studies of new teachers in order to strengthen their skills
(Lloyd & Chandra, 2020). Several obstacles may stand in the way of educators successfully
teaching elementary computing. Low self-efficacy or a lack of technological, pedagogical, or
content knowledge may prevent them from teaching computing successfully (Ertmer et al.,
2012). Teachers believe that CT entails logical thinking, calculation, and problem solving
(Sands et al., 2018). Educational robotics e-courses have been implemented for teachers (e.g.
Tzimopoulos et al., 2021).

Coding is the primary method for involving individuals in CT. In contrast to CS unplugged
(Bell & Vahrenhold, 2018) activities that use games and puzzles to help students and teachers
develop CT skills, coding involves analysis, data organization, writing in some type of machine
language, and assisting students in testing their solutions. It promotes learning through active
participation and motivating students who can see the outcomes of their actions. Coding
activities are frequently manifested through the use of block-based languages. Scratch and
Alice, two visual block programming tools, have been used to introduce coding to teachers
(Vaca-Cárdenas et al., 2020). Although these approaches are beneficial and more accessible to
newcomers to coding, they may be less effective when the goal is to make the skills transferrable
to real-world problems. Those who learn to write code in a more common programming
language, both graphically and on the console, will find it easier to transition to a more advanced
computer programming language with even more complicated syntax (Weintrop & Wilensky,
2017). According to this study, both block-based and text-based languages can introduce CT
to students with text-based languages in order to better support students’ progression to more
complicated languages.

Python is a programming language with a short and clean syntax, enforced structural design,
and dynamic typing. Python has already been used in schools to teach coding, and its benefits
have been identified (Grandell et al., 2006). Python is considered simpler than more complicated
languages such as C++ due to its pseudocodish syntax and higher abstraction (Kunkle & Allen,
2016; Ateeq et al., 2014), making it more suitable for school education. A visual extension
of Python was successfully used in a workshop for high school science teachers (Ahamed et
al., 2010). When Java and Python were compared for teaching programming in (Mannila et al.
2006), it was discovered that students produced fewer errors in Python due to its lower syntactic
complexity. Python was discovered to be one of the easiest and most popular programming

Advances in Mobile Learning Educational Research • SyncSci Publishing 188 of 200

https://hourofcode.com
https://edu.google.com/code-with-google
https://www.computationinitiative.org
https://www.computationinitiative.org
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

languages for students and teachers to learn (Noone & Mooney, 2018). Python, in the opinion
of experienced educators, meets the majority of the challenges encountered when programming
is introduced in secondary education (Mészárosová, 2015). Secondary education teachers’
experiences with Python in formulating solutions in inquiry-based teaching approaches are
similar (Guni et al., 2020).

Professional development programs for teachers are delivered in the form of face-to-face
workshops or via distance learning. CT topics, for example, have been taught to students
and teachers in Switzerland through intensive face-to-face sessions and complimentary online
materials (Lamprou et al., 2017). A coding and CT MOOC for Finnish primary school teachers
has been implemented, with the primary goal of teaching teachers computational thinking and
basic programming concepts (such as commands, loops, and conditional statements) (Toikkanen
& Leinonen, 2017). The e-course was built on a Moodle platform, with embedded Google forms,
YouTube videos, and Padlets for collaboration. The course covered Scratch and ScratchJr, and
the initiative received positive feedback. In this article, we will look at a Scratch blended learning
course for teachers. The study describes the design decisions, topics, and organizational structure
of the blended approach that resulted in lower dropout. Some of the techniques proposed in this
work are also applicable in the current study, though the more demanding teaching materials
and the longer duration necessitate the use of alternative techniques to assist teachers. MOOCs
have been incorporated into teacher professional development programs (Spradling et al., 2015;
Kellogg & Edelmann 2015). MOOCs should be long-term in order to provide teachers with
a long-term learning opportunity (Hodges et al., 2016). Dropout prevention and prediction
methods are described in two recent studies (Panagiotakopoulos et al., 2021; Kostopoulos et al.,
2021) but designing effective courses with alternative options are required to support higher
completion rates.

According to the review of studies, coding is an important aspect of CT. There are some
advantages to using Python to implement coding activities. The added value is more obvious
because it is a popular and professional programming language with a clean and simple syntax
that reduces the learning curve. Progressing gradually from simple examples that help the
learner understand the syntax of the language to more complex problems improve their analysis
and problem-solving skills.

3 The GPython MOOC
Using an xMOOC (Kesim & Altinpulluk, 2015) as the realization path is deemed necessary

to impact as many learners as possible, especially during these challenging times. For effectively
advancement of the professional development (PD) of teachers, the key features are content
focus, active learning, coherence, duration, and collective participation (Desimone, 2009). The
main research question is “does the participation in GPython MOOC improves the coding
abilities of teachers?”.

Based on the literature review, there is a need to educate teachers in coding who in turn will
help their students. In this work we follow a structured approach to develop an e-course. For-
mulating a robust design and development team helps in improving the design and deployment
of the course and eventually to reduce the drop our rates and improve the actual skills of the
participants. These are some of the novelties of our work. Below we analytically present all the
design decisions as a guide for MOOC designs.

3.1 Applying the ADDIE MODEL to design and implement the
e-course

ADDIE (Analysis, Design, Development, Implementation, Evaluation) is an instructional
design method used as a framework in designing and developing educational and training
programs (Branch, 2009). The last three phases, are run on short iterative steps to speed up the
time between the design of the system and the delivery of parts of the course. (see Figure 1)

3.1.1 Analysis

In this first phase of the project we focused on the target audience, their characteristics, the
possible constraints, the timeline of the project, the delivery options, and the main objectives of
the project. We also dealt with the required roles of the development team, so as to ensure that
the project will be deployed as planned.

Advances in Mobile Learning Educational Research • SyncSci Publishing 189 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

Figure 1 Application of the ADDIE model in a semi-linear and iterative approach

The main target of our project was to advance the coding abilities of school teachers by
providing certified training to at least 300 teachers. The high-level project aims are summarized
in the following list:

(1) To enhance the problem-solving skills of school teachers;
(2) To strengthen their algorithmic thinking;
(3) To support the participants to learn Python by using a practical approach;
(4) To produce online teaching materials matching the Greek high schools’ curriculum.
The target learning group of our University department and research cluster is pre-service and

in-service teachers. To participate in the course, teachers did not need prior coding experience.
In Greece, programming languages are only taught in the last two classes of vocational high
schools. Hence, we needed to teach coding to teachers who will then teach their students
through formal or informal teaching activities.

Additional key decisions of the project were to deliver the course via distance learning for 60
hours over 12 weeks. The literature shows that a teacher PD program should be moderately long.
Deploying the project over three months will also provide a balanced workload of approximately
5 hours per week, reducing teacher burnout.

An important decision concerned the formation of the development team, i.e. the required
key roles. Based on our experiences with distance learning education and by studying practical
guides for developing e-courses, we identified the following roles, in addition to the Project
Manager:

(1) Instructional designer: analyses the needs and provides consultation on instructional
strategies;

(2) Subject matter expert: provides content, resources, expert advice and checks the accuracy
of the materials;

(3) Editor: reviews the materials for clarity, consistency, syntax and spelling errors;
(4) Content/multimedia developer: edits the multimedia content, e.g., images, videos, pod-

casts, et al.;
(5) Information technology expert: deals with IT topics, such as account set up, installment

of development applications, and of other communication and information sharing channels, et
al.;

(6) e-Learning developer: implements the e-course realizing the instructional designer
decisions and the advices of the subject experts;

(7) Testers (quality assurance): they follow the e-course, assuring that it works correctly and
the it meets the objectives;

(8) Educators/Facilitators: they support the learners during their interaction with the e-course.
All of the above categories are required for the project’s success. Low motivation, lack

of time, and lack of support are all factors that contribute to high dropout rates in MOOCs

Advances in Mobile Learning Educational Research • SyncSci Publishing 190 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

(Eriksson et al., 2017). Insufficient learner support reduces student completion rates. Interaction
between peers and students and educators can improve student engagement (Gregori et al.,
2018). We identified the importance of educators/facilitators who will support the learners via
email and forums. These retention strategies will improve peer and learner communication.

3.1.2 Design

The second stage of the model identifies the specific learning objectives, topics, assessment
mechanisms, and overall course structure. We first decided on the registration and teacher
recruitment procedures. This would be achieved by posting on educational websites and
networking with teacher associations.

The high level aims of the previous phases have been manifested to specific objectives:
(1) to realize what an algorithm is;
(2) to be familiar with the basic commands/structure of an algorithm;
(3) to install and utilize the Python development environment;
(4) to comprehend the role of variables, input and output commands in Python;
(5) to develop short sequential programs in Python;
(6) to develop programs using selection commands in Python;
(7) to realize the importance of iteration and to form solutions to problems using selection

and iteration commands in Python;
(8) to use strings in Python;
(9) to utilize lists, tuples, dictionaries, sets data structures in Python;
(10) to develop programs with built-in and user created functions in Python;
(11) to import basic Python modules in a program;
(12) to be able to download and use new Python modules;
(13) to read and write data in text files in Python;
(14) to employ the Python format function to format output;
(15) to utilize lists as stacks and queues to solve conventional problems;
(16) to code common sorting and searching algorithms in Python;
(17) to utilize the sorting and searching functions of Python;
(18) to introduce advanced Python capabilities.
The objectives were quantified based on the project’s high-level goals. The first three high

level goals aided in defining the learners’ desired skills and the last in forming the curriculum.
Based on the demand for a 12-week course, the course units are:

(1) Solving problems with computers. Introduction to algorithms;
(2) Introduction to Python;
(3) Solving problems with selection;
(4) Solving problems with iteration (1);
(5) Solving problems with iteration (2);
(6) Processing strings;
(7) Introduction to data structures;
(8) Solving problems with data structures;
(9) Advanced data structure topics;
(10) Functions and modules;
(11) Text files and output format;
(12) Sorting, searching and advanced topics.
Each unit is divided into two or three subunits. The material is presented in increasingly

difficult problems. The decision to create units with comparable workloads was critical so that
learners could immediately see the weekly workload. Topics in each unit are taught by using
lots of practical examples. The rich variety of examples aims for the course to be useful for
a novice in programming to get comfortable with coding, and not boring for an experienced
programmer.

Finally, the evaluation mechanisms were determined during the design phase. Users were
required to pass 80 percent of the tests without making any errors. They could repeat the test
twice. Closed-ended items, such as multiple choice and fill-in-the-gap questions, were used in
testing. Learners were required to type and run programs so as to select the correct answers
since the copy function was inactive on the browser.

3.1.3 Development

For each unit and subunit, we created the Moodle course structure and the materials (aims,
prerequisites, expected results, learning material and quizzes) (e.g. Figure 2 and 3). The
materials were then uploaded to the course and evaluated by external testers. The team could

Advances in Mobile Learning Educational Research • SyncSci Publishing 191 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

then move on to the next unit and the ready material was then released to the learners and
educators/facilitators.

Figure 2 Examples of learning material (in Greek)

Figure 3 Examples of assessment items

3.1.4 Implementation

During this stage, the course units are introduced to the target audience and the learning
process starts. The instructions and the rules to the participants are posted and the registration
forms are made available to participants (see Figure 4 and 5). Training facilitators support the
learners through the forum and by email if needed. They also check the reports of the Moodle
to evaluate the progress of learners. Specific reminders are sent to the learners.

3.1.5 Evaluation

The first screening process of each unit is performed by the designated testers who are
experienced Python educators and with solid backgrounds in distance learning. They test the
material for errors and inconsistencies, and they follow the online course as regular learners.
Their purpose was to review the process, to estimate the needed time, to attest that the objectives

Advances in Mobile Learning Educational Research • SyncSci Publishing 192 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

Figure 4 Requirements and introductory notes of the course (in Greek)

Figure 5 Implementation of the course in Moodle (in Greek)

are met, and to examine the accuracy of the assessment items as entered in the Moodle. They
thus facilitate the spinning of the “development-implementation-evaluation” circle.

The second source of feedback comes from the trainers/facilitators. They examine the
reports of the LMS, they regularly examine the forum and the interaction of the learners and
communicate potential problems to the development team.

The learners themselves are the last, and clearly the most important, source of evaluation
data. Indirectly, with their questions in the forum, their engagement with the learning material,
and their performance to the tests, they provide useful data. These data can be exploited through
various analytics plugins available for Moodle. Directly, through end-of-course summative
questionnaires learners can provide useful reflections.

3.2 Course deployment
The course was implemented in two rounds, with the goal of having 300-400 registrations

per sequence, resulting in a maximum of 200-300 actual participants per round. The actual
number of participants had to be within the above limits in order for us to effectively manage
the process and support the participants. The first cycle of the course runs concurrently with the
course’s development.

There was an open call for pre-service and in-service teachers, with the requirement to
register by filling out a registration form. The call was for both rounds, and teachers had to fill
in their current Python knowledge, teaching specialty, gender, and preferred participation round.
These details were critical in the event that we received more registrations than we needed and
had to choose teachers based on their specialty, Python skills, and gender in order to maintain a
balanced group of participants.

The project was launched in September 2019, but due to bureaucratic constraints, the team
formation and actual work on the project could not begin until the beginning of October 2019.
The first round of the course began in January 2020, and the second round began at the end
of February 2020. We consider this a quick process because we had to prepare learning and
assessment materials for 12 Python units, implement the MOOC, and manage the entire process
with a small team of seven people and two external testers. The majority of team members
took on the responsibilities of two or three team roles. For example, subject matter experts also
served as educators, and multimedia developers aided in the development of MOOCs, thereby
supporting all of these subtasks. The external testers were only in charge of the critical work of

Advances in Mobile Learning Educational Research • SyncSci Publishing 193 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

testing the content and implementing the course in Moodle.

4 Evaluation of the course
4.1 Methods

To address the main research question, the main dimensions of the evaluation focused on:
(1) the perceived relevance and quality of the training activity;
(2) the participants’ learning acquisition.
These variables were adapted from the Online Student Engagement Scale (Dixson, 2015),

as in (Pérez-Foguet et al., 2018). The first dimension is evaluated based on expert opinions
and the completion rate, which is a clear indicator of the course’s relevance to the needs of the
participants. In addition, the actual participants’ responses to the following eight questions have
been recorded:

Q1. The objectives of each module were supported by the respective educational material
Q2. The content was well organized into sections
Q3. The educational materials were presented in a clear and comprehensive way
Q4. There were some prerequisites that made it difficult to attend the program
Q5. The coding examples were clear, detailed and could they be easily executed
Q6. The quizzes were clear and understandable
Q7. The quizzes corresponded to the content of each section
Q8. Overall, how do you evaluate the educational material of the program, in terms of its

quality?
The second dimension is assessed based on the responses of the participants to the questions:

Q9. I knew how to program in a programming language prior to the PD program
Q10. I knew how to program in Python prior to the PD program
Q11. My expectations from participating in the program have been met
Q12. Are you feeling comfortable in teaching Python in your classes?

4.2 Evaluation by experienced teachers
The external testers were experienced computer science educators. Both had over 15 years

of teaching experience, including time spent teaching Python in vocational secondary schools.
Prior to working together, they had both taken some distance learning courses, either self-paced
in Moodle or in synchronous mode. As a result, they had the necessary experience to evaluate
our efforts. The procedure is divided into the following steps:

(1) They examined the individual materials of each unit for errors, ambiguities, and inconsis-
tencies between the learning materials and the assessment items;

(2) They followed the individual units in Moodle as learners so as to have a genuine learning
experience and to use the support services (forum, email, announcements). That way they could
appreciate the true requirements and the workload;

(3) Last, they had to produce a report for every unit citing potential errors and ambiguities,
their workload estimation, the difficulty level and the suitability of the material for novices in
programming.

Both testers discovered simple errors (typos, syntax errors, some wrong numbers, ambiguities
in textual explanations). Only one to two coding errors were reported per unit. They both agreed
that the course is appropriate for beginners in coding and that by following the course, they
will improve their abilities and gain a solid understanding of Python programming. They stated
that the materials are of increasing difficulty and that they are indeed in accordance with the
objectives of each unit. They suggested that for only one unit, one or two testing items to be
added to cover a portion of the learning material that was not covered in the quizzes.

4.3 Registrations and completions
Table 1 shows the demographics of the pre-service and in-service teachers who expressed

an interest in our course. The demographics show a distribution among specialties and sexes,
with computer science teachers having a higher registration rate. This is considered natural
because the program is primarily concerned with their specialty and teaching activities. It could
be argued that the number of registrations from CS teachers demonstrates the need for focused
programming PD programs.

Table 2 shows the number of participants who logged in and completed at least the first
quiz of the course. These people are considered to be the actual participants in our course.

Advances in Mobile Learning Educational Research • SyncSci Publishing 194 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

Table 1 Registrations of teachers for both rounds

Pre-service Teachers In-service Teachers
Total (n, %)

Female Male Female Male

CS 20 29 149 148 346 (55.27%)
NS 48 29 25 34 136 (21.73%)
SH 15 2 81 46 144 (23.00%)
Total (n, %) 83 (58.04%) 60 (41.96%) 255 (52.7%) 228 (47.3%) 626(100.00%)

Note: CS: Computer science; NS: Natural science; SH: Social sciences/Humanities

In total, 559 teachers accessed the MOOC and took at least one quiz. These teachers will be
used to calculate the completion rate, which is a strategy that has already been proposed in
the literature (Ho et al., 2015) and is known as the “effective dropout rate” (Huin et al., 2016).
Nearly 55% of in-service teachers work in secondary education, while the remainder work in
primary, post-secondary, or provide administrative or counseling services during the current
school year.

Table 2 Participants who completed at least the first quiz of the course

Pre-service Teachers In-service Teachers
Total (n, %)

Female Male Female Male

CS 17 25 129 140 311 (55.64%)
NS 40 27 23 32 122 (21.82%)
SH 10 1 74 41 126 (22.54%)
Total (n, %) 67 (55.83%) 53 (44.17%) 226 (51.48%) 213 (48.52%) 559(100.00%)

Note: CS: Computer science; NS: Natural science; SH: Social sciences/Humanities

The number of teachers who completed the course and received a certificate of achievement
is shown in Table 3. Overall, 396/559 teachers (70.84%) completed the course. Even if success
is defined in terms of Table 1 data, the completion rate exceeds 63%, which is quite high for
MOOCs.

Table 3 Participants who received the certificate of achievement

Pre-service Teachers In-service Teachers
Total (n, %)

Female Male Female Male

CS 9 21 100 115 245 (61,87%)
NS 28 12 24 20 84 (21,21%)
SH 10 1 33 23 67 (16,92%)
Total (n, %) 47 (58.02%) 34 (41.98%) 157 (49.84%) 158 (50.16%) 369(100.00%)

Note: CS: Computer science; NS: Natural science; SH: Social sciences/Humanities

4.4 Evaluation by learners
The survey of user opinions focused on the course’s organization, the material’s quality, and

the learning gain. The survey was conducted by the 396 students who completed the course at
the conclusion. At the conclusion of the course, students were required to complete a mandatory
questionnaire consisting of questions with responses on a 5-grade Likert scale. A team of three
experts reviewed the questionnaire’s content validity (in ICT in education, in programming
and in distance learning). A pilot study was conducted with four (4) teachers to determine the
questionnaire’s face validity.

Due to the absence of statistically significant differences in the responses of participants in
the two rounds, we report the results of the two rounds cumulatively. The questionnaire was
completed by the 81 pre-service and 315 in-service teachers who took the test (51.52 percent
female, 48.48 percent male). Nearly 93 percent of respondents held a university degree, and
a sizable proportion held a postgraduate degree or held a PhD. Following the demographic
questions, participants were required to respond to a series of questions that were logically
classified into four distinct categories.

The data were analyzed descriptively and explanatorily using the SPSS statistical package.
The χ2-test of independence was used to detect statistically significant differences and correla-
tions between the variables in the study based on the type of data for each variable. Cronbach’s

Advances in Mobile Learning Educational Research • SyncSci Publishing 195 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

internal consistency coefficient was used to determine the reliability of the questionnaire re-
sponses, and it was found to be acceptable (α = 0.79). The findings are presented for all teachers
because no statistically significant differences between pre-service and in-service teachers were
observed (p > 0.05 for all questions).

The following section of the questionnaire inquired about the course’s content and objectives,
which are associated to the relevance and quality of the course. As shown in Table 4, the
majority of participants expressed favorable attitudes toward the course. The vast majority
believed that the content and quizzes supported the objectives. The instructional materials were
presented in a logical and structured manner. The issue of prerequisites is the only one that
requires additional investigation in order to improve the course.

Table 4 Questions about the content

Disagree or Strongly disagree Neutral Agree or Strongly agree

CS NS SH CS NS SH CS NS SH

Q1 0.41% 0.00% 1.49% 6.94% 9.52% 10.45% 92.65% 90.48% 88.06%
Q2 0.00% 0.00% 2.99% 4.08% 8.33% 7.46% 95.92% 91.67% 89.55%
Q3 0.00% 0.00% 0.00% 4.08% 8.33% 19.40% 95.92% 91.67% 80.60%
Q4 63.27% 60.71% 46.27% 29.80% 29.76% 38.81% 6.94% 9.52% 14.93%
Q5 0.00% 0.00% 0.00% 3.27% 10.71% 29.85% 93.47% 89.29% 82.09%
Q6 0.00% 0.00% 2.99% 7.35% 10.71% 22.39% 92.65% 89.29% 74.63%
Q7 0.00% 0.00% 1.49% 6.94% 9.52% 7.46% 93.06% 90.48% 91.04%

Note: CS: Computer science; NS: Natural science; SH: Social sciences/Humanities

This part of the questionnaire contained the concluding question “Q8. Overall, how do you
evaluate the educational material of the program, in terms of its quality?” with 1-10 numerical
rating (1: very unsatisfying; 10: excellent). More than 85% from each group of teachers ranked
the quality of the material from 8 to 10. Within the CS teachers, this rating was favored by more
than 90%. The rest 10-15% of the participants assessed the material with a mark 6 or 7.

Higher percentages for CS teachers and NS teachers (95.92% for the CS teachers and 91.67%
for the NS teachers) than for SH teachers (80.60%) agree or strongly agree that the educational
materials were presented in a clear and comprehensive way while a percentage of 19.40% for
the SH teachers is neutral. The differences are statistically significant (χ2(8) = 24.62; n =
396; p < .01). Most teachers (CS, NS and SH teachers) disagree/strongly disagree that there
were some prerequisites that made it difficult to attend the program. A percentage of 38.81%
for the SH teachers expresses a neutral point of view and a percentage of 14.93% agree or
strongly agree that there were some prerequisites that made it difficult to attend the program
(statistically significant differences - χ2(8) = 17.51; n = 396; p < .05). Although most teachers
(CS, NS and SH teachers) found that the coding examples were clear, detailed and could they be
easily executed, a percentage of 29.85% for the SH teachers expresses a neutral point of view
(statistically significant differences - χ2(8) = 45.49; n = 396; p < .001). A higher percentage of
CS teachers and NS teachers (92.65% for the CS teachers and 89.29% for the NS teachers) than
for SH teachers (74.63%), agree or strongly agree that the quizzes were clear and understandable
while a percentage of 22.39% for the SH teachers is neutral (statistically significant differences -
χ2(8) = 21.81; n = 396; p < .05). There were no statistically significant differences among CS,
NS and SH teachers as the majority of them agree or agree strongly that the objectives of each
module were supported by the respective educational material, the content was well organized
into sections and the quizzes corresponded to the content of each section (p > 0.05).

The next part related to the learning gain and the satisfaction of the participants. From Table
5 we can conclude that most CS teachers knew how to program at least in one programming
language. However, the rates are reverse in the case of Python. The other categories of teachers
had significantly lower coding skills in general and in Python more specifically. However, most
of the teachers agreed/strongly agreed that their expectations have been met.

Table 5 Questions about the prior knowledge and the expectations

Disagree or Strongly disagree Neutral Agree or Strongly agree

CS NS SH CS NS SH CS NS SH

Q9 4.90% 34.52% 82.09% 34.29% 44.05% 10.45% 60.82% 21.43% 7.46%
Q10 48.16% 58.33% 88.06% 33.88% 32.14% 8.96% 17.96% 9.52% 2.99%
Q11 0.00% 2.38% 2.99% 14.69% 13.10% 26.87% 85.31% 84.52% 70.15%

Note: CS: Computer science; NS: Natural science; SH: Social sciences/Humanities

Most of the SH teachers (82.09%) did not know how to program in a programming language

Advances in Mobile Learning Educational Research • SyncSci Publishing 196 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

prior to the PD program, contrary to the 60.82% for the CS teachers who knew how to program
and the 65.48% of the NS teachers who were neutral or knew how to program (statistically
significant differences (χ2(8) = 215.35; n = 396; p < .001). Most of the SH teachers (88.06%)
did not know how to program in Python prior to the PD program contrary to the 48.16% for
the CS teachers who had no programming experience with Python and the 58.33% of the
NS teachers (statistically significant differences - χ2(8) = 53.88; n = 396; p < .001). There
were no statistically significant differences among CS, NS and SH teachers as most of them
agree or agree strongly that their expectations from participating in the program have been met.
The percentage of the SH teachers who agree or agree strongly that their expectations from
participating in the program have been met is lower than the respective percentages for the CS
and NS teachers as the SH seem to face some difficulties during the program but the differences
were no statistically significant (χ2(8) = 12.38; n = 396; p > 0.05).

To validate that the learners could indeed use Python, the section contained the question
“Q11. Are you feeling comfortable in teaching Python in your classes?”. More than 84% of
the participants replied “yes” and the rest was divided between “maybe” and “no”. This is a
convincing indication that learners developed coding skills in Python as they felt confident to
teach their students. The teachers could utilize the presentations and all the material of the
course in their classes. The participants of our PD program had to complete approximately 80%
of the quizzes with no error and a final assessment. Thus, they had to complete at least 23 of the
total quizzes and to execute Python codes, which reinforced their real skills.

5 Conclusions
The purpose of this study is to describe the design decisions and implementation details

for an e-course aimed at improving pre-service and in-service teachers’ coding abilities. The
literature review established the importance of teachers to develop their coding skills and, over
time, their computational thinking. Python was chosen for its simplicity and steeper learning
curve, and a MOOC was chosen for delivery of the course. The course promoted active learning
through practical examples, assignments and tests, while maintaining a manageable workload
and duration. The course was designed and developed in short iterative cycles to minimize
the time required to deploy the course. We discuss all design decisions in detail in the paper
and provide specific implementation details so that the work can serve as a model for similar
courses.

Our primary objective was to assist teachers in enhancing their coding skills. According to
the experts’ and participants’ responses, the specific MOOC assisted teachers in improving their
coding abilities. Teachers learned to code and were required to confront problems in a series of
ordered steps that required them to analyze and organize data in structures and to implement
solutions in Python. The trainees unanimously agreed (> 84%) that they are confident in their
ability to use Python in their classes. The relevance and quality of the training activity, as well
as the participants’ acquisition of knowledge, have been validated through participant responses
and increased completion rates.

From a total of 626 registrations, 559 teachers worked on at least one course’s test and 396
completed the entire course. The completion rate is 70.84 percent for active participants and
63% based on the total registrations. In either case, the completion rate is significantly higher
than the average MOOC completion rate reported. In our work, we attempted to address the
factors that contribute to increased dropout rates more effectively. The course’s requirements
were made explicit from the start; students received continuous support throughout their training
via forum and email communications; the student-to-teacher ratio was increased; and the course
was directly connected to the high school curriculum, which increased participant motivation.
Additionally, participants received a certificate of attendance, which serves as an additional
motivator.

The course contains valuable information for learners new to computing, but at the same
time it could be an interested course for the experienced programmer who wants to learn a new
programming language and become a more skillful programmer. Thus, it could be an effective
bridge between an introduction to programming and an advanced course on computational
science.

In comparison to other approaches, coding appears to better meet this need while also
assisting individuals in acquiring quantifiable skills. Practical training activities that are directly
related to their job responsibilities appear to be more motivating for adult learners. Our work
could be expanded by developing additional non-mandatory learning materials to better meet
the needs of users with advanced programming backgrounds. Peer communication and support
could be facilitated even more in order to boost collaboration. Focused interviews with various

Advances in Mobile Learning Educational Research • SyncSci Publishing 197 of 200

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

user categories, including those who did not complete the course, are necessary to gain a better
understanding of their needs for the subject at hand and for e-learning in general, as well as to
improve the effectiveness of future professional development programs.

References
Ahamed, S. I., Brylow, D., Ge, R., Madiraju, P., Merrill, S. J., Struble, C. A., & Early, J. P. (2010).

Computational thinking for the sciences: A three-day workshop for high school science teachers.
Proceedings of the 41st ACM technical symposium on Computer science education (pp. 42-46).
Milwaukee, Wisconsin, USA: ACM.

An, S., & Lee, Y. (2014). Development of Pre-service Teacher Education Program for Computational
Thinking. In M. Searson & M. Ochoa (Eds.), Proceedings of SITE 2014–Society for Information
Technology & Teacher Education International Conference (pp. 2055-2059). Jacksonville, Florida,
United States: Association for the Advancement of Computing in Education (AACE). Retrieved
December 7, 2020.
https://www.learntechlib.org/p/131092

Ateeq, M., Habib, H., Umer, A., & Ul Rehman, M. (2014). C++ or Python? Which one to begin with:
a learner’s perspective. In International Conference on Teaching and Learning in Computing and
Engineering (LaTiCE 14). IEEE, 64-69.
https://doi.org/10.1109/LaTiCE.2014.20

Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A Digital Age Skill for Everyone.
Learning & Leading with Technology, 38(6), 20-23.

Bell, T., Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It Work?. In: Böckenhauer
HJ., Komm D., Unger W. (eds) Adventures Between Lower Bounds and Higher Altitudes. Lecture
Notes in Computer Science, vol 11011. Springer, Cham.
https://doi.org/10.1007/978-3-319-98355-4 29

Branch, R. (2009). Instructional design: The ADDIE approach. Berlin, Germany: Springer-Verlag.
Corradini, I., Lodi, M., Nardelli, E. (2018). An Investigation of Italian Primary School Teachers’ View

on Coding and Programming. 11th International Conference on Informatics in Schools: Situation,
Evolution, and Perspectives, ISSEP 2018, Oct 2018, St. Petersburg, Russia. pp.228-243.
https://doi.org/10.1007/978-3-030-02750-6 18.hal-01913059

Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better
conceptualizations and measures. Educational Researcher, 38, 181-199.
https://doi.org/10.3102/0013189X08331140

Dixson, M. (2015). Measuring student engagement in the online course: the online student engagement
scale (OSE). Online Learning, 19(4), 1-15.
https://doi.org/10.24059/olj.v19i4.561

Eriksson, T., Adawi, T., & Stöhr, C. (2017). Time is the bottleneck: A qualitative study exploring why
learners drop out of MOOCs. Journal of Computing in Higher Education, 29(1), 133-146.
https://doi.org/10.1007/s12528-016-9127-8

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012). Teacher beliefs
and technology integration practices: A critical relationship. Computers & Education, 59, 423-435.
https://doi.org/10.1016/j.compedu.2012.02.001

Google, Inc., & Gallup, Inc. (2016). Trends in the state of computer science in U.S. K-12 schools.
http://services.google.com/fh/files/misc/trends-in-the-state-of-computer-science-report.pdf

Grandell, L., Peltomäki, M., Back, R. J., & Salakoski. T. (2006). Why complicate things? Introducing
programming in high school using Python. In Proceedings of the 8th Australasian Conference on
Computing Education, 52, 71-80.

Gregori, E. B., Zhang, J., Galván-Fernández, C., & Fernández-Navarro, F. D. A. (2018). Learner support
in MOOCs: Identifying variables linked to completion. Computers & Education, 122, 153-168.
https://doi.org/10.1016/j.compedu.2018.03.014

Gretter, S., & Yadav, A. (2016). Computational Thinking and Media & Information Literacy: An
Integrated Approach to Teaching Twenty-First Century Skills. TechTrends, 60, 510-516.
https://doi.org/10.1007/s11528-016-0098-4

Guniš, J., Šnajder, L., Tkáčová, Z., & Gunišová, V. (2020). Inquiry-Based Python Programming at
Secondary Schools. 43rd International Convention on Information, Communication and Electronic
Technology (MIPRO), Opatija, Croatia, 2020, 750-754.
https://doi.org/10.23919/MIPRO48935.2020.9245275

Ho, A., Chuang, I., Reich, J., Coleman, C., Whitehall, J., Northcutt, C., Williams, J., Hansen, J., Lopez,
G., & Peterson, R. (2015). HarvardX and MITx: Two years of open online courses. Cambridge:
HarvardX.

Hodges, C., Lowenthal, P., & Grant, M. (2016). Teacher professional development in the digital age:
Design considerations for MOOCs for teachers. In Proceedings of Society for Information Technology
& Teacher Education International Conference (pp. 2075-2081). Chesapeake, VA: Association for the
Advancement of Computing in Education (AACE).

Huin, L., Bergheaud, Y., Caron, P. A., Codina, A. & Disson, E. (2016). Measuring completion and
dropout in MOOCs: A learner-centered model, Proceedings of the European MOOC Stakeholder
Summit 2016, 55-67.

Advances in Mobile Learning Educational Research • SyncSci Publishing 198 of 200

https://www.learntechlib.org/p/131092
https://doi.org/10.1109/LaTiCE.2014.20
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/978-3-030-02750-6_18.hal-01913059
https://doi.org/10.3102/0013189X08331140
https://doi.org/10.24059/olj.v19i4.561
https://doi.org/10.1007/s12528-016-9127-8
https://doi.org/10.1016/j.compedu.2012.02.001
http://services.google.com/fh/files/misc/trends-in-the-state-of-computer-science-report.pdf
https://doi.org/10.1016/j.compedu.2018.03.014
https://doi.org/10.1007/s11528-016-0098-4
https://doi.org/10.23919/MIPRO48935.2020.9245275
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

ISTE. (2014). Operational definition of Computational Thinking in K-12 education.
Kellogg, S., & Edelmann, A. (2015). Massively open online course for educators (MOOC-Ed) network-

dataset. British Journal of Educational Technology, 46(5), 977-983.
https://doi.org/10.1111/bjet.12312

Kesim, M., & Altinpulluk, H. (2015). A Theoretical Analysis of Moocs Types from a Perspective of
Learning Theories. Procedia - Social and Behavioral Sciences, 186(2015), 15-19.
https://doi.org/10.1016/j.sbspro.2015.04.056

Klimeková, E., & Tomcsányiová, M. (2018). Case Study on the Process of Teachers Transitioning to
Teaching Programming in Python. In: Pozdniakov S., Dagienė V. (eds) Informatics in Schools. Funda-
mentals of Computer Science and Software Engineering. ISSEP 2018. Lecture Notes in Computer
Science, vol 11169. Springer, Cham.
https://doi.org/10.1007/978-3-030-02750-6 17

Kostopoulos, G., Panagiotakopoulos, T., Kotsiantis, S., Pierrakeas, C., & Kameas, A. (2021). Interpretable
Models for Early Prediction of Certification in MOOCs: A Case Study on a MOOC for Smart City
Professionals, “Interpretable Models for Early Prediction of Certification in MOOCs: A Case Study
on a MOOC for Smart City Professionals,” in IEEE.
https://doi.org/10.1109/ACCESS.2021.3134787

Krishnamurthi, S., & Fisler, K. (2019). Programming paradigms and beyond. In S. Fincher & A.
Robins (Eds.), The Cambridge handbook of computing education research (pp. 377-413). Cambridge
University Press.
https://doi.org/10.1017/9781108654555.014

Kunkle, W. M. & Allen, R. B. (2016). The Impact of Different Teaching Approaches and Languages
on Student Learning of Introductory Programming Concepts, ACM Transactions on Computing
Education, January 2016 Article No. 3.
https://doi.org/10.1145/2785807

Kwon, K. (2017). Novice programmer’s misconception of programming reflected on problem-solving
plans. International Journal of Computer Science Education in Schools, 1(4), 14-24.
https://doi.org/10.21585/ijcses.v1i4.19

Lamprou, A., Repenning, A., & Escherle, N. (2017). The Solothurn project — Bringing computer
science education to primary schools in Switzerland. In Proceedings of the 2017 ACM conference on
innovation and technology in computer science education (ITiCSE 17), 218-223. New York: ACM.

Lazarinis, F., Karachristos, C.V., Stavropoulos, E.C., & Verykios, V. S. (2019). A blended learning
course for playfully teaching programming concepts to school teachers. Education and information
technologies, 24(2), 1237-1249.
https://doi.org/10.1007/s10639-018-9823-2

Lloyd, M., Chandra, V. (2020). Teaching coding and computational thinking in primary classrooms:
perceptions of Australian preservice teachers. Curriculum Perspectives, 40, 189-201.
https://doi.org/10.1007/s41297-020-00117-1

Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language? Analyzing the
difficulties in learning to program. Computer Science Education, 16(3), 211-227.
https://doi.org/10.1080/08993400600912384

Mason, S., & Rich, P. (2019). Preparing elementary school teachers to teach computing, coding, and
computational thinking. Contemporary Issues in Technology and Teacher Education, 19(4), 790-824.
https://www.learntechlib.org/primary/p/184723

Mészárosová, E. (2015). Is Python an Appropriate Programming Language for Teaching Programming
in Secondary Schools? International Journal of Information and Communication Technologies in
Education, 4(2), 5-14.
https://doi.org/10.1515/ijicte-2015-0005

Noone, M., & Mooney, A. (2018). Visual and textual programming languages: a systematic review of
the literature. Journal of Computers in Education, 5, 149-174.
https://doi.org/10.1007/s40692-018-0101-5

Onah, F. O., Sinclair, J., & Boyatt, R. (2014). Dropout rates of massive open online courses: Be-
havioural patterns. In Proceedings of the 6th international conference on education and new learning
technologies, Barcelona (EDULEARN14), 5825-5834. Spain.

Panagiotakopoulos, T., Kotsiantis, S., Borotis, S., Lazarinis, F., & Kameas A. (2021). Applying Machine
Learning to Predict Whether Learners Will Start a MOOC After Initial Registration. In: Maglogiannis
I., Macintyre J., Iliadis L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP
WG 12.5 International Workshops. AIAI 2021. IFIP Advances in Information and Communication
Technology, vol 628. Springer, Cham.
https://doi.org/10.1007/978-3-030-79157-5 38

Pérez-Foguet, A., Lazzarini, B., Giné, R., Velo, E., Boni, A., Sierra-Castañer, M., Zolezzi, G., &
Trimingham, R., (2018). Promoting sustainable human development in engineering: Assessment of
online courses within continuing professional development strategies. Journal of Cleaner Production,
172, 4286-4302.
https://doi.org/10.1016/j.jclepro.2017.06.244

Poultsakis, S., Papadakis, S., Kalogiannakis, M., & Psycharis, S. (2021). The management of Digital
Learning Objects of Natural Sciences and Digital Experiment Simulation Tools by teachers. Advances
in Mobile Learning Educational Research, 1(2), 58-71.
https://doi.org/10.25082/AMLER.2021.02.002

Advances in Mobile Learning Educational Research • SyncSci Publishing 199 of 200

https://doi.org/10.1111/bjet.12312
https://doi.org/10.1016/j.sbspro.2015.04.056
https://doi.org/10.1007/978-3-030-02750-6_17
https://doi.org/10.1109/ACCESS.2021.3134787
https://doi.org/10.1017/9781108654555.014
https://doi.org/10.1145/2785807
https://doi.org/10.21585/ijcses.v1i4.19
https://doi.org/10.1007/s10639-018-9823-2
https://doi.org/10.1007/s41297-020-00117-1
https://doi.org/10.1080/08993400600912384
https://www.learntechlib.org/primary/p/184723
https://doi.org/10.1515/ijicte-2015-0005 
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1007/978-3-030-79157-5_38
https://doi.org/10.1016/j.jclepro.2017.06.244
https://doi.org/10.25082/AMLER.2021.02.002
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com


Volume 2 Issue 1, 2022 Fotis Lazarinis, Anthi Karatrantou, Christos Panagiotakopoulos, et al.

Rich, P. J., Browning, S. F., Perkins, M., Shoop, T., & Yoshikawa, E. (2018). Coding in K-8: International
trends in teaching elementary/primary computing. TechTrends, 63, 311-329.
https://doi.org/10.1007/s11528-018-0295-4

Robins, A. V. (2019). Novice programmers and introductory programming. In S. Fincher & A. Robins
(Eds.), The Cambridge handbook of computing education research (pp. 327–376). Cambridge, Uni-
versity Press.
https://doi.org/10.1017/9781108654555.013

Sands, P., Yadav, A., & Good, J. (2018). Computational Thinking in K-12: In-service Teacher Perceptions
of Computational Thinking. In: Khine M. (eds) Computational Thinking in the STEM Disciplines.
Springer, Cham.
https://doi.org/10.1007/978-3-319-93566-9 8

Scherer, R., Siddiq, F., & Viveros, B. S. (2018). Technology and the mind: Does learning to code improve
cognitive skills? In Proceedings of the Technology, Mind, & Society 2018 Conference.
https://doi.org/10.1145/3183654.3183658

Scherer, R., Siddiq, F., & Viveros, B. S. (2018). Technology and the mind: Does learning to code improve
cognitive skills? In Proceedings of the Technology, Mind, & Society 2018 Conference.
https://doi.org/10.1145/3183654.3183658

Spradling, C., Linville, D., Rogers, M. P., & Clark, J. (2015). Are MOOCs an appropriate pedagogy for
training K-12 teachers computer science concepts? Journal of Computer Science in Colleges, 30(5),
115-125.

Toikkanen, T., & Leinonen, T. (2017). The Code ABC MOOC: Experiences from a coding and compu-
tational thinking MOOC for Finnish primary school teachers. In P. J. Rich & C. B. Hodges (Eds.),
Emerging research, practice, and policy on computational thinking (pp. 239–248). New York, NY:
Springer.
https://doi.org/10.1007/978-3-319-52691-1 15

Tuomi, P., Multisilta, J., Saarikoski, P., & Suominen, J. (2018). Coding skills as a success factor for a
society. Education and Information Technologies, 23, 419-434.
https://doi.org/10.1007/s10639-017-9611-4

Tzimopoulos, N., Provelengios, P., & Iosifidou, M. (2021). Implementation and evaluation of a remote
seminar on the pedagogical use of educational robotics. Advances in Mobile Learning Educational
Research, 1(2), 48-57.
https://doi.org/10.25082/AMLER.2021.02.001

Vaca-Cárdenas, L. A., Bertacchini, F., Tavernise, A., Gabriele, L., Valenti, A., Olmedo, D. E., & Bilotta,
E. (2015). Coding with Scratch: The design of an educational setting for Elementary pre-service
teachers. 2015 international conference on Interactive Collaborative Learning (ICL), Florence, Italy
(pp. 1171), IEEE.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high
school computer science classrooms. ACM Transactions on Computing Education (TOCE), 18(1), 3.
https://doi.org/10.1145/3089799

Yadav, A., Gretter, S., Good, J., & McLean T. (2017). Computational Thinking in Teacher Education.
In: Rich P., Hodges C. (eds) Emerging Research, Practice, and Policy on Computational Thinking.
Educational Communications and Technology: Issues and Innovations. Springer, Cham.
https://doi.org/10.1007/978-3-319-52691-1 13

Advances in Mobile Learning Educational Research • SyncSci Publishing 200 of 200

https://doi.org/10.1007/s11528-018-0295-4
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1007/978-3-319-93566-9_8
https://doi.org/10.1145/3183654.3183658
https://doi.org/10.1145/3183654.3183658
https://doi.org/10.1007/978-3-319-52691-1_15
https://doi.org/10.1007/s10639-017-9611-4
https://doi.org/10.25082/AMLER.2021.02.001
https://doi.org/10.1145/3089799
https://doi.org/10.1007/978-3-319-52691-1_13
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

	Introduction
	Literature review
	The GPython MOOC
	Applying the ADDIE MODEL to design and implement the e-course
	Analysis
	Design
	Development
	Implementation
	Evaluation

	Course deployment

	Evaluation of the course
	Methods
	Evaluation by experienced teachers
	Registrations and completions
	Evaluation by learners

	Conclusions

