©ynesgi

Adv Mobile Learn Educ Res, 2023, 3(1): 570-578
DOI: 10.25082/AMLER.2023.01.005

RESEARCH ARTICLE

Analyzing and comparing the effectiveness of various machine learning algorithms
for Android malware detection

Muhammad Shoaib Akhtar

School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

"i} Check for updates

Correspondence to: Muhammad Shoaib Akhtar,
School of Computer and Communication, Lanzhou
University of Technology, Lanzhou 730050, China;
Email: 13.cs.194@gmail.com

Received: October 4, 2022;
Accepted: December 10, 2022;
Published: December 14, 2022.

Citation: Akhtar, M. S. (2022). Analyzing and com-
paring the effectiveness of various machine learning
algorithms for Android malware detection. Advances
in Mobile Learning Educational Research, 3(1), 570-
578. https://doi.org/10.25082/AMLER.2023.01.005

Copyright: © 2022 Muhammad Shoaib Akhtar. This
is an open access article distributed under the terms of
the Creative Commons Attribution-Noncommercial 4.0
International License, which permits all non-
commercial use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Advances in Mobile Learning Educational Research @ SyncSci Publishing

Abstract: Android is the most extensively adopted mobile operating system in the world. The
free third-party programmes that may be downloaded and installed contribute to this success
by offering a wide range of features and functionalities. However, the freedom to utilize any
third-party programme has spawned a never-ending tide of ever-evolving malicious software
intending to harm the user in some way, shape, or form. In this work, we propose and show
many methods for detecting malware on Android. An in-process detection system is built,
including data analytics. It may use the detection system to look over your current app set and
find any malicious software so you can remove it. Models based on machine learning allow
for this to be accomplished. It has been investigated how well the models perform with two
distinct feature sets: permissions and signatures. Initially, each dataset undergoes exploratory
data analysis and feature engineering to narrow down the vast array of attributes. The next step
is to determine if an application is malicious or safe using one of many supervised classification
models derived from data mining. Different models’ performance metrics are examined to find
the method that provides the best outcomes for this malware detection task. Ultimately, it is seen
that the signatures-based method is superior to the permissions-based. Classification methods
such as k-nearest neighbours (kNN), logistic regression, support vector machines (SVM), and
random forests (RF) are all equivalent in their efficacy.

Keywords: Android, cyber security, cyber warfare, malware detection

1 Introduction

The prevalence of malware designed to infect Android smartphones continues to rise, be-
coming increasingly complex and covert. Machine learning approaches have allowed for the
modelling of patterns in both the static features and the dynamic behaviours of Android malware.
By analyzing the correlation between classification accuracy and feature quality in machine
learning classifiers, we link the characteristics provided by applications with those needed
to provide the functionality associated with their category. Instead of identifying potentially
harmful trends, our categorization strategy generates reliable static features for safe apps within
a given category. We utilize the features of the most popular apps in a given category to train a
malware detection classifier for that category. One of the largest selections of Android apps can
be found in the Google Play Store, which is divided into 26 unique categories. While each app
type serves a unique purpose, they all share standard static and dynamic features. In general,
harmless applications of a given kind share several commonalities.

On the other hand, malicious apps often have unusual requirements for their category. The
findings of this study recommend enhancing classification models’ capability to identify harmful
apps by employing category-based machine learning classifiers. Extensive machine learning
studies demonstrate that classifiers that use categories to make their predictions outperform
those that do not go by a significant margin.

The permission-based procedure that restricts the functionality of unofficial Android apps is
the backbone of Android security. When installing an app, the user must give it the permissions
it requests. The goal is to ensure the user is well-informed about the risks involved with installing
and running a particular piece of software. In reality, two problems exist. First, most people
need to learn more about cybersecurity, so they blindly trust the app store or the popularity of a
piece of software and download it without looking into the developer’s intentions. The second
is that Android needs to make it evident during installation what rights and resources an app
would require. Instead, it provides details on a collection of resources and makes them available
in many forms. The categories include uses of resources that require special approval. User
misunderstanding over rights management leads to unintended over-granting access, making it
more difficult to identify malicious programmes and laying the groundwork for various attacks.

570 of 578

https://doi.org/10.25082/AMLER.2023.01.005
https://crossmark.crossref.org/dialog/?doi=10.25082/AMLER.2023.01.005&domain=pdf
13.cs.194@gmail.com
https://doi.org/10.25082/AMLER.2023.01.005
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023

Muhammad Shoaib Akhtar

The study details a technique for spotting potentially harmful Android apps by analyzing
their requests for access to private data. Particular attention is being paid to 222 permissions,
some of which are set aside for use by other applications. It is an approach to static analysis that
combines two established techniques. The first method looks at how often permissions are being
asked and how many requests are coming from harmful software. The second strategy relies on
possible security weaknesses in granting access. Through comparison, it is shown that Google’s
four permission protection levels are excessively coarse-grained, hiding the underlying meaning
of permissions. The first strategy is more precise and polished in terms of the semantics of
permits. A total of 6783 malicious applications and 1993 simple applications were included
in our collection. Profiles for each sample based on both methods have been developed and
will be used as input for training and learning procedures. Seven different classifiers were
used to determine the models’ efficiencies. After selecting the most promising ones, we use
them to define our classifier, which subsequently demonstrates superb detection and prediction
skills. We also made a list of correlations about permission-to-weight that could be used in
other researches. (see Figure 1)

Application
Components

‘ | Data Storage |

Enforcement

Q 4

(Permission Based Security 1

Sandbox.;'-

Application
Digital
Signature

Application
Digital
Signature il

| Shared Key +----

Figure 1 Security Model of Android [28]

Analyses show that our model is one of the most valuable tools, with the given permissions
being the only distinguishing attribute. It has the potential to identify almost 99.20% of the
1260 samples of malware supplied by the Genome project, a statistic that is indicative of current
malware in terms of its behaviour. This research proposes a strategy for balancing permissions
to maintain excellent classification performance when using a dataset of unlabeled samples.
This model has an approximately 97% actual positive rate for detecting Android malware and
a 95% success rate for forecasting Android malware. This means it can distinguish between
virtually any type of malware and accurately forecast when new malware will appear. An AUC
between 97 and 99% shows that the system is very good at finding malware.

We also propose a mechanism that can be implemented on Android mobile devices for
real-time tracking. Our system outperforms three of the best antivirus tools in two of the three
categories we tested.

2 Literature review

Anam (2018) elaborate on the security structure and its open-source availability and has
Google’s backing. Android has the largest share of the worldwide market. As the most used OS,
it is a prominent target for cybercriminals, who often utilize popular programmes to propagate
malware. This study presents an effective machine-learning-based technique for Android
malware detection by employing a genetic algorithm for developing discriminating feature
selection. Machine learning classifiers are trained on the chosen features to evaluate the genetic
algorithm’s effectiveness in detecting malware. The results are compared to those obtained
before and after feature selection. According to the results of the experiments, the genetic
algorithm yields the most compelling feature subset, which reduces the feature dimension to less
than half of its original value. The classification accuracy of machine learning-based classifiers
can remain over 94% even after feature selection, even when working with dramatically reduced
feature dimensions. This helps reduce the computational overhead associated with training
classifiers (Fatima et al., 2019; Schultz et al., 2001; Firdausi et al., 2010).

Ravi (2018) compares the efficacy of many machine learning methods for detecting android
malware, such as naive Bayes, j48, Random Forest, Multi Class Classifier, and Multilayer
Perceptron (Hahn et al., 2016). By employing machine learning techniques, we developed
a system to classify Android applications according to whether or not they include malware

Advances in Mobile Learning Educational Research @ SyncSci Publishing 571 of 578

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023

Muhammad Shoaib Akhtar

by employing machine learning techniques. To implement this, a user will need a plethora of
apps from the Android Market and extract their permissions and functionalities. Classification
accuracy and total training time will be used to evaluate the models we have built from the 3258
android app samples our system collected for validation. The experimental findings demonstrate
that the multiclass classifier attains the best levels of classification accuracy when compared to
other methods. After evaluating many different classifiers for their computational complexity,
we found that the Naive Bayes classifier was the most efficient for determining how to classify
the malware data set. The classification precision attained in this work surpasses that of other
works published in this area. Using feature reduction, classification accuracy may improve
significantly (Schultz et al., 2001; Firdausi et al., 2010; Hahn et al., 2016; Siddiqui et al., 2009;
Anderson et al., 2012). (see Table 1)

Table 1 Comparison of ML algorithms (Anderson et al., 2012)

S.no Author Algorithm Accuracy
1 Schultz et al. Navies Bayes 97.11%
2 Firdausi et al. J48 97.00%
3 Sebastian et al. Random forest 96.02%
4 Siddiqui et al. Random forest 96.60%
5 Anderson et al. SVM 98.70%
6 This work Multiclass classifier 99.90%

This study aims to ascertain whether or not the Android manifest file has adequate information
to decide about an app’s potential danger. In particular, it compares the benefits of exchanging
intent between applications with asking for permission. Static malware detection is also
improved by using the manifest file dataset to test and fine-tune several machine-learning
techniques. A support vector machine (SVM) approach is the most efficient classifier across
the board (91.7%). A fully effective classifier may be built using the manifest file alone. While
the 1.2% boost in classifier performance is not huge, it warrants more research into whether or
not intent filters, in addition to permissions, may be beneficial. This is significant as modern
malware often uses implied intent to influence unintended programmes and avoid detection by
traditional means. The methodology and the data collection may use tweaking (Fatima et al.,
2019; Zhao et al., 2015; Varma et al., 2017).

100%

90%

«“

&
1<
«
&
o
5

i
G
¢

80%

Accuracy

70%

Figure 2 Comparing Algorithms on Combined Dataset (Varma et al., 2017)

As shown in Figure 2, the SVM has the best success rate (91.7%). The following best
algorithms only improved accuracy by 91.4% (KNN) and 89.3% (Complex Tree), respectively;
this is a small gap.

This work proposes a strategy to scan Android devices for malware based on Application
Programming Interface classes. Here, we use machine learning to identify potentially harmful
software updates. We also compare the precision of several machine learning methods. In this
research, we employ cross-validation, a percentage split test, and the Random Forest, J48, and
Support Vector Machine algorithms to classify 51 API package classes from 16 API classes as
either benign or harmful. A total of 412 representative application examples are utilized. To put
it another way, we discover that our classifications are, on average, 91.9% accurate (Kumaran &
Li, 2016; Westyarian et al., 2015). (see Table 2)

In this study, we demonstrate the potential of machine learning for malware detection by
utilizing preexisting classes and packages with three different algorithms (Support Vector

Advances in Mobile Learning Educational Research @ SyncSci Publishing 572 of 578

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023 Muhammad Shoaib Akhtar
Table 2 Precision rate of algorithms

Categories SVM Tree J48 Tree Random Forest Highest

Cross Validation Percentage Split 92.10% S9 90% 92.40% 92.40%

91.40% 90.30% 90.50% 91.40%

Machine, J48, and Random Forest). The cross-validation test accuracy percentage is 92.4%
using the random forest methodology but only 91.4% with the SVM method (Kumaran & Li,
2016; Westyarian et al., 2015).

As the number of people who rely on mobile devices grows, so does the need for sophisticated
virus detection algorithms. This paper describes preliminary research on analyzing Android app
permission requests to detect malware. With the help of an Al-driven system, we can distinguish
between benign and malicious programmes. Once we found the sweet spot for the suggested
model’s parameters, we saw our dataset classification accuracies of 75% to 80%. Future studies
may consider increasing the size of the training dataset, incorporating more characteristics, and
experimenting with alternative machine-learning methods. Increased dependence on mobile
devices underscores the importance of developing and implementing sophisticated methods for
detecting viruses. This research demonstrated preliminary steps toward developing an Android
malware detection system by analyzing app permission requests. This model achieved 80%
accuracy on the dataset in classifying over 3000 Android apps (Tahtaci & Canbay, 2020; Leeds
& Atkison, 2016).

3 Research problem

Android has been a target for cybercriminals because of its widespread use and the positive
reception its user-friendly design and other features have received. Malware detection techniques
for Android that depend on signatures or monitoring power use may miss the most current
threats. So, we develop a new way to find malware that uses machine learning.

4 Methodology

This section will discuss our techniques to distinguish safe programmes from harmful ones.
The entirety of the system’s architecture is seen in Figure 3. We compile a database to determine
which apps are trustworthy and which are not. The entire set engages in feature extraction. A
feature vector is created for classification based on the retrieved features. We also provide a
report examining how often permits are claimed and how often they go unclaimed. Last but
not least, we guarantee that the software may be downloaded from Google Play. Our research
required a huge dataset consisting of both clean and malicious applications. Applications from
the Google Play Store were used to ensure user safety, while the Mahindr (2008) dataset was
used ethically to investigate harmful apps.

Android
Application [Testing Set] [ValidationSet} { Testing Set]
Dataset

i

Clean the noisy
data

foi

i Action Repetition [
------------------------ 2 Malware Benign

Figure 3 (a) Proposed method

In this paper, I demonstrate the effectiveness of both a permission-based and signature-based
method using two datasets. Researchers construct a wide range of classification approaches
using publicly available labelled data sources to distinguish harmful from security software.
Data about the permissions granted to programmes are saved in one database, while API call
signatures are kept in another. Several trained data mining models have their performance
evaluated and compared using metrics like accuracy and recall. First, we evaluate classification

Advances in Mobile Learning Educational Research @ SyncSci Publishing 573 of 578

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023

Muhammad Shoaib Akhtar

models using the same approach. The most reliable results from each method are compared to
determine which tool is better at finding malware.

Final categorization is accomplished using dynamic analysis based on machine learning,
which has access to the collected dynamic characteristics. Questionable apps are evaluated
and labelled as harmful or safe during this step. Malicious programmes are added to the list of
malicious programmes. In contrast, benign programmes are added to the list, which can be used
as references in the future. (see Figure 4)

[

Unclaimed Feature Vector
Permissions Generation
Feature Statistical i
APK Classifier
Extraction Analysis ‘
Database 7'
Genre Class | Traini
raining 0 BENGN \
Extraction Labels !
0 b - P ision
Extraction and Analysis Training and Classification LEELD

Figure 4 (b) Proposed method

The six components of this study’s framework are depicted in the following figures. A
component reads apk files and translates the code into.xml and.java classes. The second section
is permission, broadcast receivers, and the APIs analysis module. The third module involves
translating the extracted features into a binary vector that may be significant for machine learning
algorithms and representing each app as a single instance with a binary vector of features and
a class label indicating whether the app is benign or dangerous. Finally, we use the binary
vectors from the example applications to train three machine learning algorithms and model the
classifiers. The bought models determine if an app poses any security risks.

4.1 Dataset

Mahindru and Arvind (2008) obtained the data with legal permission. There are 176 rows in
all. Most of these fields are connected to access controls. In what follows, we will look closely
at both the permissions and signatures datasets. After a descriptive analysis has been done to
remove unnecessary information from a dataset and feature selection techniques have been used
to reduce the number of features in the dataset, the dataset is now ready to be processed by a
classification algorithm.

data_1 = pd.read_csv('dataset_1.csv') # dataset_1 is the permissions data

print('The permissions data has {} row and {} columns'.format(data_1.shape[@], data_1.shape[1]))

4.2 Features extraction

Hundreds of thousands of attributes in a dataset are becoming the norm rather than the
exception. In recent years, it has been evident that the resultant machine learning model will
become overfit as the number of features increases. To address this problem, we generate a
smaller subset of features from the whole set; this approach is commonly used to maintain the
same degree of accuracy while reducing the feature set. This study aims to develop a new set
of dynamic and static features by picking the most important ones from the existing set and
removing the ones that are not as important.

4.3 Features selection

After completing feature extraction and uncovering more features, the next stage is feature
selection. Feature selection is essential in selecting features from a pool of newly identified
characteristics to enhance accuracy, simplify the model, and reduce overfitting. Researchers have
employed various feature classification approaches to identify malicious code in the software.
Due to its ability to pick the right attributes needed to build the malware detection models, the
feature rank approach is heavily leveraged in this study.

5 Results and discussions

At the end of the descriptive analysis step, a clean dataset was available for further analysis.
data_1_select = pd.read_csv('dataset_1_select.csv')

The separation between features and classes is required. The sample’s classification as
harmful software is the class variable, while the features are independent qualities that help
make predictions.

Advances in Mobile Learning Educational Research @ SyncSci Publishing 574 of 578

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023

Muhammad Shoaib Akhtar

X
b

data_1_select.loc[:,data_1_select.columns[:-1]]
data_1_select.iloc[:,-1].reset_index(drop=True).astype(int)

The dataset is split into two parts: a training set and a validation set. The training set is used
to fine-tune the models, while the test set is used to assess their efficacy, both of which are
essential in data mining. I pick a random percentage and split the data in two, allocating 70% to
the train and test set.

X_train, X_test, y train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 42)

The recall score is one metric I use when comparing and contrasting models. The reason is
that an efficient risk-mitigation strategy requires a malware detector capable of identifying as
much malware as feasible. The model is run five times, with a new subset of the training set
serving as the validation set in each iteration. Using this strategy, I can calculate the mean recall
score, which is more accurate than the result of a single model run.

scr = ‘recall' # Recall score used mo e ion
model_1r = LogisticRegression(solver="1libli)

model_kn = KNeighborsClassifier(n_neighbors=3

model_rf = RandomForestClassifier()

skf = StratifiedKFold(5) # 5 fold stratified cross alidatio

5.1 KNN

As a first step, we will review the results produced by the kNN classifier. Attempt the model
with k equal to 3. Figure 4 shows the test set confusion matrix and performance statistics.
The model correctly recognized 78% of malware samples from the validation collection. This
section will look at how well the kNN algorithm works and compare its results to those of other
models. (see Figure 5)

Test Confusion Matrix

5000
. B

2000
3
5 3000
p
=
H

2000

1000

Predicted label

Figure 5 KNN result visualize in confusion matrix

5.2 Logistic regression

Validation data is used to assess the performance of Logistic Regression. Figure 5 displays
the confusion matrix and performance indicators for the test set. Logistic regression’s recall
of 77% is similar to kNN’s recall of 78%. This suggests that logistic regression is not the best
model to utilize. (see Figure 6)

Test Confusion Matrix

5000
10
- 4000
D
3 3000
E]
H
2000
1 79 2302
1000

T
0
Predicted label

Figure 6 LR result visualize in confusion matrix

5.3 Random forest

We finally agreed on the Random Forest model as our preferred classifier. Thus, with a recall
score of 79%, the Random Forest model greatly surpasses the KNN model. Unfortunately, there
is no best model for the Permissions data set. Each has a recall rate between 79% and 81%.
Even though the Random Forest model is not much better than the others, it is recommended to
use permissions data to find malware. (see Figure 7)

Advances in Mobile Learning Educational Research @ SyncSci Publishing 575 of 578

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023

Muhammad Shoaib Akhtar

Test Confusion Matrix

5000

4000

3000

Tue label

2000

1000

T T
0 1
Predicted label

Figure 7 RF result visualize in confusion matrix

These are qualities that we also found to be particularly noteworthy in the permissions-
based model. It is safe to assume that an app is malicious if it can access the device’s unique
identifier and the ability to use the Transact API without user intervention. According to the
data presented above, the signatures-based method is superior to the permissions-based method
for identifying malware (KNN=78.43%, LR=77.22%, and RF=78.5%) (Table 3). None of the
models significantly outperformed the others. Both the Random Forest and kNN algorithms
might be helpful in this situation. Figure 7 summarizes the results of testing on both methods
for each model.

Table 3 Classifiers results comparisons

kNN Classifier Logistic Regression Random Forest
Precision 96.97% 94.65% 97.34%
Permissions based Recall 78.43% 77.22% 78.5%
FI -Score 86.72 85.05 86.91

Through the statistical analysis, we can deduce that Random Forest (Presidion 97.34%,
Recall= 78.5%, F1-Score=86.91%) is the optimal model for the authorization strategy. In
contrast, KNN Classifier (Presidion 96.97%, Recall= 78.43%, F1-Score=86.72%) is the sec-
ond optimal model for the permission-based strategy, and Logistic Regression (Presidion
94.65%, Recall= 77.22%, F1-Score=85.05%) is the third optimal model for the permission-
based strategy. We may presume, however, that the Random Forest and kNN Classifier have
comparable performance. Using signature-based characteristics to find malware is better than
the permissions-based method, which has a much lower recall rate.

6 Conclusion

This research aims to use data mining (ML) techniques to determine whether an Android
app is malicious. After testing two approaches, I determined which was the most effective in
correcting the issue. I tried three different supervised classification algorithms and settled on
the best one. When conducting an inquiry, the permission-based strategy yields accurate results.
The Permission-based approach takes advantage of the API Permission mechanisms defined
in the application’s code. A wide range of coding conventions is used for distinct software
projects.

Consequently, signs for telling malicious software from standard software are included in the
code. Meanwhile, the Random Forest and the RF Classifier provide the best performance. The
project scored 97% on both the precision and recall metrics. The effectiveness of this strategy in
identifying malware has been demonstrated at 97%. In conclusion, I developed a methodology
for detecting Android malware, a significant concern for governments worldwide. A system like
this could be used by law enforcement in UK, USA, UAE, France and other places to protect
people from dangerous mobile malware.

Conflicts of interest

The author declares that they have no conflict of interest.

Advances in Mobile Learning Educational Research @ SyncSci Publishing 576 of 578

https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023

Muhammad Shoaib Akhtar

References

Alfalqi, K., Alghamdi, R., & Waqdan, M. (2015). Android platform malware analysis. International
Journal of Advanced Computer Science and Applications (IJACSA), 6, 140-146.
https://doi.org/10.14569/IJACSA.2015.060120

Algahtani, E. J., Zagrouba, R., & Almuhaideb, A. (2019). A Survey on Android Malware Detection
Techniques Using Machine Learning Algorithms. In 2019 Sixth International Conference on Software
Defined Systems (SDS) (pp. 110-117). IEEE.
https://doi.org/10.1109/SDS.2019.8768729

Altaher, A. (2016). Classification of android malware applications using feature selection and classifica-
tion algorithms. VAWKUM Transactions on Computer Sciences, 10(1), 1-5.
https://doi.org/10.21015/vtcs.v10i1.412

Anderson, B., Storlie, C., & Lane, T. (2012). Improving malware classification: bridging the static/dy-
namic gap. In Proceedings of the Sth ACM workshop on Security and artificial intelligence (pp. 3-14).
https://doi.org/10.1145/2381896.2381900

Arshad, S., Shah, M. A, Khan, A., & Ahmed, M. (2016). Android malware detection & protection: a
survey. International Journal of Advanced Computer Science and Applications, 7(2).
https://doi.org/10.14569/IJACSA.2016.070262

Arshad, S., Shah, M. A., Wahid, A., Mehmood, A., Song, H., & Yu, H. (2018). SAMADroid: a novel
3-level hybrid malware detection model for android operating system. IEEE Access, 6, 4321-4339.
https://doi.org/10.1109/ACCESS.2018.2792941

Barsiya, T. K., Gyanchandani, M., & Wadhwani, B. (20016). Android malware analysis: A survey.
International Journal of Control, Automation, Communication and Systems (IICACS), 1(1), 35-42.
https://doi.org/10.5121/ijcacs.2016.1105

Chang, W. L., Sun, H. M., & Wu, W. (2016). An android behavior-based malware detection method
using machine learning. In 2016 IEEE International conference on signal processing, communications
and computing (ICSPCC) (pp. 1-4). IEEE.
https://doi.org/10.1109/ICSPCC.2016.7753624

Damshenas, M., Dehghantanha, A., & Mahmoud, R. (2013). A survey on malware propagation, analysis,
and detection. International Journal of Cyber-Security and Digital Forensics, 2(4), 10-30.

Fatima, A., Maurya, R., Dutta, M. K., Burget, R., & Masek, J. (2019). Android malware detection using
genetic algorithm based optimized feature selection and machine learning. In 2019 42nd International
conference on telecommunications and signal processing (TSP) (pp. 220-223), IEEE.
https://doi.org/10.1109/TSP.2019.8769039

Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A. (2015). A review on feature selection in
mobile malware detection. Digital investigation, 13, 22-37.
https://doi.org/10.1016/j.diin.2015.02.001

Firdaus, A., Anuar, N. B, Karim, A., & Razak, M. F. A. (2018). Discovering optimal features using static
analysis and a genetic search based method for Android malware detection. Frontiers of Information
Technology & Electronic Engineering, 19(6), 712-736.
https://doi.org/10.1631/FITEE.1601491

Firdausi, I., Erwin, A., & Nugroho, A. S. (2010, December). Analysis of machine learning techniques
used in behavior-based malware detection. In 2010 second international conference on advances in
computing, control, and telecommunication technologies (pp. 201-203). IEEE.
https://doi.org/10.1109/ACT.2010.33

Hahn, S., Protsenko, M., & Miiller, T. (2016). Comparative evaluation of machine learning-based
malware detection on android. Sicherheit 2016-Sicherheit, Schutz und Zuverldssigkeit.

Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A multimodal deep learning method for
android malware detection using various features. IEEE Transactions on Information Forensics and
Security, 14(3), 773-788.
https://doi.org/10.1109/TIFS.2018.2866319

Kumaran, M., & Li, W. (2016). Lightweight malware detection based on machine learning algorithms
and the android manifest file. In 2016 IEEE MIT Undergraduate Research Technology Conference
(URTC) (pp. 1-3). IEEE.
https://doi.org/10.1109/URTC.2016.8284090

Leeds, M., & Atkison, T. (2016). Preliminary Results of Applying Machine Learning Algorithms to
Android Malware Detection. 2016 International Conference on Computational Science and Computa-
tional Intelligence (CSCI), 2016, pp. 1070-1073.
https://doi.org/10.1109/CSCI1.2016.0204

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018). Significant permission identification
for machine-learning-based android malware detection. IEEE Transactions on Industrial Informatics,
14(7), 3216-3225.
https://doi.org/10.1109/T11.2017.2789219

Martin, A., Fuentes-Hurtado, F., Naranjo, V., & Camacho, D. (2017). Evolving deep neural networks
architectures for android malware classification. In 2017 IEEE Congress on Evolutionary Computation
(CEC) (pp. 1659-1666). IEEE.
https://doi.org/10.1109/CEC.2017.7969501

Sawle, P. D., & Gadicha, A. B. (2014). Analysis of malware detection techniques in android. International
Journal of Computer Science and Mobile Computing, 3(3), 176-182.

Advances in Mobile Learning Educational Research @ SyncSci Publishing 577 of 578

https://doi.org/10.14569/IJACSA.2015.060120
https://doi.org/10.1109/SDS.2019.8768729
https://doi.org/10.21015/vtcs.v10i1.412
https://doi.org/10.1145/2381896.2381900
https://doi.org/10.14569/IJACSA.2016.070262
https://doi.org/10.1109/ACCESS.2018.2792941
https://doi.org/10.5121/ijcacs.2016.1105
https://doi.org/10.1109/ICSPCC.2016.7753624
https://doi.org/10.1109/TSP.2019.8769039
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1631/FITEE.1601491
https://doi.org/10.1109/ACT.2010.33
https://doi.org/10.1109/TIFS.2018.2866319
https://doi.org/10.1109/URTC.2016.8284090
https://doi.org/10.1109/CSCI.2016.0204
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1109/CEC.2017.7969501
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 3 Issue 1, 2023

Muhammad Shoaib Akhtar

Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). Madam: Effective and efficient behavior-
based android malware detection and prevention. IEEE Transactions on Dependable and Secure
Computing, 15(1), 83-97.
https://doi.org/10.1109/TDSC.2016.2536605

Schultz, M. G., Eskin, E., Zadok, F., & Stolfo, S. J. (2000). Data mining methods for detection of new
malicious executables. In Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001
(pp. 38-49). IEEE.
https://doi.org/10.1109/SECPRI1.2001.924286

Siddiqui, M., Wang, M. C., & Lee, J. (2009). Detecting internet worms using data mining techniques.
Journal of Systemics, Cybernetics and Informatics, 6(6), 48-53.

Soni, H., Arora, P., & Rajeswari, D. (2020). Malicious Application Detection in Android using Machine
Learning. In 2020 International Conference on Communication and Signal Processing (ICCSP) (pp.
0846-0848). IEEE.
https://doi.org/10.1109/ICCSP48568.2020.9182170

Su, X., Zhang, D., Li, W., & Zhao, K. (2016). A deep learning approach to android malware feature
learning and detection. In 2016 IEEE Trustcom/BigDataSE/ISPA (pp. 244-251). IEEE.
https://doi.org/10.1109/TrustCom.2016.0070

Tahtaci, B., & Canbay, B. (2020). Android Malware Detection Using Machine Learning. 2020 Innovations
in Intelligent Systems and Applications Conference (ASYU), 1-6.
https://doi.org/10.1109/ASYUS50717.2020.9259834

Tarar, N., Sharma, S., & Krishna, C. R. (2018). Analysis and Classification of Android Malware using
Machine Learning Algorithms. In 2018 3rd International Conference on Inventive Computation
Technologies (ICICT) (pp. 738-743). IEEE.
https://doi.org/10.1109/ICICT43934.2018.9034337

Urooj, B., Shah, M. A, Maple, C., Abbasi, M. K., & Riasat, S. (2022). Malware detection: a framework
for reverse engineered android applications through machine learning algorithms. IEEE Access, 10,
89031-89050.
https://doi.org/10.1109/ACCESS.2022.3149053

Utku, A., & Dogru, 1. A. (2017). Malware detection system based on machine learning methods for
Android operating systems. In 2017 25th Signal Processing and Communications Applications
Conference (SIU) (pp. 1-4). IEEE.
https://doi.org/10.1109/S1U.2017.796023 1

Vanyjire, S., & Lakshmi, M. (2021). Behavior-Based Malware Detection System Approach For Mobile
Security Using Machine Learning. In 2021 International Conference on Artificial Intelligence and
Machine Vision (AIMV) (pp. 1-4). IEEE.
https://doi.org/10.1109/AIMV53313.2021.9671009

Varma, P. R. K., Kumari, V. V., & Kumar, S. S. (2015). A novel rough set attribute reduction based on
ant colony optimisation. International Journal of Intelligent systems Technologies and applications,
14(3-4), 330-353.
https://doi.org/10.1504/IJISTA.2015.074333

Varma, P. R. K., Raj, K. P,, & Raju, K. S. (2017). Android mobile security by detecting and classification
of malware based on permissions using machine learning algorithms. In 2017 International Conference
on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 294-299). IEEE.
https://doi.org/10.1109/I-SMAC.2017.8058358

Westyarian, W., Rosmansyah, Y., & Dabarsyah, B. (2015). Malware detection on Android smartphones
using API class and machine learning. 2015 International Conference on Electrical Engineering and
Informatics (ICEEI), 294-297.
https://doi.org/10.1109/ICEEL2015.7352513

Zhao, K., Zhang, D., Su, X., & Li, W. (2015). Fest: A feature extraction and selection tool for Android
malware detection. In 2015 IEEE symposium on computers and communication (ISCC) (pp. 714-720).
IEEE.
https://doi.org/10.1109/I1SCC.2015.7405598

Advances in Mobile Learning Educational Research @ SyncSci Publishing 578 of 578

https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1109/ICCSP48568.2020.9182170
https://doi.org/10.1109/TrustCom.2016.0070
https://doi.org/10.1109/ASYU50717.2020.9259834
https://doi.org/10.1109/ICICT43934.2018.9034337
https://doi.org/10.1109/ACCESS.2022.3149053
https://doi.org/10.1109/SIU.2017.7960231
https://doi.org/10.1109/AIMV53313.2021.9671009
https://doi.org/10.1504/IJISTA.2015.074333
https://doi.org/10.1109/I-SMAC.2017.8058358
https://doi.org/10.1109/ICEEI.2015.7352513
https://doi.org/10.1109/ISCC.2015.7405598
https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

	Introduction
	Literature review
	Research problem
	Methodology
	Dataset
	Features extraction
	Features selection

	Results and discussions
	KNN
	Logistic regression
	Random forest

	Conclusion

