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Abstract: With the rapid growth of mobile learning platforms, short educational videos have
emerged as a critical resource for learners. However, manually generating concise and peda-
gogically meaningful titles for these videos remains a time-consuming challenge. To address
this issue, this study proposes a deep learning framework designed for automated video title
generation in educational contexts. The framework integrates Convolutional Neural Networks
(CNNs), Long Short-Term Memory (LSTM) networks, and natural language processing (NLP)
techniques, with explicit awareness of pedagogical relevance. The proposed approach operates
in three stages: 1) extracting key frames from input videos using an optimized shot detection
algorithm, 2) analyzing these frames with CNN models to derive semantic representations
of visual content, and 3) processing the representations through an LSTM network to gen-
erate descriptive text. The output is further refined using the TextRank algorithm to ensure
conciseness and contextual coherence. Experimental results demonstrate that our framework
effectively generates high-quality video titles that are both educationally informative and con-
textually engaging, outperforming baseline methods in alignment with curriculum standards
and learner-centric search intent.

Keywords: mobile learning, deep learning, convolutional neural networks, natural language
processing, video captioning

1 Introduction

1.1 Background and Motivation

The rapid expansion of short video platforms has led to an exponential increase in video
content. According to the “China Online Audio-Visual Development Research Report (2024)”,
as of December 2023, China had over 1.074 billion online audio-visual users, with short videos
accounting for the highest user engagement. The immense volume of video uploads necessitates
efficient methods for categorization, recommendation, and compliance verification. Video
titles play a pivotal role in these processes by summarizing content and attracting viewer
attention (Zhang et al., 2014; Jiang & Zhang, 2003). However, manually crafting titles for the
overwhelming influx of videos is both labor-intensive and inefficient. This challenge highlights
the need for automated methods that leverage deep learning techniques to generate high-quality
short video titles.

1.2 Related Work

Traditional educational video title generation methods relied on handcrafted features and
predefined templates, which lacked adaptability and scalability (Uygun, 2024). With the advent
of deep learning, encoder-decoder frameworks leveraging sequence-to-sequence learning have
become dominant (Ladias et al., 2021). Recent studies (Venugopalan et al., 2015; Wilson et al.,
2023; Shu et al., 2019) have explored the use of CNNs for visual feature extraction and recurrent
neural networks (RNNs), particularly LSTM architectures, for text generation. Additionally,
NLP algorithms such as TextRank have been employed to refine generated text by identifying
the most relevant phrases. However, challenges remain in optimizing feature fusion, handling
multimodal data, and ensuring linguistic coherence in generated titles.
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1.3 Research Objectives

This study aims to develop an automated video title generation system that:

(1) Video Reading and Keyframe Extraction: Utilize OpenCV (Suarez et al., 2014) to read
video files and decompose the video content into individual shots through shot segmentation.
Subsequently, within each shot, content keyframes capturing the core information of the shot
are further extracted.

(2) Image Caption Generation: Combine Convolutional Neural Networks (CNN) and Long
Short-Term Memory networks (LSTM) (Neil et al., 2016) to address image annotation and
sentence retrieval tasks. First, high-level semantic features are extracted from input images using
CNN. These features are then fed into an LSTM to iteratively predict the next most probable
word, ultimately forming a descriptive text for the image.

(3) Text Summarization: Generate a text summary of the video content using the TextRank
algorithm (Mihalcea & Tarau, 2004). Sentences are converted into term frequency vectors,
and the cosine similarity between these vectors is calculated to determine sentence similarity
(Goldberg & Levy, 2014). The importance of each sentence in the text is then evaluated based
on its contextual relevance.

(4) Post-processing with NLP: Apply natural language processing (NLP) techniques to refine
the generated text summary. This includes rewriting the summary into a concise and engaging
short video title that effectively highlights the video’s content.

2 Frameworks and Tools

2.1 Deep Learning Framework: PyTorch

PyTorch (Imambi et al., 2021), an open-source deep learning framework, was utilized due
to its dynamic computation graph and ease of debugging. Its flexible architecture enables
efficient model training and inference on GPUs. PyTorch has become a leading deep learning
framework due to its exceptional computational performance, robust functionality, and broad
applicability. These attributes have garnered it substantial acclaim and widespread adoption
across both academic and industrial domains.

2.2 Computer Vision Library: OpenCV

OpenCV (Bradski & Kaehler, 2000) facilitates video processing tasks, including frame
extraction, object detection, and image enhancement. Its optimized performance is well-suited
for real-time applications. OpenCV is architected with a principal emphasis on computational
efficiency, a design imperative that has solidified its dominance in real-time vision systems. The
framework’s inherent scalability across multi-core architectures, coupled with its streamlined
API, positions it as a foundational tool for deploying performant and user-friendly computer
vision solutions in both academic and industrial settings.

2.3 NLP Toolkit: HanLLP

HanLP (Liu et al., 2021) is a multi-language NLP toolkit supporting tokenization, part-of-
speech tagging, dependency parsing, and keyword extraction. It was used to preprocess and
refine generated text. HanLLP’s architecture is grounded in the integration of the most extensive
multilingual textual resources globally, enabling unified processing of 10 core NLP tasks
spanning 104 languages — from morphologically rich languages like Russian to logographic
systems such as Chinese. Its unified pipeline systematically addresses tokenization, POS tagging,
NER, syntactic parsing (dependency and constituency), semantic role labeling, and abstract
meaning representation, establishing an empirically robust framework for cross-linguistic NLP
research and industrial deployment.

3 Methodology

3.1 Key Frame Extraction

A three-frame difference method (Khosrovian et al., 2008) was employed to identify signifi-
cant changes in consecutive frames, effectively capturing scene transitions and key moments
(Figure 1). Let frn41, fn, and f,,—1 denote the images of the (n + 1)-th, n-th, and (n — 1)-th
frames in a video sequence, respectively.

The grayscale values of the corresponding pixels in these three frames are denoted as
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frt+1(z,y), fu(z,y), and frn_1(x,y). The difference images D, and D, are obtained as
follows:

D’:L(x7y) = |f"+1(x7y) - fn(x7y)| N |fn(1’7 y) - fn—l(x7y)| (1)
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Figure 1 Key Frame Extraction Process

3.2 Feature Extraction Using CNN

A ResNet-based CNN model (Chang et al., 2016) was employed to extract high-level semantic
features from key frames. The final fully connected layer was replaced with an identity mapping
to retain essential feature representations. The high-level semantic features of input images are
extracted through Convolutional Neural Networks (CNNNs), which are subsequently fed into
Long Short-Term Memory (LSTM) networks to iteratively predict the next most probable words,
thereby generating image captions. The loss function of the CNN is designed in a sequential
manner to ensure linguistic alignment between the generated words and expected descriptions.

In our experimental framework, the ResNet model (Zhang & Woodland, 2015) serves as
the foundational architecture for extracting image semantics. The residual structure of ResNet
significantly accelerates neural network training convergence while substantially improving
model accuracy. Furthermore, ResNet addresses critical limitations inherent in conventional
CNN architectures, particularly the gradient explosion and degradation issues that emerge when
stacking excessive numbers of deep network layers. (Figure 2)
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Figure 2 Schematic Diagram of the 34-Layer ResNet Model (Wang et al., 2012)

3.3 Text Generation Using LSTM

The extracted visual features were input to an LSTM network, which sequentially generated
descriptive text. The LSTM model was trained on the AI Challenger dataset, which contains
300,000 images with corresponding textual descriptions. The experiments in this study focus on
video-to-text summarization. To ensure conciseness and relevance, precision-oriented output
control mechanisms are implemented, as not all LSTM-generated intermediate results are
required for this task. (Figure 3)

Input Video Convolutional Net Recurrent Net Output
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LSTM —* LS'i'M — boy
LS‘I1’M — LSIM —is
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LSTM |—| LSTM |— golf
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Figure 3 Workflow Diagram for Video Content Description Generation

3.4 Text Summarization Using TextRank

The generated text was further refined using the TextRank algorithm, which constructs a
sentence similarity graph and ranks sentences based on importance scores. This step ensures

Advances in Mobile Learning Educational Research @ SyncSci Publishing 1346 of 1355


https://www.syncsci.com/journal/AMLER
https://www.syncsci.com

Volume 5 Issue 1, 2025 Zheng Gong

that the final video title is both concise and informative. In this study, two distinct methods were
implemented for TextRank-based text processing.

(1) Term Frequency Vector Method

Sentences are converted into term frequency vectors, with cosine similarity between vectors
serving as inter-sentence similarity (following textrank4zh’s implementation). textrank4zh
calculates keywords using N-grams + TextRank, where word adjacency determines edge con-
nections between lexical nodes. This model assumes that physical proximity linearly correlates
with semantic relevance while discounting long-range contextual dependencies. Such a premise
may be suboptimal when distantly positioned words exhibit stronger semantic associations.

(2) Term Vector Averaging Method

By encoding semantic/syntactic relationships in multidimensional space through term fre-
quency vectors, word2vec embeddings are applied for sentence similarity computation. (Figure
4 and 5)
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Figure 4 Schematic Diagram of the PageRank Algorithm (Langville & Meyer, 2004)

Figure 5 Candidate Abstract

For sentences A=["you’,’and’,’me’] and B=["good’,’word’, python’]: Generate word vectors:
vl, v2, v3 for A — compute mean vector V,(avg) = (vl + v2 + v3)/3 Repeat for B to obtain
Vy(avg) Calculate cosine similarity between V,(avg) and Vj,(avg) as the sentence similarity
metric. This approach preserves contextual semantics while mitigating noise from redundant
lexical features.

4 Results and Analysis
4.1 Key Frame Extraction Analysis

In this experiment, the video stream is read using OpenCV’s cv2 library. The three-frame
difference method is employed: 1) Compute first-order and second-order histogram difference
metrics between consecutive frames. 2) Determine shot boundaries by comparing these met-
rics against predefined thresholds. 3) Record frame indices containing identified scene cuts.
The implementation supports large video files through streaming processing, where data is
incrementally loaded into memory to optimize resource utilization.

4.1.1 Implementation of Functions

In the ShortDetect.py script, a shot_detect class is defined, systematically modularizing the
key frame extraction process and encapsulating it within dedicated functions. Furthermore,
to optimize performance, the experiment implements distinct interfaces for short and long
videos. The program dynamically selects the appropriate interface based on the video’s duration,
ensuring efficient memory allocation and enhancing processing speed. The functionalities of
key functions are detailed showed in Table 1.
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Table 1 ShortDetect.py function description

Function Name Functional Description

Calculate the histogram and normalize, flatten it, and return a 1D
get_normed_hist(self, frame) array with the number of elements equal to hist_size * the number of
channels.

Calculate the number of frames between shots and the minimum

merge.short_shots(self) number of frames between shots.

get_key_frames(video_path) Extract key frames from the video file.

run_detect(self,
video_path=None,
batch_size=100)

Read the video file frame by frame in a streaming manner into
memory. This interface is suitable for processing long videos.

Load all frame data of the video file into memory. This interface is

run(self, video-path=None) suitable for processing short videos.

test(in-dir, out_dir) Used for testing programs and debugging.

Due to the wide variation in video resolutions, frames are standardized to 256 x 256 through
preprocessing for efficient processing. Use the following code to implement the resizing:

cap = cv2.VideoCapture(self.video_path)
IMG_WIDTH = int(cap.get(cv2.CAP_ PROP_ FRAME WIDTH)) # {45 7
IMG_HEIGHT= int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # ¥l i
if IMG_WIDTH > IMG_HEIGHT:

IMG_SIZE = (256, int(256.0 * float(IMG_HEIGHT) / float(IMG_WIDTH)))
else:

IMG_SIZE = (int(256.0 * float(IMG_WIDTH) / float(IMG_HEIGHT)), 256)

The core algorithm for video keyframe extraction is the three-frame difference method, which
can be implemented in three steps:

(1) Calculate the histogram of a video frame, normalize and flatten it to generate a 1D array.

(2) Compute the difference image between adjacent frames by calculating the Manhattan
distance between two 1D arrays.

(3) Determine shot transitions (keyframes) by calculating the first-order difference and
second-order difference operators of the adjacent difference images, then apply threshold-based
detection. Example code:

frame = cv2.resize(frame, IMG_SIZE, interpolation=cv2.INTER CUBIC) # AR ik H
ifi==1: # JCRAERT 2
frame prev_2 = frame
elifi==2: # CFRAAA 1 Wi
frame prev_1 = frame
else: # M 3 WUFAAAIET
hist prev_1 = self.get normed_hist(frame prev_1)
hist prev_2 = self.get normed_hist(frame prev_2)
hist_cur = self.get normed_hist(frame)
# T hist 0B 0AEE R
score_pre = cityblock(hist _prev_1, hist prev_2)
score_cur = cityblock(hist_cur, hist_prev_1)
# B, ISy B R
if (score_cur >= threshold) \
and (abs(score_cur - score_pre) >= threshold * 0.5):
key_frames.append(frame) # 103 M
# FFTRTPI
frame prev 2 = frame prev 1 # FEFIERT 1 M
frame prev 1 =frame # TR 2 M

4.1.2 Functional Testing

Call the test(in_dir, out_dir) function from the ShortDetect.py script to test the keyframe
extraction functionality. The test video is a 7-second clip excerpted from a specific NBA game
recording. The test results showed in Figure 6.
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ORIGIN_SIZE: (720, 720)
IMG_SIZE: (256,

FRAME_NUM: 454

max diff: 2.474
[(0, 84), (84,

Figure 6 Keyframe Extraction Test Results

The test results demonstrate that: 1) Original video resolution: 720 x 720, preprocessed to
a standardized 2) 256 x 256. Total frames: 454. Second-order difference operator between
adjacent frame histograms: Maximum value: 2.4743853, Minimum value: 0.03925124. This
indicates at least one shot transition (i.e., a minimum of two keyframes) in the video. 3) The
final output provides a merged video segment list (e.g., (0, 84) denotes frames O to 84 as a
continuous segment), where the interval endpoints correspond to keyframe IDs. Subsequent
experimental steps will operate on these keyframes.

4.2 Visual Feature Extraction Performance

This study integrates deep convolutional neural networks (CNNs) and deep recurrent neural
networks (RNN5s) to address image captioning and sentence retrieval tasks. The CNN extracts
high-level semantic features from input images, which are then fed into a Long Short-Term
Memory (LSTM) network to iteratively predict the next most probable word, thereby generating
image descriptions. The model is trained by progressively optimizing the neural network’s loss
function to align the generated words with the target descriptions.

4.2.1 Dataset

The training data for the image captioning model is sourced from the 2017 AI Challenger
dataset (Wu et al., 2019), where each image is annotated with five Chinese descriptive sentences.
The dataset contains 300,000 images and 1.5 million Chinese descriptions. (Figure 7)

Figure 7 2017 Al Challenger dataset sample

4.2.2 Data Training Process

In this study, ResNet V1 50 is employed as the backbone model for extracting high-level
semantic features from images. A critical modification must be made to the original ResNet V1
50 architecture: Remove the final fully connected (FC) layer of the network, or Replace the FC
layer with an identity mapping (i.e., skip the layer). The FC layer is designed to map features
from the latent space to the sample space, serving as a feature fusion mechanism for classification
tasks. However, since our objective is to obtain discriminative feature representations rather than
classification probabilities, retaining the FC layer would introduce unnecessary dimensionality
reduction and task-specific biases.

resnet50 = tv.models.resnet50(True).eval() #H resnetS0 F&HL {5 FF 1k
del resnet50.fc
resnet50.fc = lambda x: x  #HF AR B & oA 1E SR

In the initial stage of training, the parameters of the ResNet V1 50 model remain fixed,
serving solely as a static image encoding function. A trainable layer is appended to the end
of the ResNet V1 50 model to transform image embedding vectors into the word embedding
vector space. During this phase, the model optimizes the parameters for word embeddings, the
trainable layers of ResNet V1 50, and the LSTM. In the second stage, all parameters — including
those of ResNet V1 50 — are fine-tuned to optimize the entire encoding and decoding framework.

4.2.3 Text Generation Process

For a given trained model and image, the beam search strategy is employed to generate a
natural language description of the image. The description is generated word by word, where at
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each step ¢, it relies on the already generated sentence set of length 7-7 to derive a new set of
sentences of length ¢. In each step, only the top k candidates are retained, where k is the beam
width, and experiments have shown optimal performance when k = 3.

4.2.4 Model testing

The trained model is evaluated using the img2txz.py script, which processes all images from
Test Set A to generate corresponding Chinese captions. Figure 8 shows the example test results.

¥ o " " ey : ; N — e
TN NIEE LA B AL AT —REANTEM LAk b TR AR METE R L
Figure 8 Image Captioning Model Test Result Samples

As illustrated in Figure 8, our trained model demonstrates the ability to identify the primary
subjects within images, match them with corresponding actions, and synthesize these elements
to generate textual descriptions of the images. Overall test results indicate that the model
demonstrates a high accuracy rate in our study. However, as a Chinese language model,
it occasionally exhibits issues such as inconsistent word order and redundant article usage.
Since these image captions serve as input for the downstream text summarization module, the
aforementioned limitations have minimal impact on the extraction of textual summaries. Based
on this analysis, it is concluded that the model meets the required standards for deployment.

4.3 Word2Vec Model

This research proposes an integrative framework that synergizes the Word2Vec embedding
architecture with the TextRank graph-based ranking algorithm for automated text summarization
generation. Within this architecture, the Word2Vec model serves to encode discrete Chinese
lexical units into distributed vector representations, capturing semantic relationships through
neural language modeling. Concurrently, the TextRank algorithm implements a PageRank-
inspired mechanism to computationally identify salient sentences within short-form video
caption datasets, subsequently extracting these as core summary components through iterative
voting processes.

4.3.1 Language Corpus Preprocessing

The Word2Vec model in this experiment was trained using the ChineseWiki corpus (Chinese
Wikipedia Corpus) (Wang et al., 2012), with main text extracted through Wikipedia Extractor.

ChineseWiki is a collaboratively edited Chinese encyclopedia based on the wiki system,
enabling broad public contributions. It contains over 990,000 Chinese entries covering most
commonly used vocabulary. Wikipedia Extractor is a Python-implemented command-line tool
designed to extract clean text from Wikipedia database dumps. It processes raw Wikipedia
documents by removing wiki-specific syntax and formatting, outputting organized text files.

Our method was compared with existing title generation models. Experimental results
demonstrate that our approach achieves significantly better performance than traditional rule-
based methods in both coherence and informativeness.

PS git clone https:/github.com/attardi/wikiextractor.git wikiextractor

PS wikiextractor/WikiExtractor.py -b 1024M -o zhwiki_extracted zhwiki-latest-pages-articles.xml.bz2

The above commands convert the ChineseWiki corpus into plain text. The -b 1024 MB
option specifies a maximum file size of 1024 MB. In this experiment, the extracted plain text is
approximately 1060 MB, so it is divided into two files: wiki_00 (1024 MB) and wiki_01 (36.7
MB). Initial experiments can be conducted on the smaller file before applying them to the larger
one.

When using Wikipedia Extractor, certain preprocessing issues need to be considered that
the tool removes many spaces and content within brackets, which may impact subsequent data
analysis and model training. Wikipedia’s Chinese dataset contains a mix of Simplified and
Traditional Chinese, adding to the complexity of data processing. To ensure data accuracy
and consistency, the extracted text must undergo thorough preprocessing before being used for
model training.
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(1) Traditional-to-Simplified Chinese Conversion with OpenCC

OpenCC (Open Chinese Convert) is an open-source project for Traditional-Simplified Chinese
conversion, known for its accuracy and efficiency. OpenCC carefully distinguishes between
one-to-many character mappings, ensuring accurate conversion. To convert text from Traditional
to Simplified Chinese, use the following PowerShell commands:

PS opence.py -1 wiki 00 -0 zh wiki 00 -c zht2zhs.ini
PS opence.py -i wiki_01 -0 zh_wiki_01 -¢ zht2zhs.ini

(2) Text Cleaning with filter_ wiki.py

The filter_— wiki.py script cleans the text by replacing special symbols with quotation marks
and removing empty brackets. Example code:

for line in file:

pl =re.compile(" () ") line = p1l.sub(", line)
p2 = re.compile(" () ") line = p2.sub(", line)
p3 = re.compile(’ [") line = p3.sub(", line)
p4 = re.compile('] ") line = p4.sub(", line)

(3) Tokenization with Jieba

The cut2words.py script uses Jieba, an open-source Chinese segmentation tool, to tokenize
the text. This step converts continuous sequences of Chinese characters into meaningful words,
providing a foundation for further text processing and analysis.

4.3.2 Model Training

The Gensim (Khosrovian et al., 2008) library is used to train the Word2Vec model. Gensim
is a powerful Python library designed for processing large-scale text data, extracting document
topics, and measuring text similarity efficiently.

The train_-word2vec.py script is used for training, with the following sample code:

sentences = word2vec.LineSentence(in_file)
model = word2vec.Word2Vec(sentences, size=200, min_count=5, workers=8)

model.save(out_file)

Three key parameters are used in training: 1) size: Determines the number of dimensions for
word vectors (200 in this study); 2) min_count: Specifies the minimum frequency for a word
to be included (set to 5 to filter out rare words); 3) workers: Controls parallel processing for
training efficiency (set to 8 to speed up training). After training, the output includes: 1) The
trained Word2Vec model; 2) Two word vector files.

[[-2.3125713 -1.6304954 -2.6447072 ...-0.7691004  0.21551 -0.6055662 ]
[-1.2669644 -0.36074203 -2.2054565 ... -0.687957 0.80676734  -2.0088034 ]
[-3.4282568 -1.6821556 -1.8597708 ...-1.187608 0.20196667  -1.7720966 ]

[0.04939042 0.02647006 -0.05875821 ... 0.01814336 0.06559797  -0.07578522]
[0.01686497 -0.03859647 -0.03823611 ... -0.03614297  0.09572794 0.00625494]
[0.01264876 0.01830564 0.00566043 ... 0.02357153-0.0191332 0.00460972]]

4.3.3 Model Testing

The w2v_test.py script evaluates the model’s performance, including: 1) Training time; 2)
Model size; 3) Chinese word similarity tests. Example test code:

print(model.total train_ time)
print(model.wv)
print(model.wv.log_accuracy)
print(model.wv.similarity('[E A", 3E5))
print(model.wv.similarity( T ER', FEBR"))
print(model.wv.similarity("H [H',' S [H'"))

print(model.wv.most_similar("7"))

The results demonstrate that the model correctly calculates word similarity (values range
from O to 1). The most_similar() function accurately finds related words. Test results:
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956.8591299243604
<function KeyedVectors.log_accuracy at 0x000002A22ECCEA60>

0.1451199

0.6496723

0.4358243

[, 0.7935165762901306), (' fit', 0.765432596206665), (‘5 1, 0.7173890471458435),

(47, 0.7110925912857056), (/IMA', 0.6777244806289673), ('M51,0.6770710349082947), (T, 0.6723482608795166),
(BT, 0.6706522703170776), (YA, 0.6651118397712708), (', 0.6621549129486084)]

4.4 TextRank Algorithm Design

This experiment implements the TextRank algorithm based on the Word2Vec model, using
two methods to compute sentence similarity.

4.4.1 Algorithm Modularization

In Table 2, the Word2VecTextRank.py script divides the TextRank process into several modules,
with key functions.

Table 2 Word2vectTextRank.py Function Description

Function Name Description

sentences_similarity(sents_1, sents_2) Computes sentence similarity
cosine_similarity(vecl, vec2) Computes cosine similarity between vectors
create_graph(word_sent) Generates a similarity graph from sentence lists
compute_similarity_by_avg(sents_1, sents_2) Computes average word vector similarity
calculate_score(weight_graph, scores, i) Calculates sentence importance score
weight_sentences_rank() Returns ranked sentence scores

diff(scores, old_scores) Judge the changes

summarize(text, n) Extracts top n most important sentences

By running Word2VecTextRank.py, the algorithm extracts the most important sentence as the
short video title.

4.4.2 Algorithm Testing

The Word2vectTextRank.py script was executed using a web-captured 780-character intro-
duction text of Beijing Institute of Technology as test input. The implementation first invokes
summarize(text, 3) to extract the three most important sentences, followed by summarize(text,
1) to output the single highest-ranked sentence.

with open("text 1.txt", "r", encoding="ut{-8') as txt file:
text = txt_file.read().replace("\n', ")
print(summarize(text, 3))

print(summarize(text, 1))

Figure 9 shows the test results:

Test result shows that the algorithm successfully identifies the most important sentence.
However, the extracted sentence exceeds 50 characters, making it too long for a short video title.
A post-processing step is needed to shorten the summary for better usability.
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4.5 Text Summary Post-Processing

To address the issue of excessive text length in summaries, this study proposes a solution.
In order to ensure that the generated short video titles are concise and aligned with the video
content, key sentences describing the video content are first extracted. From these sentences,
we select the most significant nouns, verbs, and place names based on their weight and combine
them to form the final short video title.

4.5.1 Part-of-Speech Analysis

To implement post-processing of the text summary, we first need to perform word seg-
mentation and part-of-speech analysis on the key sentences. This process is carried out us-
ing the HanLP natural language processing toolkit (Yan, 2022), specifically the interface
(HanLP.parse(sentence, tasks=‘pos/863”).pretty_print()). Here, “863” refers to a national stan-
dard established under the “863 Program” and adopted by the National Language Committee’s
corpus. The returned result is a new sentence that has undergone word segmentation and
part-of-speech tagging.

A sample test result is as follows:

JEFERMt , /w dbE/ms B T/m K¥/m Lhp Fi/a M 4 5180y 2R/m Fl/m Fila iEn RE
o, w BN SBREM BEm Hia [Fdrm o fw B by #EE Y w Wa —iG w B M o iw

The test results demonstrate that the 863 segmentation standard used in this study can
accurately analyze the part-of-speech of each word in a sentence, which greatly contributes to
summarizing short video titles.

4.5.2 Keyword Extraction

Next, keyword analysis is performed on the sentence, along with the calculation of the impor-
tance of each word. By using HanLP’s keyword extraction function (HanLP.keyphrase_extraction
(sentence)).

A sample test result is as follows:

£ 0.9384506940841675, L ETEL TK5 0.9113494157791138, ' [ 4 15 4 77:0.6882065534591675, "W —ifi™:
0.6582499742507935, ' i fr 5 " 0.4676216244697571, i f': 0.418093 14489364624, 'k [H £ 141':0.3577626347541809, ‘I 4
0.3439931273460388, '—ifi": 0.23132982850074768, "H #%':0.20067650079727173}

The test results show that a word’s importance is related to its position and structure in
the sentence. Words appearing earlier tend to have higher importance. Additionally, phrases
generally have a higher weight than the individual words that compose them.

4.5.3 Title Summarization

Using the part-of-speech tagging results and the importance rankings, we can generate a
summary of the key sentence to serve as the short video title. In this study, the noun with the
highest importance in the key sentence is selected as the subject of the title, the most important
verb is used as the predicate, and two other highly ranked nouns are used to describe the subject.
The title follows the structure:

“Subject: Description 1 + Predicate + Description 2”

By running the post_process.py script, the conversion from text summaries of short video
content to short video titles can be achieved.

A sample test result is as follows:
BT RS RREN RS R
The test results indicate that the generated titles are within 20 characters, meeting the
requirement for conciseness. Additionally, the keyword analysis method used in this study has a
high accuracy rate, successfully identifying the main entity of the text summary and capturing

its core content. In conclusion, the results obtained from this study align with the requirements
for short video titles.

5 Conclusion

This paper implements the automatic generation of short video titles, detailing the entire
process from theoretical research to experimental design. The main innovation of this work lies
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in integrating part-of-speech analysis and keyword extraction techniques in natural language
processing to convert lengthy video content summaries into concise video titles, making them
easier for users to read. The primary research content of this paper includes:

(1) The research background of short video title generation, along with related academic
studies and application achievements.

(2) An introduction to the deep learning frameworks and natural language processing toolkits
used in the experimental process.

(3) The design and implementation of short video content summarization. This section
elaborates on the neural networks and ranking algorithms employed in the experiment and their
applications.

(4) The experiments and analysis of short video title generation. This section describes
the entire experimental process from short video files to short video titles, including the tests
conducted and analysis of the test results.

(5) Analyzing the generated short video titles and continuously refining the title generation
method to ensure the titles meet user requirements.

6 Future Work

With the rapid development of the internet, the number of short videos is growing exponen-
tially. According to statistics, the total number of users on short video platforms has exceeded
one billion. The automatic generation of short video titles can help users save valuable time
while filtering out non-compliant or inappropriate videos, demonstrating its social value.

Moreover, automatic short video title generation can assist individuals in rural areas by
facilitating the promotion of local culture and develop regional tourism, thus driving economic
growth. These facts indicate that automatic short video title generation has significant application
potential and developmental prospects.

Although this study has achieved its expected goals, there are still areas for improvement. For
instance, when generating video content descriptions, the recently popular “attention” model
could be used to produce more accurate and reasonable descriptions. Additionally, the Chinese
word segmentation tool employed in the final summarization process is not yet fully optimized,
leading to the incorrect recognition of some common Chinese proper nouns. Furthermore, some
generated titles exhibit disordered syntax, which does not align with natural reading habits. The
authors hope that these issues will be further refined and resolved in future research.
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