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The tumor microenvironment (TME) has been a concept for many years, since
1889 with the presentation of Paget’s “seed and soil” theory. Today, TME is now
widely recognized as a hallmark of cancer, playing a critical role in cancer develop-
ment. Traditionally, TME has been defined as the location where tumor cells survive
within the organismal ecosystem. The classical theory indicates that oncogenes drive
tumorigenesis, subsequently recruit and adapt surrounding non-malignant cells via
diverse communicators like chemokines, cytokines, and vesicles [1]. However, the
modern view of TME encompasses not only tumorous and nonmalignant cells but also
intercellular components, intratumor microbiota, nerves, and metabolites surrounding
the tumor lesion [2]. The updated TME landscape consists of six layers: tumor cell
to tumor-cell environment, niche, confined tumor environment (TE), proximal TE,
peripheral TE, and distal TE.

Within the TME, stromal cells such as fibroblasts, endothelial cells, and pericytes
are the most abundant nonmalignant cells. Cancer-associated fibroblasts (CAFs) are
the major nonmalignant stromal cells in the TME and exert diverse and prominent
tumor-supporting effects. Physically, CAFs promote matrix adhesion and mesenchy-
mal morphology that result in increased stiffness and collagen fiber alignment. This
leads to increased secretion of type I collagen by CAFs, supporting tumor invasion
and migration. Subsequently, CAFs release diverse matrix metalloproteinases (MMPs)
to degrade and remodel the extracellular matrix (ECM), which contributes to the
stimulation of stemness and epithelial-mesenchymal transition. CAFs secrete the pri-
mary chemokine, C-X-C motif ligand 12 (CXCL12), which promotes T cell retention
by binding to its receptor atypical chemokine receptor 3 (ACKR3) on the surface
of T cells [3]. However, CXCL12 also recruits C-X-C motif chemokine receptor
4 (CXCR4)+ myeloid cells to form an immunosuppressive microenvironment [4].
Metabolically, CAFs exhibit a phenomenon called “metabolic symbiosis” where they
consume glucose and produce lactate, which cancer cells prefer utilizing via monocar-
boxylate transporter 1 (MCT1) transporters [5]. Immunologically, CAFs orchestrate a
particular structural tissue organization through dense and aligned fiber deposition to
exclude T cells from tumor nests [6]. Additionally, leucine-rich-repeat-containing pro-
tein 15 (LRRC15)+ CAFs directly suppress the effector function of tumour-infiltrating
cluster of differentiation 8 (CD8)+ T cells and restrict the efficacy of checkpoint
blockade [7]. Further studies are necessary to better understand the complicated roles
of endothelial cells and pericytes in cancer progression [8, 9].

The TME comprises a diverse population of immune cells, including myeloid-
derived suppressor cells (MDSC), neutrophils, dendritic cells (DC), innate lymphoid
cells (ILC), natural killer cells (NK), lymphocytes, and macrophages [10, 11]. Within
the TME, cytokines manipulate immune function, leading to weakened immune re-
sponses that promote tumor progression [12]. CD8+ T cells represent the primary
adaptive immune cells in cancer and selectively recognize and eradicate tumor cells
expressing tumor-specific antigens, including tumor-specific neoantigens and self-
antigens [13]. However, over the course of tumorigenesis, tumor-reactive CD8+ T
cells become dysfunctional. Various immunosuppressive elements within the TME,
such as forkhead box protein P3 (FOXP3)+ and cluster of differentiation 4 (CD4)+

regulatory T cells, MDSCs, tumor-associated macrophages (TAMs), interleukin-10
(IL-10), inhibitory checkpoints, and metabolic changes such as hypoxia or indoleamine
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2,3-dioxygenase, contribute to this dysfunction [14, 15]. Overcoming the immunosup-
pressive TME and improving the functionality of CD8+ T cells can enhance responses
to therapeutic reprogramming.

Recent advancements in cancer biology have identified microbiota as an important
component of the tumor microenvironment, specifically categorized as ‘intratumor
microbiota’ [16]. Numerous studies have extensively supported the presence of intra-
tumor microbiota, and their abundance is found to be tumor-specific. The enrichment
of microbiota has been discovered in breast, bone, and pancreatic cancers, but not in
cancer tissues exposed to external environment [17]. As few studies have specifically
interrogated its original source, its origin remains a mystery. Intratumor bacteria
have several similar characteristics, including lower diversity and abundance of the
microbial community in cancer tissues [18]. Commensal organisms tend to survive in
the intracellular space. Functionally, intratumor microbiota can modulate cancer cell-
intrinsic and cell-extrinsic properties. Intratumor microbiota can induce a migratory
and invasive phenotype, initiate stemness, and resist lethal stimuli [19]. Intratumor
bacteria are also important regulators that can create a tumor-supporting microenviron-
ment through the production of specific metabolites and immune modulation [20, 21].
This discovery provides a unique perspective to understand networks of the cancer
ecosystem and reshapes the current conceptual framework of the TME.

The innervated microenvironment (IME) is a specialized micro-ecosystem that
forms through communication between nerves and cancer cells via nerve-derived neu-
rotransmitters or neuropeptides [22]. IMEs are categorized as intracranial or extracra-
nial innervated niches. In the intracranial IME, active neurons promote the gliomas
growth through the neuroligin-3 (NLGN3)-activated PI3K/mTOR pathway [23]. Per-
ineural invasion (PNI) refers to cancer invasion in or around nerves, which is associated
with poor cancer prognosis. Peripheral nerves, including sympathetic, parasympathetic,
and sensory nerves, are present in the IME and make physical contact with cancer
parenchyma or nearby nerves. The secretion of neuropeptides or neurotransmitters like
catecholamine, acetylcholine and dopamine plays a crucial role in neuromodulation
within the IME [24]. Additionally, Schwann cells from nerves facilitate cancer invasion.
When activated by cancer cells, Schwann cells collectively function as tumor-activated
Schwann cell tracks (TAST), promoting cancer cell migration and invasion [25].
TAST exhibit elevated HIPPO-transcriptional co-activator with PDZ-binding motif
(TAZ)/yes-associated protein (YAP) expression, and hyperactivity of TAZ/YAP in
Schwann cells activates oncogenic programs, including platelet-derived growth factor
receptor (PDGFR) signaling, leading to high-grade nerve-associated tumors [26]. Re-
cent studies have demonstrated a tumor-nerve-immunity cycle in TME that mediates
communication among cancer cells, immune microenvironment, and innervation. The
Hypothalamic-pituitary (HP) unit is able to expedite myelopoiesis and immunosup-
pression to promote tumor growth through the production of α-melanocyte-stimulating
hormone (α-MSH). α-MSH combines to melanocortin receptor melanocortin 5 re-
ceptor (MC5R) to promote myeloid cell recruiting, immunosuppression, and tumor
growth [27].

Various innovative approaches are available to gain detailed insights into the im-
munological features of tumors. For instance, single-cell and spatial multi-omics
techniques provide a comprehensive understanding of TME [28]. Additionally,
immunomics, based on next-generation sequencing (NGS) technologies and mass-
spectrometric techniques, offers novel insights into tumor immunology. In recent
years, strategies targeting the TME have gained significant attention due to its critical
role in tumor progression and cancer treatment efficacy. These approaches primar-
ily focus on cancer immunotherapy, such as vaccines, immune checkpoint blockade
(ICB), adoptive immune cell therapy, as well as targeting tumor angiogenesis, ECM,
and CAFs [29]. Despite inducing durable remissions in some patients and cancer
types, these strategies fail to achieve long-term responses for most patients. However,
continued advances in technology and therapy have the potential to integrate basic
microenvironmental insights with clinical observations to benefit all cancer patients
through TME-targeting therapies.
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