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Abstract: Purposes: Breast cancer (BC) is a disease in which the breast cells multiply uncon-
trolled. Breast cancer is one of the most often diagnosed malignancies in women worldwide.
Early identification of breast cancer is critical for limiting the impact on affected people’s health
conditions. The influence of technology and artificial intelligence approaches (Al) in the health
industry is tremendous as technology advances. Deep learning (DL) techniques are used in
this study to classify breast lumps. Materials and Methods: The study makes use of two
distinct breast ultrasound images (BUSI) with binary and multiclass classification. To assist
the models in understanding the data, the datasets are exposed to numerous preprocessing and
hyperparameter approaches. With data imbalance being a key difficulty in health analysis, due to
the likelihood of not having a condition exceeding that of having the disease, this study applies a
cutoff stage to impact the decision threshold in the datasets data augmentation procedures. The
capsule neural network (CapsNet), Gabor capsule network (GCN), and convolutional neural
network (CNN) are the DL models used to train the various datasets. Results: The findings
showed that the CapsNet earned the maximum accuracy value of 93.62% while training the
multiclass data, while the GCN achieved the highest model accuracy of 97.08% when training
the binary data. The models were also evaluated using a variety of performance assessment
parameters, which yielded consistent results across all datasets. Conclusion: The study provides
a non-invasive approach to detect breast cancer; and enables stakeholders, medical practitioners,
and health research enthusiasts a fresh view into the analysis of breast cancer detection with DL
techniques to make educated judgements.

Keywords: breast cancer, capsule network, deep learning, Gabor capsule, medical imaging

1 Introduction

Breast cancer is the world’s second greatest cause of mortality among women [1]. In 2019,
there are predicted to be 268,600 new instances of invasive breast cancer identified in women
in the United States, as well as 62,930 new cases of non-invasive breast cancer [2]. Tumors in
the breast are often produced as a result of aberrant development of breast cells, and they may
be detected using several imaging modalities. Early detection is the most effective strategy to
improve treatment and survival. Currently employed imaging methods include ultrasound (US),
magnetic resonance imaging (MRI), computed tomography (CT), and mammography. Breast
ultrasound imaging is one of the most efficient screening tools for the diagnosis and prognosis
of breast abnormalities among these modalities [3]. It is a popular screening procedure since
it is non-invasive, real-time, and inexpensive. Deep learning (DL) has emerged as a popular
approach for knowledge discovery, with promising outcomes in cybersecurity [4] and health [5].

Multiple classifier algorithms have recently been used to medical datasets to do predictive
analysis on individuals and their medical diagnoses. For instance, employing machine learning
(ML) and deep learning (DL) approaches to monitor tumor behavior in breast cancer patients. It
should be noted that data imbalance is a key problem in medical image diagnostics utilizing
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artificial intelligence (Al) approaches since the likelihood of not having the condition is greater
than the chance of having it. The improvement of computer-aided diagnosis (CAD) technologies
in recent years has resulted in an effective cancer diagnostic technique. Several preprocessing
approaches are used in the CAD system analysis to assist the models grasp the datasets [6]. The
convolution neural network (CNN) is the most often used model for image recognition and
classification in the domain of deep learning (DL) - CAD (DL-CAD) [7]. This study applies
novel deep learning approaches, such as capsule neural network (CapsNet), Gabor capsule
network (GCN), and convolutional neural network (CNN), to improve the accuracy of breast
cancer classification in women. The goal is to improve the classifier’s performance by preparing
the dataset by offering an appropriate approach for dealing with the unbalanced dataset and
missing values. The study’s uniqueness can be observed in the way it compares three advanced
deep learning architectures in depth and how it incorporates the Gabor filter into the capsule
network framework, something that is uncommon in the field. Furthermore, the study offers
lucid descriptions of the image preprocessing procedures, the reasoning behind the use of
every approach, and the suitability of performance metrics like accuracy, precision, recall, and
ROC-AUC score for the given classification problem. Notable is the creative use of the Gabor
filter into a capsule network model (GCN), which may open up new possibilities for feature
extraction in medical image analysis.

1.1 Major contributions of the study

The following are the major contributions of the study:

(1) To classify breast cancer masses, the study uses deep learning models of the capsule
neural network, Gabor capsule network, and convolutional neural network.

(2) The deep learning models in the present study are trained using two separate breast
ultrasound images that reflect both binary and multiclass data.

(3) The study also applies a unique approach to check for class imbalance by establishing a
cut-off score that influences the decision threshold in the augmentation procedures.

(4) The deep learning models’ efficacy is evaluated using tenfold cross validation and many
performance assessment indicators.

(5) The study represents the most recent use of deep learning in the analysis and classification
of breast cancer masses.

1.2 Cutting-edge approaches for breast cancer classification

This section describes cutting-edge strategies for tumor classification using breast ultrasound
images as summarized in Table 1. CNN models have advanced significantly in breast ultrasound
imaging in recent years. Despite several studies been used in the domain of breast cancer
categorization, this study provides an advancement with similarities and differences of the
used cutting-edge models. This study proposes using deep learning algorithms to classify
breast cancer. The models used include the capsule neural network (CapsNet), Gabor capsule
network (GCN), and convolutional neural network (CNN) models. Table 1 shows that the bulk
of the research evaluated used machine learning techniques, with only a handful considering
deep learning utilizing CNN. The researchers used k-Nearest Neighbor (kNN), support vector
machine (SVM), logistic regression (LR), random forest (RF), decision tree (DT), and XGBoost
(XGB) machine learning models. They also trained their models using a single dataset with
binary classifications. However, in the present study, two separate breast ultrasound pictures
(BUSI) with both binary and multiclass classification are used. The current study offers a
novel method for classifying breast cancer masses in the study domain. This gives the study an
advantage over other existing studies in the domain.

Table 1 Cutting-edge analysis with the proposed models
Study Year  Employed Models Dataset Data description
Bokhare and Jha [1] 2023  ML: kNN, SVM, RF, LR Wisconsin breast cancer data Binary data
Zhao and Jiang [8] 2023  ML: SVM, kNN, DT, XGB = Male breast cancer from SEER hospital ~ Binary data
Prodan et al. [9] 2023  DL: CNN Mammogram Binary data
Ardakani et al. [10] 2023 ML: RF and SVM Breast ultrasound data Binary data

Proposed model

Both binary (US — BUSI)

DL: CapsNet, GCN, CNN US — BUSI and BUSI -and multiclass (BUSI)

Current Cancer Reports @ SyncSci Publishing

The rest of this paper is structured as follows. Section 2 includes works that are related.
Section 3 describes the research technique. Section 4 presents the study’s experimental outcomes.
Section 5 is an in-depth overview of the study titled “Discussion.” Section 6 presents the
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limitations of the study and Section 7 ends with the conclusion and future work.

2 Related works

Artificial intelligence (Al) techniques such as deep learning (DL) have been used in the
study of biomedicine. This section includes similar works in the subject of applying DL for
modeling biological research to supplement our study with previous works. DL algorithms,
notably convolutional neural networks (CNNs), dominate cutting-edge techniques in breast mass
classification utilizing ultrasound imaging, since they excel at automated feature extraction from
pixel data, resulting in better classification accuracy. Transfer learning improves these models,
particularly when the data is sparse. Attention mechanisms in CNNs fine-tune the emphasis on
important picture areas, improving interpretation. Generative Adversarial Networks (GANs) are
used for data augmentation, producing synthetic pictures to improve model resilience. Despite
advances, issues in model interpretability, data quality, and generalization remain, necessitating
more study for optimal clinical use.

To begin with, Bokhare and Jha [1] demonstrated how to classify breast cancer data using
several machine learning (ML) models. The effectiveness of models was compared through
results using an accuracy standard, which had not before been done. Their classifiers were
evaluated, examined, and compared. The top ML method for the breast cancer data set is the
classifier, decision tree, which achieves the maximum accuracy of 97.08% among all models.
Additionally, Zhao and Jiang [8] developed a technique for comparing the efficacy of multiple
machine learning (ML) models and nomograms to predict distant metastases in male breast
cancer (MBC) patients and interpreting the optimum ML model using the SHapley Additive
exPlanations (SHAP) framework in a research. Their xGBoost (XGB) model was superior
predictor of distant metastasis among MBC patients than other ML models and nomogram;
additionally, the XGB model was a potent model for predicting bone and lung metastasis. When
combined with SHAP values, it may aid clinicians in intuitively understanding the influence
of each variable on result. In another related work, Boumaraf et al. [11] contrasted traditional
machine learning (CML) versus deep learning (DL)-based approaches. Their results indicated
that DL techniques beat CML approaches with accuracy ranging from 94.05% to 98.13% for
binary classification and 76.77% to 88.95% for eight-class classification.

Furthermore, Yang et al. [12] used magnetic resonance imaging morphological features (MRI-
MF), Radiomics, and deep learning (DL) techniques based on dynamic contrast-enhanced MRI
(DCE-MRI) to create an effective model for assessing lymphovascular invasion (LVI) status in
patients with BC. Their MRI-MF model was developed with conventional MR features using
logistic analyses. Their joint model incorporating MRI-MF, Radiomics, and DL approaches
effectively determined the LVI status in patients with BC before surgery. In a study by Sahu et
al. [13], they created five new deep hybrid convolutional neural network-based breast cancer
detection frameworks. Their suggested hybrid systems outperformed the respective base
classifiers while retaining the benefits of both networks. In all of the datasets tested, their
experimental findings confirmed the superiority of the suggested ShuffleNet- ResNet system
over the present state-of-the-art techniques. Furthermore, their suggested approach demonstrated
higher accuracy for abnormality and malignancy diagnosis in the mini-DDSM and BUSI datasets,
respectively. Jabeen et al. [3] offered a novel framework for breast cancer classification from
ultrasound pictures in their study, which used deep learning and the fusion of the best selected
characteristics. When compared to other models in the research domain, their experimental
model, the convolutional neural network (CNN), produced substantial results. Their research
demonstrated the effectiveness of CNN in the teaching of medical imagery. To diagnose
ultrasound breast tumors, Sirjani et al. [14] created a unique deep learning architecture based on
the InceptionV3 network. The suggested architecture’s primary selling points were turning the
InceptionV3 modules to residual inception modules, increasing their number, and changing the
hyperparameters. Their research shown that the upgraded InceptionV3 can accurately diagnose
breast cancers, possibly eliminating the need for biopsy in many situations.

In a similar work, Yu et al. [15] has created a hybrid framework for testing both feature
ranking (FR) stability and cancer diagnostic efficacy. The architecture they developed identified
a reliable FR algorithm for accurate breast cancer detection. Stable and effective characteristics
might contribute to a better knowledge of breast cancer diagnosis and related decision-making
applications. A case-control study was carried out at the Nganda Hospital Center in Kinshasa,
Democratic Republic of Congo by Sulu et al. [16]. One hundred and sixty individuals with
breast cancer (cases) were compared to 320 women without breast cancer (controls). STATA
version 16 was used to analyze data with statistical significance considered at p < 0.05 in their
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study. Their results indicated the presence of certain conventional risk factors, however, they
failed to utilized ML or DL technologies to provide a non-invasive approach in the domain.
Finally, Lee et al. [17] revealed that patient-specific cancer driver genes may be utilized to better
reliably forecast cancer prognoses. They constructed patient-specific gene networks before
utilizing modified PageRank to generate feature vectors that reflected the influence genes had
on the patient-specific gene network to find patient-specific cancer driver genes. Their findings
revealed that diverse cancer driver information might be linked to cancer prognosis.

3 Materials and methods

This section describes the methodologies employed in this investigation. It includes every-
thing from data gathering to the models used and their performance evaluation measures. The
techniques are thoroughly examined in the following subsections.

3.1 Data collection

The study made use of two (2) publicly accessible datasets of breast ultrasound images (BUSI).
The datasets include the United States (US) - BUSI, which can be found at https://qamebi.com/breast-
ultrasound-images-database [18], and was accessed on October 10, 2023; and the BUSI, which
can be found at https://scholar.cu.edu.eg/?q=afahmy/pages/dataset [19], and was accessed on
October 12, 2023. The US-BUSI has 123 and 109 ultrasound pictures of malignant and benign
breast tumors, respectively, whereas the BUSI sample size includes 133 normal images with
no cancerous masses, 437 images with cancerous masses, and 210 photos with benign masses.

It should be noted that the US-BUSI dataset is binary, i.e., benign and malignant, whereas the
BUSI data is multiclass, i.e., normal, benign, and malignant. The datasets are all exposed to the
study’s training techniques.

3.2 Data preprocessing

Data preparation is an important aspect of deep learning (DL) analysis since it allows the
models to be trained. Data preparation enhances the quality, reliability, and efficacy of modeling
methodologies [20], making the data better suitable to improving the comprehension and
performance of deep learning models [21]. The following sections detail the various approaches
used in the present study.

3.2.1 Data augmentation

Data augmentation is a technique for artificially augmenting the training set by creating
modified copies of a dataset from existing data. By producing new and unique examples
for training datasets, data augmentation improves the performance and outcomes of machine
learning models. Deep learning models perform best when the dataset is large and diverse. In
the augmentation procedures, the rotation and rescaling techniques are used. The photos are
loaded and enhanced in Keras version 2.13 (Google LLC, Mountain View, California, United
States) using the Image Data Generator class. These strategies were used to increase model
prediction accuracy by adding more training data into models and avoiding data scarcity for
better models. Table 2 illustrates the Image Data Generator class parameters and their related
settings. To ensure that there was no data imbalance throughout the augmentation operations,
the datasets were modified to a maximum value of 500, which impacted the decision threshold.

Table 2 ImageDataGenerator class parameters

Parameter Value

Rotation 10°

Width shift 2 pixels

Height shift 22 pixels

Shear 0.2 radians
Rescale [0, 255] to [0, 1]
Fill mode Nearest

3.2.2 Grayscale conversion

Each image is converted to grayscale from the RGB values of red (R), green (G), and blue
(B). A grayscale image is one that is made up of different shades of gray (or black and white).
Grayscale pictures have the potential to minimize the computing cost of an image processing
activity [22]. This is because the number of channels has been reduced from three (RGB) to one
(gray). Grayscale conversion was accomplished using the luminosity approach. Equation (1)
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expresses the luminosity approach.
Y =0.299R + 0.587G + 0.114B €))

Grayscale conversion helps to simplify algorithms and eliminates difficulties related with
processing requirements.

3.2.3 Denoising technique

To reduce noise from photos, bilateral filtering is utilized. Bilateral filtering is a technique
for smoothing pictures while keeping their edges. Bilateral filtering is a non-local denoising
method. Non-local means (NLM) denoising is a technique for removing noise from a picture
while maintaining its edges and features [21]. It compares each pixel in the picture to all the
others, determining their similarity and utilizing that information to estimate the value of the
noisy pixel. Comparable patches in an image have comparable values for any NLM denoising
technique, even if they are not in the same position. By comparing all patches to each other, the
algorithm can predict the image’s structure and eliminate noise without blurring or distorting
the edges or features [23]. Equation (2) depicts bilateral filtering numerically.

BF(I], = - 3 [(Ganlllp — all)) (Gor(lTy — L)), @
p qeS

Where BF[I] » is the output of bilateral filtering at pixel p, I, is the intensity at pixel g, m%, is
the normalization factor, W, is the normalization term, G, is the Gaussian function for the
standard deviation of spatial Gaussian component, ||p — ¢|| is the Euclidean distance between
p and g, and G, is the Gaussian function for the standard deviation of the range Gaussian
component, additionally, I,, is the absolute intensity value at p, and I, is the absolute intensity
value at q.

3.2.4 Contrast limited adaptive histogram equalization

The Contrast Limited Adaptive Histogram Equalization (CLAHE) approach is used to
improve the contrast of each image. CLAHE is a technique for improving visual contrast
by spreading the intensity values in the image, particularly in low contrast images [24]. The
normalized and denoised grayscale picture is processed using the CLAHE algorithm defined
in the createCLAHE and OPENCYV routines. After that, the CLAHE-enhanced picture is
transformed back to RGB format.

3.2.5 Feature extraction

The labels and features are kept in distinct lists, and the features are concatenated into a
single array. The feature array is reconfigured in four dimensions [25]. The feature array is then
normalized using Scikit-learn’s StandardScaler function. Using the K-Fold cross-validation
approach, the normalized features and labels are divided into training, validation, and testing
sets. The K-Fold object divides data into ten folds. The training data is then divided into
80% training and 20% validation sets for each fold. K-fold cross-validation is used to prevent
network overfitting [20]. By providing an estimate of the model’s performance on unseen data,
the cross-validation approach helps to reduce overfitting. The validation sets are designed to be
used to monitor the performance of a model during training.

3.3 The deep learning techniques

This section describes each model and its design in depth. The standard capsule network
(CapsNet), a capsule network design with a convolutional Gabor layer as its first layer (Gab-
CapsNet), and the convolutional neural network (CNN) are among the techniques employed in
the study. The subsections that follow provide in-depth study of the models.

3.3.1 The deep capsule network model

The CapsNet architecture is made up of two convolutional layers, a primary capsule block,
and a class capsule block [26]. A capsule network is a collection of neurons in which the activity
vector reflects the instantiation parameters and the length of the vector denotes the probability
of an entity’s existence. This property enables capsule networks to learn picture properties
like as deformations, location, and texture. There are three main approaches for implementing
capsules: auto-encoders, vector capsules based on dynamic routing, and matrix capsules based
on expectation-maximization (EM) routing [27]. To train the data in this study, vector capsules
based on dynamic routing were used.
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Vector capsules use vector routings to represent picture parameters. As activation functions
in CNNs, ReLU, Sigmoid, and Tangent functions are employed [28]. The activation function
for a vector capsule is known as a squash function, as shown in equation (3).

_ o lsill® s
LT+ s; |2 [si |l

j 3
Where v; = output of capsule j, and s; = total input of the capsule. The total input value
of capsule s; is found by the weighted sum of the prediction vectors (Uj|;) in lower-layered
capsules except in the first layer of the capsule network. The prediction vector is produced
by multiplying the output u; of a capsule in the lower layer by a weight matrix presented in
equation (4) and equation (5).

sj =D Cijt; )

ug; = Wiju, 5
Where c;; = coupling coefficients that are determined by the iterative dynamic routing process
(Figure 1). The coupling coefficients are determined by a SoftMax function which is expressed
in equation (6).

ex aij

>k exp (aik)
Where a;; = log prior probability. In capsule networks, a margin loss has been proposed to
determine the presence of objects of a particular class [28]. This margin loss is calculated as
presented in equation (7).

Cij =

Li = Ty max (0, m™ — [|vi||*)” + A (1 — Ti) max (0, [|vi| — m~)* )

3.3.2 Summary of the deep capsule network

The feature maps of the CNN’s block 4 dropout layer are sent into the first convolutional
layer (BlockS_Conv1). To generate 7x 7 feature maps, the convolutional procedure is conducted
using 128 filters, a kernel size of 7x7, and ReLU activation. To generate 2 x2 feature maps, the
second convolutional layer employs a convolution of 128 filters, a 6 x 6 kernel size, and ReLU
activation. A convolutional layer plus a reshape layer make up the main capsule block. The
convolutional layer creates 32-channeled 1x 1 feature maps, which are subsequently molded
and compressed into two 16-dimensional capsules. The main capsule layer’s output is then
transferred into the Class capsule layer. The Class capsule’s output is transferred to the last tier,
the lambda layer. This layer computes the class probabilities and acts as the output layer. This
design uses capsule networks to record spatial hierarchies and feature interactions, which are
critical for tasks such as picture categorization. The introduction of capsules enables the model
to preserve more comprehensive and spatially aware representations of the input data, perhaps
resulting in more accurate classification results than typical CNN designs. The deep capsule
network design is depicted in Figure 1.

3.3.3 The deep Gabor capsule network model

The Gabor Capsule Network (Gab-CapsNet) design is similar to that of the capsule network
paradigm. A convolutional block, a main capsule block, and a class capsule block comprise the
Gab-CapsNet architecture. A Gabor filter is a linear filter in image processing that is created by
mixing sinusoid and Gaussian functions. Several factors, including orientation, scale, aspect
ratio, frequency, and phase, may be used to customize the Gabor filter. A Gabor filter can be
represented mathematically in equation (8).

’ /2 ’
g)‘v 07 ag, ’7(‘r7 y) = exp 7“772:—[/ Cos (2ﬂ-£ + ¢) (8)
20 A
Where 2’ = zcosf + ysind, y/ = —xsinf + ycos 0. Gabor filters are powerful tools that

may be used to recognize edges, analyze texture, and extract characteristics from pictures. Gabor
filters may be used as preprocessing techniques to extract features for usage in CNNs [29].
A collection of global Gabor filters is used in the convolution process to extract attributes
from an input picture [30]. This convolution operation (*) applied to the image and the global
Gabor filter bank G(x, y: w, 0), generates a set of features (O, (X, y)) that can be represented
mathematically by the equation (9):

Om, n(z,y) = I(z, y) xG(z, y: w, 0) ©
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primarycap_conv2d

input: | (None, 2, 2, 128)

ConvZD

(None, 1, 1, 32)

primarycap_reshape

input: | (Nome, 1, 1, 32)

(None, 2, 16)

primarycap_squash

input: | (Nene, 2, 16)

Figure 1 The deep capsule network architecture

Block]_Convl_imput | input: | [(None, 256, 256, 3)] Blockl_Convl_input | input: | [(None, 256, 256, 3)]
InputLayer output: | [(None, 256, 256, 3)] InputLayer output: | [(None, 256, 256, 3)]
Blockl_Convl | input: | (MNone, 256, 256, 3) Blockl_Convl | input: | (None, 256, 256, 3)
ConvZD output: | (None, 254, 254, 64) Conv2D output: | (None, 254, 254, 64)
Blockl_Conv2 | input: | (None, 254, 254, 64) Blockl_Conv2 | input: | (None, 254, 254, 64)
Conv2D output: | (None, 252, 252, 64) Comv2D output: | (None, 252, 252, 64)
Blockl_Pool | input: | (None, 252, 252, 64) Blockl Pool | input: | (None, 252, 252, 64)
MaxPooling2D | output: | (None, 126, 126, 64) MaxPooling2D | output: | (None, 126, 126, 64)
Block2 Convl | input: | (None, 126, 126, 64) Block2_Convl | input: | (None, 126, 126, 64)
Conv2D output: | (None, 124, 124, 128) Conv2D output: | (None, 124, 124, 128)
Block2_Conv2 | input: | (Nome, 124, 124, 128) Block2_Conv2 | input: | (None, 124, 124, 128)
Comv2D autput: | (MNone, 122, 122, 128) Conv2ZD output: | (None, 122, 122, 128)
Block2_Pool | input: | (None, 122, 122, 128) Block2_Pool | input: | (Nome, 122, 122, 128)
MaxPooling2D | outpur: | (None, 61, 61, 128) MaxPooling2D | output: (None, 61, 61, 128)
Block3_Convl | input: | (None, 61, 61, 128) Block3 Convl | input: | (None, 61, 61, 128)
ConvZD output: | (None, 59, 59, 256) Conv2D output: | (None, 59, 59, 256)
Block3_Comnv2 | input: | (Mone, 59, 59, 256) Block3 Comv2 | input: | (None, 59, 59, 256)
Conv2D ourput: | (None, 57, 57, 256) Conv2D output: | (None, 57, 57, 256)
Block3_Pool input: | (Nene, 57, 57, 256) Block3_Pool input: | (None, 57, 57, 256)
MaxPooling2D | output: | (None, 28, 28, 256) MaxPooling2D | output: | (None, 28, 28, 256)
Blockd_Convl | input: | (Mone, 28, 28, 256) Blockd_Convl | input: | (None, 28, 28, 256)
Conv2D output: | (None, 26, 26, 256) Conv2D output: | (None, 26, 26, 256)
Blockd_Pool | input: | (Nene, 26, 26, 256) Blockd_Pool | input: | (None, 26, 26, 256)
MaxPooling2D | cutput: | (None, 13, 13, 256) MaxPooling2D | output: | (None, 13, 13, 256)
Block4_Dropout | input: | (None, 13, 13, 256) Block4_Dropout | input: | (None, 13, 13, 256)
Dropout output: | (None, 13, 13, 256) Dropout output: | (None, 13, 13, 256)
Block5_Convl | input: | (None, 13, 13, 256) Block5_Convl | input: | (None, 13, 13, 256)
Comv2D output: | (None, 7, 7, 128) Conv2D output: | (None, 7, 7, 128)
Block5_Comv2 | input: | (None, 7, 7, 128) GaborLayer | input: | (None, 7, 7, 128)
Conv2D output: | (None, 2, 2, 128) GaborLayer | output: | (None, 3, 3, 128)

)

primarycap_conv2d

input:

(None, 3, 3, 128)

ConvZD

output:

(None, 1, 1, 32)

!

primarycap_reshape

input: | (None, 1, 1, 32)

Reshape

(Nene, 2, 16)

primarycap_squash

input:_| (None, 2, 16)

Lambda output; | (None, 2, 16) Lambda output: | (None, 2, 16)
class__capsule | input: | {Nome, 2, 16) class__capsule_1 | input: | (None, 2, 16)
Class_Capsule | output: | (None, 2, 16) Class_Capsule | output: | (None, 2, 16)
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Figure 2 The deep Gabor capsule network archi-

tecture
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3.3.4 Summary of the Deep Gabor Capsule Network

Figure 2 depicts the architecture of the Gab-CapsNet. The feature maps of the CNN’s
block 4 dropout layer are sent into the first convolutional layer (Block5_Conv1). To generate
7x7 feature maps, the convolutional procedure is conducted using 128 filters, a kernel size
of 7x7, and ReLU activation. The second convolutional layer then uses 256 Gabor filters,
a 7x7 kernel size, and ReLU activation to generate 7 x7 feature maps [29]. A convolutional
layer plus a reshape layer make up the main capsule block. The convolutional layer produces
32-channel 3x3 feature maps, which are subsequently molded and compressed into 18 capsules
with 16 filters. The main capsule layer’s output is transferred into the Class capsule layer. The
output of the Class capsule is flattened and given to the lambda layer. This layer computes
the class probabilities and acts as the output layer. The use of capsules ensures that spatial
hierarchies and relationships between features are well-preserved, potentially leading to more
robust and accurate classification; the lambda layer at the end facilitates the final prediction of
class probabilities, completing the network’s classification task. The Gab-CapsNet architecture
makes use of the power of Gabor filters to enhance the feature extraction process, particularly in
capturing edge and texture details, which are critical in distinguishing between different classes
in image data.

3.3.5 The convolutional neural network model

A CNN is a deep learning system that can take an input picture, give priority to various
aspects/objects in the image (via learnable weights and biases), and distinguish one from the
other [31]. In the current investigation, the CNN was employed to categorize the breast masses.
The CNN uses the visual geometry group network (VGGNet) architecture, namely the VGG16.
Convolutional and max-pooling layers are included in the CNN design. The softmax activation
function was used, with an a = 0.0001 regularization and a maximum iteration of 10. Softmax is
a CNN activation function that is frequently used in the output layer, especially for multi-class
classification tasks [32]. Because of the data’s multi-class categorization, which includes normal,
benign, and malignant, the softmax function was used. This converts raw scores (logits) into
meaningful probabilities, allowing the model to make educated guesses about which class is the
most likely label for a given input instance.

3.3.6 Summary of the convolutional neural network

Convolutional layers and max-pooling layers were employed by the CNN in the sequential
model. Following the completion of the convolutional layers, the data was flattened to form
three entirely connected layers for output with the softmax activation function. The total number
of parameters is 14,789,955, but only 75,267 are trainable, and the rest are used using VGG16
pre-trained values. Two convolutional layers, two max pooling layers, two dropout layers, a
flatten layer, and two fully connected layers comprise the CNN used in the study. The two
dropouts are key tools for improving the performance and generalization capabilities of CNNs
by limiting overfitting, supporting robust feature learning, and swiftly handling vast and complex
models [33]. The first dropout is used to minimize noise in the feature maps, while the second
is utilized to regulate the whole CNN architecture for improved output. The flattened layer also
reshapes the spatially ordered feature maps into a one-dimensional vector that fully linked layers
may use to create predictions. The network’s architecture requires this flattened representation to
connect the convolutional layers to fully connected layers. Finally, the completely linked layers
categorize the photos, allowing the breast lumps to be identified. Based on the hierarchical
features learnt by the convolutional and pooling layers, the fully connected layer generates final
predictions [34]. Figure 3 depicts a graphical representation of the CNN architecture.

Block_1

Block_2

Block 3
Block_4 Block_5

9 Conv2D i MaxPooling2D # Dropout @ Flatten @ Dense

Figure 3 The convolutional neural network architecture

3.4 Model performance evaluation metrics

Model assessment is essential because it assesses a model’s performance as a generic
model [35]. A performance evaluation is used to assess a model’s generalization accuracy
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on unseen/out-of-sample data [36]. Accuracy, loss, precision, recall, specificity, and receiver
operating characteristic area under the curve (ROCAUC) are the performance assessment mea-
sures used to evaluate the models. True positives (TP), false negatives (FN), false positives (FP),
and true negatives (TN) are the metrics that are examined.

Accuracy is calculated by dividing the number of properly categorized cases by the total
number of occurrences in the dataset [37]. Equation (10) represents accuracy.
TP+TN

A - 10
CUrAY = TP TN + FP+ FN 10

In a machine learning model, loss assesses the inaccuracy or difference between anticipated
and actual values [38]. Cross-entropy is the most often used loss function in neural networks.
Equation (11) represents loss function.

loss = ZZyi,j log (pi, j) (11

i=1 j=1

Where n = number of samples, y = true label or ground truth, m = number of classes, j = class
iterator, i = samples iterator and p = predicted probability or score.

Precision assesses a model’s ability to properly identify positive cases among all favorably
predicted instances. It determines the accuracy of a model’s positive predictions. The precision
is calculated using equation (12).

TP

Precision = m (12)

The capacity of a model to accurately identify all positive events in a dataset is measured by
recall (Sensitivity). Equation (13) may be used to calculate recall.
TP

Recall = m (13)

Specificity measures a model’s ability to properly identify negative cases among all negative
examples in a dataset. It determines the accuracy of a model’s positive predictions. The true
negative rate (TNR) is another name for it. Equation (14) provides the definition of specificity.

TN

Specificity = TN+ FP (14)

At various thresholds, the ROC curve is used to plot sensitivity versus the false positive rate
(1 - specificity). In other words, the ROC curve represents a classification model’s performance.
A threshold is a value that determines how a model’s prediction is classified.

The False Positive Rate (FPR) is the fraction of false positive events that a model mistakenly
forecasted as positive out of all real negative instances. Equations (15), (16), and (17) show the
formula that makes up the ROC.

FPR =1 — Specificity (15)
TN
FPR=1— —/—/—— 1
R TN+ FP (16)
FP
FPR= FP+TN {an

By computing the area under the ROC curve, the Area under the Curve (AUC) score assesses
the overall performance of the model. The AUC score is a number between 0 and 1, with a
higher value indicating greater model performance [39].

3.5 Summary of the study architectural design

Figure 4 depicts a framework for identifying breast masses used in the present study. Image
augmentation, grayscale conversion, denoising method, CLACHE, and feature extraction tech-
niques were performed on the US - BUSI and BUSI data. These data preparation approaches
were used to provide clean data that the models could understand during training. The prepro-
cessed data was separated into three sets: training, validation, and testing. The study divided
training (80%) and testing (20%), with a portion of the testing set (20%) used to validate the
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deep learning models. Deep capsule network, deep Gabor capsule network, and convolutional
neural network are the deep learning models used in the study. Deep learning models are used
to classify breast masses as benign or malignant in the US - BUSI data, and benign, normal, or
malignant in the BUSI data. Several performance assessment criteria are used to evaluate the
training results of deep learning models.

Data Preprocessing Approaches

US-BUSI

i

i E—— Gravsc:fle CLACHE Feature
i conversion extraction
H

l Processed data

Raw data

Testing

Artificial Intelligence Models

Deep Learning Models

- l‘ —

eep Gabor
Capsule Normal
Network

b stionicssiain il
Convolutional

e
Neural Malignant

Network
M e
Metrics

Figure 4 The architectural design of the study

4 Experimental results

This section presents the experimental configuration and results obtained from the models
from the two breast ultrasounds datasets.

4.1 Experimental set-up and configurations

As a result, the deep learning models were trained using the Google Colab platform with
Python software version 3.11.4 (The Python Software Foundation (PSF), 1209 Orange Street,
Wilmington, DE, USA). The Random Access Memory (RAM) installed is 12.0 gigabytes (GB),
and the operating system is 64-bit. Table 3 shows the system specifications and experimental
settings that were employed to get the results.

Table 3 System configuration and specifications

Product Specification

Processor 11th Gen Intel(R) Core(TM) i5-1155G7 @2.50Ghz 2.50GHz
Random Access Memory (RAM) 12.0 Gigabyte (GB)

System type 64-bit operating system

4.2 Performance of the DL models on the BUSI dataset

The performance of the deep learning models on the BUSI dataset is presented in this section.
The subsections that follow provide in-depth examination of the results.
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4.2.1 Interpretability of the BUSI dataset

The class activation mapping (CAM) approach was used to identify the elements of an
image that influence the judgment or classification of a deep learning model. CAMs help to
explain the classifications or predictions of a deep learning model. This ensures that each model
predicts using the relevant picture parts in each class. During this work, the models produced
are examined and analyzed using Gradient-weighted Class Activation Mapping (Grad-CAM).
Using the gradients of the final convolutional layer, Grad-CAM generates a weighted mixture of
feature maps. Figure 5, 6, and 7 depict the Grad-CAM of each model on normal, benign, and
malignant images, respectively.

CapsNet CAM - normal

150 200 250 50 100 150 200 250

Figure 5 Grad-CAM of the models on the normal image of the BUSI dataset

CNN CAM - benign

50 100 150 200 250

Figure 6 Grad-CAM of the models on the benign image of the BUSI dataset

o 50 150 200 50 00 150

o 50 100 150 200 250 o 50 100 150 200 250 0 50 100 150 200 250

Figure 7 Grad-CAM of the models on the malignant image of the BUSI dataset

4.2.2 The models evaluation on the BUSI dataset

On the BUSI dataset, the capsule neural network, Gabor capsule network, and convolutional
neural network were used in this study. It should be noted that the BUSI dataset is multiclassified,
with benign, normal, and malignant classifications. Table 4 shows that the deep learning models
CapsNet, GCN, and CNN obtained significant results. The accuracy, loss, precision, recall,
specificity, and ROC score of each model were calculated. In terms of model accuracy, CapsNet
came out on top with a score of 93.62%, followed by CNN with a score of 91.76%. With an
accuracy rating of 88.83%, the GCN obtained the lowest value.

Table 4 Performance evaluation of the models on BUSI dataset

Model Accuracy Loss Precision Recall Specificity ROC score
CapsNet 0.9362 0.0083 0.9365 0.9362 0.9191 0.9942
GCN 0.8883 0.0064 0.9182 0.9176 0.9044 0.9538
CNN 0.9176 1.5582 0.9182 0.9176 0.9044 0.9556

Furthermore, the CapsNet outperformed the competition in terms of precision (0.9365), recall
(0.9362), and specificity (0.9191). The CNN, the second-best performing model, also produced
significant results in terms of performance measures; nevertheless, the CNN fared the worst
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in terms of model loss, with 1.5582 as opposed to 0.0064 for GCN and 0.0083 for CapsNet.
Despite having the lowest accuracy score, the GCN outperformed all other models in terms of
lost value. Surprisingly, the accuracy (0.9182), recall (0.9176), and specificity (0.9044) scores
of the GCN and CNN models are the same.

Figure 8, 9, and 10 show the confusion matrices of the CapsNet, GCN, and CNN, respectively,
to provide insight into the results of the accuracies. In each of the deep learning models,
the algorithms were able to predict equally in terms of the benign, normal, or malignant
classifications.

CapsNet Confusion Matrix
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- 60

-40

-20

malignant

normal benign malignant
Predicted

Figure 8 Confusion matrix of the CapsNet model on the BUSI dataset
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Figure 9 Confusion matrix of the GCN model on the BUSI dataset

CNN Confusion Matrix
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Figure 10 Confusion matrix of the CNN model on the BUSI dataset

Furthermore, Figure 11 shows a graphical depiction of the accuracies attained by the deep
learning models used to train the BUSI dataset in this study. As previously stated, CapsNet has
the highest accuracy on the BUSI dataset, followed by CNN and GCN in that order. The results
of the models used in this work on the BUSI dataset demonstrate the efficacy of dep learning
models, particularly the employment of CapsNet and CNN in medical image detection. Having
stated that, the GCN also works well in terms of medical image diagnosis, which contributes to
the study domain.
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Figure 11 Graphical representation of the models’ accuracies on the BUSI dataset

Figure 12 depicts the loss values of the CapsNet (0.0083), GCN (0.0064), and CNN (1.5582).
The loss values represent the total of the deep learning models’ mistakes. In this study, the
significant findings obtained by the loss function on the BUSI dataset measure how effectively
(or poorly) the models perform. The results generated by the models used to train the BUSI
dataset demonstrate how well the model parameters are designed, giving us a minimum value.
It should be noted that the loss function aided in the optimization of the models during training
on the BUSI dataset.

Model Losses

—— Training_CNN
05 —— Training_CapsNet
—— Training_GCN
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0.3
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0.1

0.01
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Figure 12  Graphical representation of the loss function of the models on the BUSI dataset

Additionally, the receiver operating characteristics (ROC) of the models were calculated
for each of the deep learning models. The Receiver Operating Characteristics (ROC) scores
are used to assess the efficacy of the models. The ROC score is a well-known deep learning
assessment metric. The capacity of a classification model to differentiate between the breast
masses data across numerous classification criteria is measured by the ROC. Figure 13 presents
the ROC scores of the models employed in this study.

ROC Curve
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Figure 13 The ROC curves of the models on the BUSI dataset

According to the ROC values shown in Table 4 above and summarized in Figure 13, the
CapsNet attained a value of 0.9942, followed by CNN with 0.9556 and the GCN with 0.9538.
The ROC plot displays the models’ true positive rate (TPR) vs. false positive rate (FPR) at
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various categorization levels.

4.3 Performance of the DL models on the US — BUSI dataset

This section also shows how the deep learning models performed on the US - BUSI dataset.
The subsections that follow provide in-depth examination of the results.

4.3.1 Interpretability of the US — BUSI dataset

Figure 14 and 15 depict the Grad-CAM of each model used on the US - BUSI dataset. The
dataset is classified as benign or malignant. The Grad-CAM is then used to investigate and test
the models that were created to train the dataset. Grad-CAM is a key part of model analysis in
medical image diagnostics, it should be stressed.

Original Image - Benign CNN CAM - Benign CapsNet CAM - Benign

GCN CAM - Benign

100 100

120 120
0 20 40 60 80 100 120

Figure 14 Grad-CAM of the models on the benign image of the US-BUSI dataset
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Figure 15 Grad-CAM of the models on the malignant image of the US-BUSI dataset

4.3.2 The models evaluation on the US — BUSI dataset

Table 5 shows the performance of the deep learning models used in this study to train the US
- BUSI dataset. The findings show that the models performed well in terms of the assessment
criteria of accuracy, loss, precision, recall, specificity, and ROC values. The Gabor capsule
network performed the best in training the US - BUSI data, with an accuracy of 97.08%,
followed by the capsule neural network with an accuracy of 96.67%, and the convolutional
neural network performed the worst, with an accuracy of 95.42%. It should be noted that the
dataset used to train the models is binary in nature, with two outcomes, hence benign and
malignant.

Table 5 Performance evaluation of the models on US — BUSI dataset

Model Accuracy Loss Precision Recall Specificity ROC score
CapsNet 0.9667 0.0044 0.9440 0.9916 0.9421 0.9964
GCN 0.9708 0.0024 0.9355 0.9748 0.9339 0.9911
CNN 0.9542 0.5601 0.9355 0.9748 0.9339 0.9856

Although the CapsNet did not attain the best accuracy, it outperformed the other models
in terms of precision (0.9440), recall (0.9916), and specificity (0.9421). In terms of precision
(0.9355), recall (0.9748), and specificity (0.9339), the highest performing model, the GCN,
attained the same results as the CNN model. Furthermore, the GCN earned the best error score
of 0.0024 on the US - BUSI data, followed by the CapsNet with a score of 0.0044 and the CNN
with a value of 0.9542. The loss values (error scores) indicate how successfully the models were
trained to anticipate the classification analysis.

Figure 16, 17, and 18 below illustrate the confusion matrices CapsNet, GCN, and CNN,
respectively, to help comprehend the accuracies attained by the models used in this investigation.
The accuracies of the models, as described by the confusion matrices, reveal an equitable
distribution of the in the categorization of the benign and malignant classes of the US - BUSI
data.
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Figure 16 Confusion matrix of the CapsNet model on the US — BUSI dataset
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Figure 17 Confusion matrix of the GCN model on the US — BUSI dataset
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Figure 18 Confusion matrix of the CNN model on the US — BUSI dataset

In addition, Figure 19 shows a graphical depiction of the accuracies attained by the CapsNet,
GCN, and CNN models used to train the US - BUSIS dataset. The GCN model got the highest
accuracy in training the US - BUSI data, followed by the CapsNet and CNN models. When it
comes to binary data analysis, the models produced significant results in terms of accuracies
and demonstrated their ability to categorize breast cancer masses.

Model Accuracies
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Figure 19 Graphical representation of the models’ accuracies on the US — BUSI dataset
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Furthermore, loss value scores are required for the summing of mistakes in model training.
These error ratings demonstrate how well the models performed on the dataset. The Gabor
capsule network earned the best error score of 0.0024, implying that it performed better than
the other models. In terms of error score, CapsNet earned a value of 0.0044, whereas CNN
achieved a value of 0.5601. Figure 20 shows a summary of the error scores obtained by the deep
learning models. The minimum scores show how well the deep learning models performed in
the training analysis on US - BUSI data with well-trained configuration parameters.
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Figure 20 Graphical representation of the loss function of the models on the US — BUSI
dataset

In terms of model evaluation, the receiver operating characteristics (ROC) were used to the
US - BUSI dataset used to train the deep learning models. These ROC scores are critical for
determining the performance of deep learning models, which also serve as a learning assessment
tool. Figure 21 shows the ROC scores obtained by the models. CapsNet received the best
score of 0.9964, surpassing the GCN, which also received 0.9911. The CNN model, which
performed the worst on the US-BUSI data, had a ROC value of 0.9865. The ROC values, which
are significant, forecast the true positive rate (TPR) vs. the false positive rate (FPR) of the
models.
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Figure 21 The ROC curves of the models on the US — BUSI dataset

4.4 Summary of the DL models on the BUSI and US — BUSI
datasets

The capsule neural network, Gabor capsule network, and convolutional neural network
were applied to the BUSI dataset in this work. The BUSI dataset has three classifications:
benign, normal, and malignant. This should be acknowledged, thus, a multiclass data. We
computed each model’s accuracy, loss, precision, recall, specificity, and ROC score. With a
model accuracy score of 93.62%, Capsule network led the field, followed by convolutional
neural network with a score of 91.76%. The accuracy rating of 88.83% was the lowest for the
Gabor capsule network. Additionally, the results demonstrate that the models fared well when
evaluated using the binary (benign and malignant) US-BUSI data in terms of accuracy, loss,
precision, recall, specificity, and ROC values. With an accuracy of 97.08%, the Gabor capsule
network outperformed the other two in training the US - BUSI data: the convolutional neural
network did lowest, with an accuracy of 95.42%, and the capsule neural network came in second
with a 96.67% accuracy. Given that labeled data might be difficult to collect, medical datasets
are frequently small. The annotation of medical images necessitates specialized expertise, which
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adds to the time and expense of creating huge datasets. Because of this restriction, the model’s
capacity to generalize may be hampered, and the likelihood of overfitting may rise. However, in
order to train the models and assess their effectiveness, the study used two different datasets
of ultrasound images. Furthermore, an unbalanced set of data might result in a model that is
biased in favor of the majority class, which lessens the model’s ability to identify essential but
uncommon situations. The datasets were altered to a maximum value of 500, which had an
effect on the decision threshold, in order to guarantee that there was no data imbalance during
the augmentation processes. The models in the study use cutting-edge deep learning methods to
enhance breast cancer categorization, including CNNs and capsule networks. These models
provide higher accuracy by automatically extracting hierarchical features from data, as opposed
to more conventional methods like manual feature extraction and standard machine learning.
Their performance depends on the amount and variety of the dataset, and for better performance,
any overfitting issues are taken into account. The models perform better than certain current
approaches, and because they employ two independent datasets, their applicability to other
datasets and clinical circumstances is still exceptional. This highlights the need for further
validation and improvement of the models in relation to well-established methodologies in the
literature.

5 Discussion

Many imaging modalities are being studied for early diagnosis in the ongoing study of
breast cancer detection. The BUSI and US-BUSI breast ultrasound datasets were utilized in
this study to classify breast cancer using deep learning algorithms. Extensive data preparation
and hyperparameter tweaking were performed on these datasets in order to maximize model
performance. The study utilized three advanced models: the convolutional neural network
(CNN), Gabor capsule network (GCN), and capsule neural network (CapsNet). These models
were assessed using metrics including recall, specificity, accuracy, loss, precision, and ROC.
The findings highlight how well deep learning algorithms classify breast cancer cases. Notably,
the Gabor capsule network performed exceptionally well on the binary dataset with an accuracy
of 97.08%, while the capsule neural network earned the maximum accuracy (93.62%) on the
multiclass dataset. This result implies that, although the capsule neural network has potential in
handling more complicated, multiclass situations, the Gabor capsule network may be especially
well-suited for binary classification tasks. These findings support the promise of deep learning
models to improve breast cancer diagnosis by demonstrating their versatility in processing
various forms of diagnostic medical data. The datasets in the study were trained using state-
of-the-art approaches, which is noteworthy. The study highlights these deep learning models’
durability and adaptability in medical image analysis by effectively applying them to both
binary and multiclass datasets. This dual capacity is important since it shows that these models
are not restricted to a particular kind of classification problem, but may be used to efficiently
address a variety of diagnostic difficulties. The study’s significance and importance within
the scientific community are increased by its broad application. This study highlights the
advantages of capsule networks and Gabor capsule networks in training medical images for
efficient decision-making, despite the widespread usage of CNNs in medical imaging study.
Compared to typical CNNs, capsule networks—which are recognized for maintaining spatial
hierarchies in the data—and Gabor capsule networks—which use Gabor filters to capture texture
and edge information—offer a number of advantages. The models have exhibited exceptional
efficacy in this investigation, specifically for the categorization of breast cancer, hence providing
compelling evidence for their wider implementation within the domain. The capacity of the
study to train on a variety of breast cancer samples from two different datasets adds to its
originality. This methodology places the study at the forefront of current research in breast
cancer diagnosis while also validating the models’ resilience across many data sources. Although
deep learning methods have been extensively explored in other research, the combination of
CNNs, Gabor capsule networks, and capsule networks in this study offers a novel viewpoint
on the categorization of breast masses and offers important new insights for the continuous
development of Al in medical diagnostics.

6 Limitations

By utilizing deep learning models, the study generated an improved categorization of breast
cancer illness. Nonetheless, it is important to note several limitations. The study’s initial set of
data were secondary, and further data from different areas will improve the applicability of the
model. Moreover, there may be an improvement in the deep learning classifiers’ performance.
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The study’s evaluation of only a few deep learning models was probably constrained by the
limitations of the dataset that was made accessible. Due to the restricted investigation, it is
possible that models or architectures that may have been more successful were overlooked,
which could have improved classification performance. Extensive validation in a variety of
clinical contexts is necessary to guarantee the models’ applicability in real-time settings. By
doing so, it would be possible to close the gap between experimental research and real-world
application and guarantee that the models can accurately aid in the detection of breast cancer in a
variety of clinical settings. With the current framework, further work may be done to contribute
to classifiers that perform better, which will increase detection performance.

7 Conclusions and future outlook

Breast cancer is a prevalent disease where early detection significantly reduces mortality.
This study introduced novel deep learning techniques for classifying breast ultrasound images,
using binary and multiclass datasets with preprocessing and hyperparameter tuning. The models
employed—capsule network, Gabor capsule network, and convolutional neural network—
demonstrated strong performance, with the capsule network excelling in binary classification
(93.62% accuracy) and the Gabor capsule network leading in multiclass classification (97.08%
accuracy). Despite potential improvements from unexplored models, the study offers a unique
approach using capsule and Gabor filters, contributing to medical diagnostics. The research
aims to expand data availability and deploy the top models in mobile apps for global use.
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