
Curr Cancer Rep, 2025, 7(1): 254-268
DOI: 10.25082/CCR.2025.01.001

RESEARCH ARTICLE

Association between Ribosomal Protein Gene Dysregulation and Tumor Biodiversity
of Hepatocellular Carcinoma

Zhimin Lu1 Sicong Xu2 Guofeng Zhao3 Ziyi Niu4 Guoxin Hou5∗

1 Department of Outpatient, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
2 Geneplus-Beijing Institute, Peking University Medical Industrial, Beijing, China
3 Beijing Moyin Biotechnology, Beijing, China
4 The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
5 Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China

Correspondence to: Guoxin Hou, Department of On-
cology, Affiliated Hospital of Jiaxing University, The
First Hospital of Jiaxing, Jiaxing, Zhejiang, China;
Email: gxhou91@163.com

Received: November 15, 2024;
Revised: March 28, 2025;
Accepted: April 10, 2025;
Published: April 15, 2025.

Citation: Lu Z, Xu S, Zhao G, et al. Association
between Ribosomal Protein Gene Dysregulation and
Tumor Biodiversity of Hepatocellular Carcinoma. Curr
Cancer Rep, 2025, 7(1): 254-268.
https://doi.org/10.25082/CCR.2025.01.001

Copyright: © 2025 Zhimin Lu et al. This is an open
access article distributed under the terms of the Cre-
ative Commons Attribution-Noncommercial 4.0 Inter-
national License, which permits all noncommercial use,
distribution, and reproduction in any medium, provided
the original author and source are credited.

Abstract: Background: Tumor cells are characterized by a higher production of ribosomes,
which are necessary for maintaining enhanced cell growth and subsequent cell division. Aim:
The study aimed to develop a prognostic RPL score for hepatocellular carcinoma (HCC) and
explore its association with immune evasion mechanisms mediated by tumor microenviron-
ment alterations. Methods: Using single-sample gene set enrichment analysis (ssGSEA),
an RPLscore was constructed to estimate the dysregulation of ribosomal protein large (RPL)
genes. The expression of RPL genes and their association with clinical outcomes and the
tumor microenvironment (TME) were systematically investigated using bulk-seq and single-cell
RNA-seq (scRNA-seq). Results: High expression levels of RPL in HCC were associated with
poorer overall survival (OS) (P < 0.001). The RPL score evaluated the RPL gene and verified its
independent prognostic value for both OS and relapse-free survival (P = 0.0074 and P < 0.001,
respectively). TME analysis indicated that RPL gene dysregulation was closely associated with
T cell exhaustion, myeloid-derived suppressor cell (MDSC) infiltration, and vascular dysplasia
may be promoted by arginine deficiency (P = 7.6 × 10−10). The scRNA-seq data suggested
that the RPL score was positively and significantly associated with the tumor biodiversity score
(ITH score). Conclusion: The study highlights the prognostic value of the RPL score and its
potential role in mediating immune evasion of HCC, which may provide an impetus for the
development of new targets for the treatment of HCC.

Keywords: Hepatocellular carcinoma, Ribosome protein large (RPL) genes, tumor microenvi-
ronment (TME)

1 Introduction
The ribosome is an important organelle for intracellular protein synthesis that influences

the normal functioning of cells. Studies have shown that ribosomal proteins are not only
closely related to the malignant biological behavior of tumors [1] but also significantly influence
the process of endogenous antigen extraction [2]. Ribosomal biosynthesis is also related to
the epithelial-mesenchymal transition (EMT) of tumor cells [3]. The regulation of ribosome
biogenesis is a crucial area of study in hepatocellular carcinoma (HCC), the third leading cause
of cancer deaths globally. Prior research has highlighted the significance of ribosome production
factors, particularly RPF2 from the BRIX family, in tumor biology [4].

The function of ribosomal proteins is also significantly related to the metastasis of circulating
tumor cells [5]. Genes coding for ribosomal proteins and translation regulators are abundant
in metastatic tumor cells [6]. Overexpression of RPL15, which encodes a component of the
large ribosomal subunit, increases metabolic growth in multiple tissues and selectively enhances
the translation of other ribosomal proteins and cell cycle regulators. This underscores the
critical role of ribosomal function in regulating tumor proliferation, metastasis, and the tumor
microenvironment (TME). Despite this, comprehensive landscape analyses integrating ribosomal
protein function with the TME, metabolism, and genomic context of hepatocellular carcinoma
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(HCC) remain underexplored. Recent evidence also supports the notion that targeting ribosome
biogenesis in tumor cells represents a promising strategy for the development of specific
powerful anticancer drugs [1–3, 5]. However, the association between ribosome inhibition and
the evolution of TME is still unclear.

In this context, the study leverages the TME deconvolution algorithm, machine learning
techniques, and multi-omics data to dissect the interaction between the RPL pathway and the
TME in HCC. Herein, with the application of the TME deconvolution algorithm, machine
learning algorithm, and multi-omics data of HCC, the interaction between the RPL pathway
and the TME of HCC was investigated. The findings show that ribosome pathway dysregulation
is closely associated with the TME of HCC and metabolism. Altogether, these findings indicate
that targeting the ribosomal pathway may induce normalization of the TME of HCC and
facilitate immune cell function through metabolic reprogramming.

2 Methods
2.1 Data source and preprocessing

Transcriptomic and matched clinical data from patients in TCGA were downloaded from
the TCGA data portal (https://portal.gdc.cancer.gov/) in April 2020. The RNA-seq count data
were transformed into TPM [7] to calculate the RPLscore and other gene signature scores using
ssGSEA methodology. Updated clinical and pathological information for TCGA samples were
obtained from the Genomic Data Commons (GDC) using the TCGAbiolinks R package [8].
Transcriptomic data and associated clinical data from GSE14520 were obtained from the GEO
dataset website using the GEOquery R package. Genomic data were analyzed using R (version
4.1.0) and the R Bioconductor package.

2.2 Consensus clustering for TME-infiltrating cells
Tumors with qualitatively differential expression patterns of RPL were grouped by hierarchi-

cal agglomerative clustering (based on Euclidean distance and Ward’s linkage). Unsupervised
clustering methods (K-means) [9] for dataset analysis were used to identify RPL gene patterns
and classify the patients for further analysis. A consensus clustering algorithm was applied to
determine the number of clusters in The Cancer Genome Atlas liver hepatocellular carcinoma
(TCGA-LIHC) cohort to assess the stability of the clusters. This procedure was performed using
the ConsensuClusterPlus R package [10] and was repeated 1,000 times to ensure classification
stability.

2.3 Dimension reduction and generation of RPLscore
An unsupervised clustering method (K-means) for the analysis of RPL genes was used to

classify patients into two groups for further analysis (Figure 1B). Subsequently, the random
forest classification algorithm was used to perform dimension reduction to reduce noise or
redundant genes [11]. Next, 62 RPL genes (Table S2) were extracted and used to calculate the
RPL score using the ssGSEA method [12].

2.4 Inference of Immune Cell fraction and Signature Score
Several computational tools (CIBERSORT, MCP-counter, EPIC, and xCell) [1, 14–17] were

integrated to estimate infiltration of immune cells in the TCGA-LIHC RNA-seq cohort. By the
approach of gene set variation analysis (GSVA) algorithm [12], Gene Ontology (GO) [18], Kyoto
Encyclopedia of Genes and Genomes (KEGG) [19], REACTOME [20], and HALLMARK [21]
gene sets were used to estimate the pathway enrichment scores for each of the samples. Other
prevalent gene signature scores concerning the TME, that is, the tumor intrinsic pathway and
metabolism, were calculated for each sample using the Immuno-Oncology Biological Research
(IOBR) R package.

2.5 Differentially expressed genes (DEGs) analysis
All differential expressed gene analyses were conducted using the DESeq2 package [22].

DEGs analysis was performed using a generalized linear model along with the Wald statistical
test, assuming that the underlying gene expression count data were distributed in a negative
binomial distribution using DESeq2. DEGs with p-value < 0.05 were considered for further
analysis. The adjusted p for multiple testing was calculated using the Benjamini-Hochberg
correction [23].

Current Cancer Reports • SyncSci Publishing 255 of 268

https://www.syncsci.com/journal/CCR
https://www.syncsci.com


Volume 7 Issue 1, 2025 Zhimin Lu, Sicong Xu, Guofeng Zhao, et al.

2.6 Functional and pathway enrichment analysis
Gene annotation enrichment analysis was performed using the clusterProfiler R package [24].

GO [18] and KEGG [19] terms were identified with a strict cutoff of p < 0.01 and a false
discovery rate (FDR) of less than 0.05. Pathways that were up- and downregulated among
groups were identified by running GSEA [25] of the adjusted expression data for all transcripts.

2.7 scRNA-seq data processing
An R-based toolkit, Seurat (version 4.0.4) [26], was used to analyze the scRNA-seq data.

Specifically, the raw unique molecular identifier (UMI) matrix was processed to filter out genes
detected in less than 10 cells and cells with fewer than 200 genes. The number of genes and
UMI counts for each cell was quantified, and high-quality cells with thresholds of 500 UMIs,
100 genes, and less than 25% mitochondrial gene counts were preserved to ensure that most
of the heterogeneous cell types were included for downstream analyses. DoubletFinder [27]
was then applied to each sequencing library to remove potential doublets with an expected
doublet rate of 10%, and cells with double scores (DF pANN) larger than the 90% quantile were
filtered out. The normalized expression matrix was calculated based on the raw UMI counts
after normalizing the total counts per cell (library size), scaled by 1e6, and logarithmically
transformed. Individual sea objects were then integrated using the canonical correlation analysis
(CCA) function. The top 2,000 most variable genes from each sample were combined to identify
the CCA vector.

2.8 Cell annotation
The gene expression values of the cells from a previous single-cell study [28] with cell

annotation were used to train the prediction model using the maximum attribute dependency
(MDA) algorithm, following the analysis step of the scPred package [29]. The model was then
used to predict specific cell types of integrated data from the 19 scRNA-seq datasets.

2.9 Statistical analysis
The normality of the variables was tested using the Shapiro-Wilk normality test [30]. For

comparison of two groups, statistical significance for normally distributed variables was esti-
mated using unpaired Student’s t-test, and non-normally distributed variables were analyzed
using the Mann-Whitney U test. For comparisons of more than two groups, Kruskal-Wallis and
one-way ANOVA tests were used for non-parametric and parametric methods, respectively [31].
The correlation coefficient was calculated using Spearman and distance correlation analyses.
Two-sided Fisher’s exact test was used to analyze contingency tables. The best cutoff value in
each dataset was evaluated based on the association between the survival outcome and RPL
score in each dataset, using the survminer package. The Kaplan-Meier method was used to
generate survival curves for the subgroups in each dataset, and the log-rank (Mantel-Cox)
test was used to determine statistically significant differences. All statistical analyses were
conducted using R (https://www.r-project.org/), and p values were two-sided. Furthermore, p
values of less than 0.05 were considered statistically significant.

3 Results
3.1 RPL gene cluster was associated with HCC survival

Transcriptomic data of the RPL genes from TCGA-LIHC [32] were used to generate a forest
plot. According to the forest plot, most RPL genes were significantly negatively correlated with
poor prognosis in patients with HCC (Figure 1A). RPL genes that were statistically associated
(P < 0.05) with OS were retained for clustering. Notably, patients with RPL genes could be very
stable and could be clustered into two categories: C1 and C2, respectively (Figure 1B). Survival
analysis indicated a significant difference between the two clusters of LIHC. C1 patients (i.e.,
those with high expression of the RPL gene) had significantly poorer OS than C2 patients
(Figure 1C). The relationship between the RPL gene cluster and the tumor stage of patients was
analyzed, and it was found that C1 tumors were significantly enriched in HCC at an advanced
stage (Figure 1D, P = 0.008). Using data concerning TME subtype [34] in a previous study, it
was observed that C1 HCC was more of an immune desert tumor (47.79%), while C2 HCC was
more of an inflammatory type and immune expulsion phenotype (Chi-squared test, P = 0.025).
Consistently, another type of immunophenotyping [35] also revealed a similar phenomenon
(Figure 1F, chi-squared test, P = 8.269–10). These results indicated that RPL genotyping was
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not only associated with the prognosis of HCC but may also be related to the evolution of the
TME in HCC.

Figure 1 High ribosome protein large gene expression associated with poor prognosis of liver
cancer

Notes: A. Forest plot of most significant RPL genes which correlated with liver cancer overall survival. B. Clustering of
RPL genes in TCGA-LIHC cohort. C. Kaplan-Meier survival analysis demonstrated that RPL gene activation (C1, cluster
1) was associated with worse overall survival than C2 (Cluster 2) tumors. (P < 0.0001, Hazard Ratio = 2.17, 95% CI: 1.54
-– 3.07). D. Proportion of tumor stage in RPL gene cluster 1 and 2. E. Proportion of immune phenotypes in RPL gene
clusters 1 and 2. D: immune desert, F: fibrotic, IE: immune-enriched, IE/F: immune-enriched, fibrotic. F. Proportion of
immune phenotypes in RPL gene clusters 1 and 2. C1: wound healing; C2: IFN-γ dominant; C3: inflammatory; C4:
lymphocyte-depleted.

3.2 Construction and clinical significance of RPLscore
To better evaluate the RPL gene and its pathway in other HCC datasets, an RPL gene signature

that could specifically quantify RPL-related gene clusters (Figure 1A) was constructed using a
random forest algorithm, and the RPL score of each sample was obtained using the ssGSEA [32]
methodology. The RPL score could significantly distinguish between patients with C1 and C2
HCC (Figure 2A) and was significantly correlated with the prognosis of HCC patients, whether
taking the average value as a cutoff or three categories (Figure 2B). The same method was
used for other HCC datasets (GSE14520) [36] and verified that the RPL score was significantly
correlated with overall survival and relapse-free survival of HCC (Figure 2D-F). The RPL score
remained significant in a multivariate model that included age, stage, and sex, which indicated
that it was an independent prognostic factor (Figure 3A, P = 0.002). Furthermore, the RPL score
of the tumor tissue was significantly higher than that of the adjacent normal tissue (Figure 2G)
and was significantly positively correlated with the metastasis risk score and alpha-fetoprotein
(AFP) levels defined by the researcher (Figure 2H-I). However, the data did not show that the
RPLscore was associated with hepatitis B virus (HBV) infection in the liver (Figure 2I). These
findings suggested that higher expression of the RPL gene was a poor prognostic factor for
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HCC.

Figure 2 RPLscore is an independent prognostic biomarker of liver cancer
Notes: A. RPLscore was statistically high in C1 tumors (P ¡ 2.2 × 10−16). B. Kaplan-Meier survival analysis
demonstrated that a lower RPL score was significantly related to more favorable overall survival in the TCGA-LIHC cohort
(P = 0.0074, Hazard Ratio = 1.63, 95% CI:1.14 -– 2.32). C. Overall survival analysis showed that when we divided the
RPL score into three parts, the statistical difference was still significant in the TCGA-LIHC cohort. (P = 0.0336) D.
Kaplan-Meier survival analysis demonstrated that a lower RPL score was significantly related to more favorable overall
survival in the GSE14520 cohort (P = 8 × 10−4, Hazard Ratio = 1.99, 95% CI:1.33 -– 2.98). E. Overall survival analysis
showed that when we divided the RPL score into three parts, the statistical difference was significant in the GSE14520
dataset. (P = 1 × 10−3) F. Kaplan-Meier survival analysis demonstrated that a lower RPL score was significantly related
to more favorable recurrence-free survival in the GSE14520 cohort (P = 9 × 10−14, Hazard Ratio = 1.77, 95% CI:1.26 -–
2.49). G. The box plot compares the RPL score of tumor and normal tissues (P = 3 × 10−14). H. The box plot compared
the RPL score of high and low metastasis score liver cancer (P = 1.4 × 10−8). I. The box plot compared the RPL score of
liver cancer with high and low AFP levels (P = 1.3 × 10−5). J. The box plot revealed that the RPL score was not
associated with HBV infection (P = 0.68).

3.3 The immune landscape of RPL gene clusters
Various TME deconvolution algorithms [3, 14, 17, 37] and TME-related gene signatures [37]

were applied to evaluate the microenvironment of each liver tumor, and correlations were
estimated between these variables and RPL gene clusters in batches. It was observed that
the deoxyribonucleic acid (DNA) mismatch repair pathway, cell cycle, and T cell infiltration
were significantly upregulated in C1 tumors (Figure 4A-C). Although more T cells and B cells
infiltrated these tumors, no significant differences were found between these two groups through
the clonality and diversity analysis of B cells and T cell receptors (Figure 5B-E). It was also
observed that C1 tumors had greater cell aggregation with immunosuppressive phenotypes
(such as M2 macrophages and MDSCs). Furthermore, most immune checkpoint genes (CTLA4,
PDCD1, LAG3, HAVCR2, and TIGIT) were upregulated in C1 tumors (Figure 4D), whereas
T cell activation-related genes, i.e., CXCL10 and B2M, were significantly upregulated in C2
tumors (Figure 4E-F). These results indicate that C1 tumors are immune-exhausted, which
may facilitate tumor progression [38]. Consistently, the data revealed that C2 tumors exhibited
significantly higher infiltration of M1 macrophages, dendritic cells, adipocytes, endothelial
cells, and hepatic astrocytes (Figure 4C). This suggests that C2 tumors may exhibit a more
pronounced immune activation [39]. Therefore, it was speculated whether there was a difference
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in tumor purity between C1 and C2 tumors, but the data showed that there was no difference
in tumor purity (i.e., ABSOULTE score) [40] between C1 and C2 tumors (Figure 3F). C1
tumors had a higher mutation rate than C2 tumors, but the difference was not statistically
significant (P = 0.054, Figure 3G). These findings suggest that the microenvironment of C2
tumors may be more similar to that of a normal liver. Principal component analysis (PCA)
using the microenvironment variables confirmed this speculation (Figure 4D). Relevant data
also partly explain why the prognosis of C1 tumors was significantly different from that of C2
tumors (Figure 1B). Vascular dysplasia was observed in C1 tumors [41], which was previously
reported to be regulated by suppressive immune cell types [42, 43] (Figure 3H-I). Analysis
of differentially expressed genes [42] (Table S4) and GSEA [45] in patients with C1 and C2
tumors revealed that the DNA mismatch repair pathway and MYC pathway activation were
significantly enriched in C1 tumors (Figure 4E), which was consistent with the results of the
ssGSEA analysis (Figure 4A) and findings of previous studies [44].

Figure 3 Multivariable cox regression in GSE 14520 chort
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Figure 4 The tumor microenvironment difference between two RPL gene clusters
Notes: A. The heatmap demonstrated clustering of tumor microenvironment cells and relevant gene signatures of
hepatocellular carcinoma (TCGA-LIHC). B. The box plot indicated that the cell cycle, DNA damage response,
homologous recombination, and mismatch repair pathways were upregulated dramatically in C1 tumors (P = 5.4 × 10−12,
1.6 × 10−8, 5.2 × 10−12, 1.3 × 10−9). C. The box plot revealed that the number of adipocytes, B cells, endothelial
cells, and hepatocytes was significantly higher in C2 tumors. Conversely, T and pro-B cells were enriched in C1 tumors. D.
Principal component analysis indicated that the tumor microenvironment of C2 tumors was more similar to that of the
normal liver. E. GSEA revealed that DNA repair and the E2F and MYC pathways were enhanced in C1 tumors.

3.4 RPLscore-relevant metabolism of HCC
Ribosome biogenesis is one of the most multifaceted and energy-demanding biological

processes [1]. In the above-mentioned study, it was found that the TME and adipocytes of
HCC were significantly correlated with the RPL gene cluster (Tables S5–6). It was speculated
that there may be great differences in tumor metabolism between these two types of patients.
Therefore, 144 metabolic pathways, as defined in a previous study [45], were used to evaluate
their correlations (Figure 6A). The results showed a good relationship with the TME mentioned
above. C2 tumors had significantly higher fatty acid catabolism, arginine biosynthesis, and
steroid metabolism (Figure 6B-E). C1 tumors showed significantly activated purine metabolism
and deficient arginine biosynthesis (Figure 6B). Arginine is the key raw material for the activation
of T cells and the formation of immune memory. These results partly explain the metabolic
reasons for the immunosuppressive phenotype of C1 tumors. Using the GSE14520 data, the
close relationship between these metabolic pathways and RPL score was further reproduced
(Figure 5A-E).
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Figure 5 Relationship between these metabolic pathways and RPL score

Figure 6 Integrated Analysis of RPL Gene Clusters and Metabolic Pathways in HCC Subtypes

Notes: A. The heatmap shows the landscape of the differential metabolic pathways in C1 and C2 liver tumors. For each
patient (columns), significant metabolism (rows annotated on the right) was identified. The column annotations represent
high (red) and low (blue) TMEscores. Colors (blue to red) represent the corresponding metabolic levels (low to high). B.
The boxplot showed the statistical difference of metabolism exhibited in heatmap. C. A scatter plot demonstrated a close
correlation between the RPL score and arginine biosynthesis (r = -0.318, P = 7.6 × 10−10). D. A scatter plot demonstrated
a close correlation between the RPL score and steroid hormone metabolism (r = -0.334, P = 9.3 × 10−11). E. A scatter
plot demonstrated a close correlation between the RPL score and fatty acid degradation (r = -0.287, P = 3.4 × 10−8).
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3.5 Genomic variation correlates with RPLscore
To explore the malignant biological behavior of HCC mediated by the upregulation of RPL

genes, the genomic data of TCGA-LIHC were further used to identify specific mutations that
may be related to the RPL score. Using the data of full exon sequencing, it was noticed that
tumor mutational burden (TMB) was significantly higher in the high RPL score group (P = 0.012,
Figure 7A). Furthermore, ARID1A (12% vs. 3%) and TRPM6 mutations (6% vs. 1%) were
significantly enriched in HCC patients with high RPLscore (Figure 7B-C). The data also showed
that patients with the ARID1A mutation had a higher RPL score than those with wild-type
tumors (Figure 7D). Recent studies have shown that the ARID1A mutation is closely related to
the tumor mismatch repair system [46], which was confirmed by significant activation of the
mismatch repair pathway in C1 tumors (Figure 7A-B). However, according to the mutation spot
analysis results, no hotspots of ARID1A were enriched in tumors with higher RPLscore (Figure
7E). This was most likely caused by a lack of patients. Next, the copy number alterations of
RPL-related genes in the TCGA cohort were analyzed, but no genes or sum of RPL genes with
a significant trend of variance among RPL gene clusters were identified (Figure 7F-G).

Figure 7 Malignant biological behavior of HCC mediated by the upregulation of RPL genes

3.6 RPLscore was associated with the biodiversity of liver tumors
in single-cell resolution

To determine which cell type upregulated RPL genes, single-cell RNA-seq data from an
HCC study [47] were used, which contained 19 samples derived from liver tumors. First, a
serious batch effect between Datasets 1 and 2 was observed, which may contribute to misleading
results of the analysis shown in Figure 8A. After cell filtration (see Methods section) and
elimination of doublets [48], the CCA method [26] was used to eliminate the batch effect among
samples (Figure 8B). The scPred tool [29] was used to automatically annotate the single-cell
data according to previous annotations. Through this procedure, a total of 8,308 cells were
obtained, including 2,802 T cells, 1,222 B cells, 819 myeloid cells, 1,490 endothelial cells,
973 fibroblasts, and 1,490 epithelial cells. Using t-distributed stochastic neighbor embedding
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(t-SNE) (Figure 9A), clustering among the different cell types was observed. Marker genes
of cells also provided further proof of the stability of the annotation results (Figure 8C). For
example, epithelial cells had high expression of KRT19, and T cells had upregulated CD3D,
CD4, CD8, etc., whereas myeloid cells exhibited significantly higher expression of CD14,
CD163, and CD68. To evaluate the relationship between RPLscore and single-cell phenotype,
the genes that positively correlated with RPLscore were used to estimate each cell using the
AUCell algorithm [49]. The resultant data showed that malignant cells had higher up-regulation
of RPLscore (Figure 9B-C). Furthermore, the average RPLscore of tumor cells was used as the
RPLscore of each sample and was found to be significantly positively correlated with the tumor
biodiversity score (ITH score) defined by a previous study [47], which was significantly relevant
to resistance to immunotherapy. This suggests that upregulation of the RPL gene is significantly
correlated with tumor heterogeneity, which may further mediate therapeutic resistance. The
tumor cells (with a resolution of 0.3 of integrated data) were further classified and four subtypes
were identified. Of these, Type 3 and Type 2 tumor cells had a significantly higher RPL score (P
< 2.2 × 10−16). Enrichment analysis and evaluation of metabolic pathways revealed that these
cell types showed enhanced metabolic activity, with upregulated metabolic pathways related
to various drugs. Conversely, antigen-presenting pathways were predominantly upregulated in
Type 0 and Type 1 cells (Figure 9G-H). These results explain why B2M and CXCL10 genes
were upregulated in C2 tumors (Figure 4E), which may induce anti-tumor immunity. These
results also suggest that RPL gene dysregulation may facilitate tumorigenesis through metabolic
reprogramming and drug metabolism, which induces tumor evolution and immune evasion.

Figure 8 Batch effect between datasets 1 and 2
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Figure 9 PRLscore was associated with tumor biodiversity and immune invasion

Notes: A. TSNE plot shown the clustering of all cell types. B. FeaturePlot shown the RPLscore was highly upregulated in
malignant cells. C. Scatter plot indicated the correlation between RPLscore and tumor biodiversity score. D. Boxplot
shown the distribution of RPLscore in each sample E. Cell type re-clustering and dimension plot. F. Distribution of
RPLscore between four malignant cell types. G. Enrichment analysis of differential expressed genes between four
malignant cell types. H. Differential metabolism signatures between four malignant cell types.

4 Discussion
In this study, the relationship between RPL gene expression and the biological behavior of

HCC was explored by integrating transcriptome, genomic, immunogenomic, and metabolomic
data. It was found that dysregulation of RPL was associated with poorer OS and relapse-free
survival in patients with HCC. Furthermore, the comprehensive analysis demonstrated that
ribosome biogenesis is a promising target pathway in HCC. It was largely assumed that cancer
cells become addicted to ribosomes owing to their enhanced need for protein production to
maintain their unrestricted growth [1]. However, the relationship between the ribosomal pathway
and TME of HCC, as well as the metabolic landscape, is largely unknown.

By employing the bootstrapping method [33], hepatocellular carcinoma (HCC) was robustly
classified into two distinct clusters. The analysis of the tumor microenvironment (TME) revealed
that tumors with higher RPL gene expression exhibited increased infiltration of cells with an
immunosuppressive phenotype. Conversely, tumors expressing lower levels of the RPL gene
displayed a TME closely resembling that of the normal liver microenvironment. This shows that
the normalization of TME is a factor that should not be neglected in the treatment of HCC [50],
which also suggests that RPL gene dysregulation may drive the immune suppressive phenotype
of tumors.

Moreover, the key factor leading to heterogeneity in the tumor environment is probably
the imbalance in the RPL pathway. It was also found that C1 tumors (high RPL score) had
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significantly more vascular dysplasia, which was reported to be related to the presence of
immunosuppressive cells in the tumor, such as MDSCs and macrophages. Metabolic pathway
analysis explained that C1 tumors had more T cell infiltration with an immunosuppressive
phenotype because of the lack of arginine biosynthesis in the TME. Arginine consumption by
MDSCs, macrophages, and tumor cells [51] induces T cell exhaustion, which may promote
immune evasion and proliferation of cancer cells. Furthermore, ribosomal protein synthesis
requires a large amount of arginine, which exacerbates the lack of arginine in the TME [52].

To identify the intrinsic mechanism of ribosome dysregulation, genomic data from TCGA
were used to identify the most related mutations or alterations in the copy number. It was
observed that ARID1A mutation was mildly associated with a high RPL score. However,
the mutation frequency of ARID1A is low and is not equal to the number of patients with
ribosome pathway activation. By utilizing the AUCell algorithm, the RPL score was quantified
in single-cell resolution and observed to be significantly positively correlated with the tumor
biodiversity score (ITH score), which was defined in a previous study [47]. This may mediate
resistance to immunotherapy. Further analysis indicated that this phenotype might induce
metabolic reprogramming and drug metabolism.

Furthermore, current research sheds light on additional biomarkers that might influence the
TME and treatment outcomes in HCC. For instance, studies have shown the elevation of DKK-1
and sPD-L1, and specific miRNA profiles in various cohorts, suggesting a complex interplay of
signaling pathways that contribute to the dynamic nature of the TME [53–55]. These external
findings resonate with the observations of the RPL pathway’s impact on HCC progression and
immune evasion. It suggests that alongside the RPL gene dysregulation, factors like DKK-1,
sPD-L1, and specific miRNAs could serve as complementary biomarkers for diagnosing and
stratifying HCC, offering insights into potential therapeutic targets. This integration of diverse
biomolecular pathways could pave the way for a multifaceted approach to HCC management,
emphasizing the need for further research to dissect the interconnections between these pathways
and their collective impact on HCC pathogenesis and therapy.

5 Limitations of the study
While this study provides significant insights into the relationship between RPL gene ex-

pression and tumor progression in hepatocellular carcinoma (HCC), several limitations must be
noted. The findings are based on a specific set of data, which may limit generalizability across
different HCC populations due to variations in genetic and environmental factors. Additionally,
the cross-sectional design precludes establishing causality between RPL dysregulation and
changes in the tumor microenvironment (TME). The reliance on public genomic databases also
introduces potential biases related to data completeness and representativeness. Furthermore,
the intricate network of interactions within the TME is not fully explored, and the causal mecha-
nisms remain speculative without direct experimental validation. These limitations underscore
the need for further longitudinal and experimental studies to confirm these findings and clarify
the mechanisms involved.

6 Conclusion
A comprehensive analysis of the ribosomal pathway and TME was conducted, which strongly

emphasized the critical role of ribosomal dysregulation in HCC. However, determining the
regulatory relationship between these factors is still warranted to identify the cause of this phe-
nomenon. Moreover, the findings indicate that targeting the ribosomal pathway may normalize
the TME of HCC. Further prospective studies are required to confirm the results and hypotheses.

Conflicts of interest
The authors declare that they have no competing interests.

Ethics approval
This study was conducted using publicly available data obtained from GEO (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi) and TCGA (https://portal.gdc.cancer.gov/), which includes data
that were de-identified and contributed by research participants who provided informed consent
under ethical standards. The use of this data complies with all applicable terms and conditions
set. No ethical approval was required as this study did not involve any direct interaction with

Current Cancer Reports • SyncSci Publishing 265 of 268

https://www.syncsci.com/journal/CCR
https://www.syncsci.com


Volume 7 Issue 1, 2025 Zhimin Lu, Sicong Xu, Guofeng Zhao, et al.

human participants or the use of personal identifying information.

Funding
This research was supported by the Key Discipline Established by Zhejiang Province and

Jiaxing City Joint-Oncology Medicine (2023-SSGJ-001), National Clinical Key Specialty
Construction Project-Oncology department (2023-GJZK-001), Jiaxing Key Laboratory of Clini-
cal Laboratory Diagnosis and Transformation Research (2023-lcjyzdyzh), 2023 Jiaxing Key
Discipline of Nursing (Supporting Subject) (2023-ZC-007), Science Technology Project of
Jiaxing-Key Research Project (2024BZ20004), and Jiaxing Key Laboratory of Oncology Radio-
therapy (2021-zlzdsys). All study sponsors had no role in the study design, collection, analysis,
and interpretation of data.

Author contribution
GX Hou and ZM Lu had full access to all the data in the study and took responsibility for the

integrity of the data and the accuracy of the data analysis;
GX Hou: Study concept and design;
ZM Lu: Data acquisition;
SC Xu, GF Zhao: Data analysis and interpretation;
GX Hou: Manuscript drafting;
All authors read and approved the final version of the manuscript.

Data availability statement
The original contributions presented in this study are included in the article/supplementary

material, and further inquiries can be directed to the corresponding author.

References
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