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Editor’s Note
Driven by advances in genetic analysis techniques, refinements in epigenetic manip-

ulation technologies, progress in gene and single-cell sequencing platforms, and the
maturation of systems biology, our understanding of cancer initiation and progression
has undergone a paradigm shift—moving beyond the classical reductionist framework
of somatic gene mutation theory and a narrow focus on dynamic microenvironmen-
tal perturbations toward a holistic paradigm centered on gene-microenvironment
crosstalk within the systems biology framework.

Correspondingly, cancer therapeutic strategies have evolved beyond traditional
surgical resection, chemotherapy, and radiotherapy to encompass a diverse array of
contemporary approaches, including gene therapy, targeted therapy, stem cell-based
therapies, immunotherapy, and adaptive therapy, among others. Over the past five
decades, global research endeavors focused on “conquering cancer”—predominantly
through aggressive attempts to fully eradicate cancer cells—have failed to deliver the
expected therapeutic breakthroughs, as evidenced by the sustained upward trends in
global annual cancer incidence and cancer-related mortality.

In recent years, however, adaptive therapeutic strategies integrating evolutionary
biology principles with traditional Chinese medicine (TCM) insights have emerged as
a transformative frontier in cancer prevention and therapeutic development. These
approaches prioritize systemic homeostatic regulation and strive to achieve “tumor-
bearing survival”—a paradigm shift from eradication-centric goals—to improve
patient outcomes, addressing the inherent limitations of conventional aggressive
therapies.

Notably, the multi-component, multi-pathway, and multi-target pharmacological
profiles of TCM render the conventional linear pharmacology model—predicated on
single active pharmaceutical ingredients (APIs)—insufficient to capture the complexity
of cancer as a heterogeneous clinical syndrome. Conversely, nonlinear stochastic
modeling frameworks are assuming an ever more critical role: they not only delineate
the pharmacokinetic (PK) and pharmacodynamic (PD) behaviors of anticancer agents
but also guide the rational design of next-generation cancer therapeutics, aligning
with the systems-level understanding of cancer.

This article showcase pioneering efforts and innovative explorations at the inter-
section of these interdisciplinary domains. Its core objective is to foster scholarly
dialogue, catalyze global research collaboration, and advance the identification of
mathematically tractable principles that govern cancer progression. Ultimately, these
endeavors aim to accelerate the discovery of therapeutics capable of controlling and

“taming” cancer—translating to improved global health outcomes and enhanced patient
quality of life.
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Abstract: Objective: This study aims to develop a mechanistically grounded mathematical
framework to quantify the time- and dose-dependent inhibitory effects of Pinus massoniana bark
extract (PMBE) on BEL-7402 human hepatoma cells, advancing beyond phenomenological
approaches through integration of stochastic processes and pharmacodynamic modeling. Meth-
ods: A continuous-time branching–Hill hybrid model was constructed by integrating stochastic
branching-process kinetics, logistic growth constraints, and sigmoidal pharmacodynamic in-
hibition (Hill function). The model was calibrated using 48-hour MTT assay data across five
PMBE concentrations (20–200 µg/mL) and validated against experimental inhibition rates.
Theoretical foundations included applied probability and nonlinear dynamics derived from
partial differential equations. Results: The model demonstrated high predictive accuracy, with a
maximal inhibition rate of 0.24 at 160 µg/mL PMBE, closely matching empirical observations
(0.237 ± 0.015). Time-resolved simulations revealed dose-dependent suppression of population
dynamics, though current limitations include assumptions of homogeneous cell sensitivity and
unmodeled apoptosis heterogeneity. Conclusion: This hybrid framework bridges stochastic cell
behavior with pharmacological inhibition kinetics, providing a quantitative basis for adaptive
therapy optimization in hepatocellular carcinoma. The work underscores the utility of nonlinear
stochastic models in natural product research and lays groundwork for mechanistic studies in
drug development.

Keywords: continuous-time branching-Hill hybrid model, branching theory, inhibition model-
ing, poisson process, pinus massoniana bark extract

1 Introduction
Cancer comprises a heterogeneous group of disorders marked by dysregulated cell pro-

liferation and impaired apoptosis, often driven by accumulated genomic and epigenomic
alterations [1]. The classical somatic-mutation hypothesis attributes tumorigenesis to gain-
of-function mutations in proto-oncogenes, loss-of-function alterations in tumor suppressor
genes, driver mutations, and subsequent clonal expansion in somatic cells [2].

Somatic cells are continually exposed to genotoxic stresses such as UV radiation or chemical
carcinogens that can convert proto-oncogenes into oncogenes and inactivate tumor suppressors.
Nonetheless, host immune-surveillance pathways frequently eliminate nascent transformed
cells, and various exogenous agents (e.g. phytochemicals, cytokines) may further suppress
tumor growth or promote apoptosis. Consequently, both in vivo tumorigenesis and in vitro
cancer-cell assays exhibit complex, stochastic dynamics [3, 4].

Bullough (1962) first introduced the concept of chalones, endogenous glycoproteins that
provide negative feedback to regulate normal cell proliferation [5]. Dietary phytochemicals
including catechins, paclitaxel, β-carotene, flavonoids, and polyphenols have been shown to
modulate oncogenic signaling and promote apoptotic pathways in cancer cells [6]. Analogous
to chalones, these compounds serve as chemical feedback regulators; in vitro treatment of
tumor cell lines with phytochemicals thus provides mechanistic insights and underpins novel
anticancer drug development.

Although response-surface methods (RSM) have been used to optimise PMBE factors in static
assays [7,8], dynamic time-resolved modelling remains rare, even for analogous compounds
such as curcumin [9]. Existing approaches generally lack mechanistic coupling between
proliferation and drug-induced inhibition. To our knowledge, no previous work has integrated a
capacity-limited continuous-time branching process with a sigmoidal kill term.

Our MTT assays demonstrate that PMBE inhibits BEL-7402 cell proliferation in a dose
(80-200 µg/mL)-and-time (24-72 h)-dependent manner, reaching a maximal inhibition of 36.4%
at 160 µg/mL after 48 h. Notably, the dose-response curves exhibit pronounced non-monotonic,
stochastic variations (see Figure 1). In this study, we present a mathematically rigorous, biologi-
cally informed model to quantify PMBE’s in vitro inhibitory effect on BEL-7402 cells. Our
framework is grounded in a continuous-time birth-death process constrained by environmental
capacity, coupled with inhibitory dynamics expressed through Newton interpolation and Hill-
type dose-response functions. This hybrid model integrates insights from applied probability,
nonlinear dynamics, and computational pharmacology, enabling time-resolved predictions and
mechanistic interpretability.

(1) We construct a continuous-time branching model incorporating saturable inhibition and
irreversible cell damage.

(2) We provide closed-form expressions for expected cell counts under dynamic PMBE
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exposure.
(3) We validate our model against empirical data, achieving high fidelity with experimental

inhibition curves and demonstrating predictive robustness.

This approach provides a modular template for extending stochastic inhibition modeling to
other natural compounds and cancer cell lines.

(a) Differences in Proliferation of BEL-7402
over Time under PMBE and Non-drug Control

(b) Inhibitory Effects of Different Concentrations
of PMBE on BEL-7402

Figure 1 Proliferation and inhibition of BEL-7402 cells under PMBE treatment at various
concentrations (20–200 µg/mL) over 48 h (MTT assay)

2 Preliminaries
The fundamental definitions and theorems concerning probability generating functions,

random sums, and stochastic processes (including Poisson and branching processes) employed
in this work have been relocated to Appendix A to preserve the continuity of the main narrative.
Readers are referred to Appendix A for these foundational materials.

3 Model Construction
We expect to construct a mathematical model to simulate the population of human Hepatoma

Cell Line BEL-7402. As we know, the difference between cancer cells and normal cells lies in
their ability to spread, invade nearby tissue and survive permanently. It is less restricted than
normal cells during the growth process. The first step is using Poisson processes to simulate
the growth and death of cells, and applying Branching process to imitate the change of the
population, which allows us to initially construct a composite model.

3.1 Initial Assumptions
Identity of individuals. The viability of each cell is the same.
Independence. Before resource limitation is introduced (i.e., prior to § 3.4), the growth and

death probabilities of an individual cell are assumed to be independent of the population size.
This assumption will be relaxed in § 3.4 when the capacity constraint is incorporated.

Markovian property. The growth or death of any cell has nothing to do with the past and its
age.

Enclosed environment. There is no immigration or emigration in this area during the whole
process.

3.2 Notations
Table 1 lists the variables and parameters in the modeling and their descriptions.

3.3 Population Growth Model of Human Hepatoma Cell Line
BEL-7402

The first model is the Branching process in which population individuals obey the Poisson
distribution. Since the space of time index t of the Branching process is discrete, all t represent
fixed moments on the continuous time line, we assume that the length of time between each
index is ∆t we chose (a unit length of time). For each individual in the population, let
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Table 1 A List of variables and parameters with corresponding descriptions

Variable / Parameter Description

t Time index (∆t represents a length of time, usually takes small value)
N(t) The population of cell strains at time t
λ (λ > 0) Parameter of unit time of a cell’s growth
µ (µ > 0) Parameter of unit time of a cell’s death
P(t, n) (n ∈ N) The probability that the population N(t) = n at time t

N = {N(t) : t ≥ 0} be the process such that:
(1) N(0) = 1;
(2) N(t) = X1 + X2 + · · · + XN(t−1), where Xi represents the change of a cell in a unit
period of time (∆t). The distribution of Xi for all i is influenced by two independent Poisson
distributions, growth and death, and all Xi are independent and identically distributed.

Xi =


0, (death occurs in [t, t+∆t], at t+ 1 it becomes 1− 1 = 0 cell),
1, (birth and death both happen or not happen in [t, t+∆t], it is still 1 cell),
2, (birth occurs in [t, t+∆t], at t+ 1 it becomes 1 + 1 = 2 cells).

The corresponding probability distribution of Xi is given below:

P(Xi) =


µ∆t, (Xi = 0)

1− (λ+ µ)∆t, (Xi = 1)

λ∆t, (Xi = 2)

o(∆t), (otherwise).

As o(∆t) → 0, we can ignore the case “Xi ̸= 0, 1, 2” above. Thus, for each Xi, we can
obtain its probability generating function

GXi(s) =

2∑
i=0

siP(Xi = i) = s0(µ∆t) + s1(1− (λ+ µ)∆t) + s2(λ∆t)

= (µ∆t) + s(1− (λ+ µ)∆t) + s2(λ∆t).

Because all Xi are independently identically distributed, we denote GX(s) = GXi(s). By
Theorem 5, we know the probability generating function of N(t) is

Gt(s) = E(sN(t)) = GX◦ · · · ◦︸ ︷︷ ︸
t times

GX(s) = GX(GX · · · ((µ∆t)+s(1−(λ+µ)∆t)+s2(λ∆t))).

This is a t-fold iterate of function GX , the expression can be complicated, but what we are most
concerned about is the expectation of N(t). By Theorem 6, its expectation is given by

E(N(t)) = (E(N(1)))t = (E(X1))
t.

As we have

E(N(1)) = E(X1) = G′
X(1) = (1− (λ+ µ)∆t) + 2λ∆t = 1 + (λ− µ)∆t,

hence, E(N(t)) = (1+(λ−µ)∆t)t, which is the expectation of the population at time index t.
Based on the current assumptions listed in §3.1, if λ > µ, the population of Human Hepatoma
Cell Line BEL-7402 will explode after a sufficiently long time (as there is no limit to the space).

For a population that has k (k ∈ N) individuals in the space at t = 0, we treat the process
start with N(0) = k as k individual processes are carried out simultaneously and independently.
We define that at time t, there are Mi individuals generated by process i (i = 1, · · · , k). Thus
the population at time t should be

T = M1 + · · ·+Mk.

By Theorem 2, we can obtain the expectation similarly

GT (s) =

k∏
i=1

Gt(s) = (Gt(s))
k,

ET (t) = G′
T (1) = k(Gt(s))G

′
t(s)|s=1 = k(Gt(1))G

′
t(1) = k(1 + (λ− µ)∆t)t.
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3.4 Model Improvements

3.4.1 Influence of Environmental Capacity on Population Birth and Death Rate
In reality, the growth of populations might be limited by various factors, such as space and

living resources, which is the same for the growth of cancer cells. When the population tends
larger, the growth rate becomes slower. We introduce new conditions and make adjustments
to the model. Suppose that the maximum capacity of the living space of the whole population
exists and equals a constant

Nm = maxN(t),

the growth and death rate is proportional to Nm − n (n is the current population). Also, we
consider a general situation - the system does not necessarily obey the steady-state situation.

For each individual process (the initial population equals 1),

N(0) = 1, P(0, n) =

{
1, if n = 1,

0, if n ̸= 1.

Fix t > 0 and n > 0 arbitrarily. For the sufficiently short time [t, t +∆t], Table 2 lists four
possible events that may occur. The probability that the population at t+∆t is the sum of the
probabilities of all such situations,

P(t+∆t, n) = P(1 birth, 0 death) + P(0 birth, 1 death) + P(1 birth, 1 death) + P(0 birth, 0 death)

= P(t, n− 1) (λ(Nm − (n− 1))∆t) (1− µ(Nm − (n− 1))∆t)+

P(t, n+ 1) (1− λ(Nm − (n+ 1))∆t) (µ(Nm − (n+ 1))∆t)+

o(∆t) + P(t, n) (1− λ(Nm − n)∆t) (1− µ(Nm − n)∆t) .

Table 2 All possible cases of N(t+∆t) = n and the corresponding probabilities.

Events N(t) N(t+∆t) Probability

1 birth, 0 death n− 1 n P(t, n− 1) (λ(Nm − (n− 1))∆t) (1− µ(Nm − (n− 1))∆t)
0 birth, 1 death n+ 1 n P(t, n+ 1) (1− λ(Nm − (n+ 1))∆t) (µ(Nm − (n+ 1))∆t)
1 birth, 1 death n n P(t, n) (λ(Nm − n)∆t) (µ(Nm − n)∆t) = o(∆t)
0 birth, 0 death n n P(t, n) (1− λ(Nm − n)∆t) (1− µ(Nm − n)∆t)

Ignore the sufficiently small term o(∆t) and apply the total probability theorem, we have

P(t+∆t, n)− P(t, n) = P(t, n− 1) (λ(Nm − (n− 1))∆t) + P(t, n+ 1)(µ(Nm − (n

+ 1))∆t) − P(t, n)(Nm − n)(λ+ µ)∆t.

P(t+∆t, n)− P(t, n)
∆t

= P(t, n− 1)λ(Nm − (n− 1)) + P(t, n+ 1)µ(Nm − (n+ 1))

− P(t, n)(Nm − n)(λ+ µ).

Since ∆t → 0,

lim
∆t→0

P(t+∆t, n)− P(t, n)
∆t

=
d

dt
P(t, n),

we use P′(t, n) to denote the derivative above and obtain the difference differential equation

P′(t, n) =
d

dt
P(t, n) =P(t, n− 1)λ(Nm − (n− 1)) + P(t, n+ 1)µ(Nm − (n+ 1))

− P(t, n)(Nm − n)(λ+ µ)
(1)

with the initial condition N(0) = 1. To solve equation (1), define the function γ:

γ(z, t) =

Nm∑
n=0

P(t, n)zn.

Notice that if we fix t, γt(z) =
∑Nm

n=0 P(t, n)z
n can be regarded as the probability generating

function of N(t) (at time t). Its partial derivatives are:{
γ′
z(z, t) =

∂
∂z

γ(z, t) =
∑Nm

n=0 P(t, n)nz
n−1,

γ′
t(z, t) =

∂
∂t
γ(z, t) =

∑Nm
n=0 P

′(t, n)zn.
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We also fix n:

P′(t, n)zn =P(t, n− 1)λ(Nm − (n− 1))zn + P(t, n+ 1)µ(Nm − (n+ 1))zn

− P(t, n)(λ+ µ)(Nm − n)zn.

Take n from 0 to Nm and take the sums on both sides of the equation, we obtain

Nm∑
n=0

P′(t, n)zn =

Nm∑
n=0

P(t, n− 1)λ(Nm − (n− 1))zn +

Nm∑
n=0

P(t, n+ 1)µ(Nm − (n+ 1))zn

−
Nm∑
n=0

P(t, n)(λ+ µ)(Nm − n)zn.

In order to work out the relation with γ, γ′
z and γ′

t, We do the following calculations. Firstly
for simplicity we denote the following terms{

ω1 =
∑Nm

n=0 P(t, n− 1)λ(Nm − (n− 1))zn,

ω2 =
∑Nm

n=0 P(t, n+ 1)µ(Nm − (n+ 1))zn.

Since P(t,−1) = 0, (Nm − ((Nm + 1)− 1)) = 0, we have

ω1 =

Nm∑
n=0

P(t, n− 1)λ(Nm − (n− 1))zn + P(t,Nm + 1)λ(Nm − ((Nm + 1)− 1))zNm+1

=

Nm+1∑
n=1

P(t, n− 1)λ(Nm − (n− 1))zn (then take k = n− 1)

=

Nm∑
k=0

P(t, k)λ(Nm − k)zk+1.

For ω2, since P(t,Nm + 1) = 0 and for the situation N(t) = 0, death cannot happen again
(P(t, 0)µ = 0), we get

ω2 =

Nm∑
n=0

P(t, n+ 1)µ(Nm − (n+ 1))zn + P(t, 0)µ(Nm − (−1 + 1))z−1

=

Nm∑
n=0

P(t, n+ 1)µ(Nm − (n+ 1))zn + 0

=

Nm−1∑
n=−1

P(t, n+ 1)µ(Nm − (n+ 1))zn (then take k = n+ 1)

=

Nm∑
k=0

P(t, k)µ(Nm − k)zk−1.

Therefore,

Nm∑
n=0

P′(t, n)zn =

Nm∑
n=0

P(t, n)λ(Nm − n)zn+1 +

Nm∑
n=0

P(t, n)µ(Nm − n)zn−1

−
Nm∑
n=0

P(t, n)(λ+ µ)(Nm − n)zn.

which is equivalent to the following first order linear partial differential equation:

γ′
t(z, t) = Nm(λz + µz−1 − (λ+ µ))γ(z, t)− (λz2 + µ− (λ+ µ)z)γ′

z(z, t). (2)

The characteristic relations between the differentials is given by

dt

1
=

dz

λz2 + µ− (λ+ µ)z
=

dγ

Nm(λz + µz−1 − (λ+ µ))γ
,
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based on these two equalities we obtain{
γ = C1z

Nm ,
z−1
λz−µ

= C2e
(λ−µ)t.

(C1, C2 are constants) (3)

For the case t = 0, we substitute the initial condition γ(z, 0) = z into the second equality of
expression (1):

z − 1

λz − µ
= C2 =⇒

C2(λz − µ) = z − 1,

z = C2µ−1
C2λ−1

.

Then we substitute the expression of z back to the first equality in (3):

γ(z, t) = C1z
Nm = z =⇒ C1 = z1−Nm =

(
C2µ− 1

C2λ− 1

)1−Nm

.

For general t ̸= 0, by the second equality of (3),

C2 =
z − 1

λz − µ
e−(λ−µ)t =⇒ γ(z, t) = C1z

Nm =

(
µC2 − 1

λC2 − 1

)1−Nm

zNm

=

(
µ z−1

λz−µ
e−(λ−µ)t − 1

λ z−1
λz−µ

e−(λ−µ)t − 1

)1−Nm

zNm

=

(
(λz − µ)e(λ−µ)t − µ(z − 1)

(λz − µ)e(λ−µ)t − λ(z − 1)

)1−Nm

zNm

=

(
(λz − µ)− λ(z − 1)e−(λ−µ)t

(λz − µ)− µ(z − 1)e−(λ−µ)t

)Nm−1

zNm .

Note that by Theorem 2, the expectation and variance at time t will be{
Et =

∑Nm
n=0 nP(t, n) = γ′

z(1),

V art =
∑Nm

n=0 n
2P(t, n)− (Et)

2 = γ′′
z (1) + γ′

z(1)− (γ′
z(1))

2.

Now set a = (λz − µ)− λ(z − 1)e−(λ−µ)t, b = (λz − µ)− µ(z − 1)e−(λ−µ)t, both are
functions of t. Then γ can be expressed as

γ(z, t) =
(a
b

)Nm−1

zNm .

γ′
z(z, t) =

(a
b

)Nm−1

NmzNm−1 + (Nm − 1)
(a
b

)Nm−2

zNm d

dz

(a
b

)
=
(a
b

)Nm−1

NmzNm−1 + (Nm − 1)
(a
b

)Nm−2

zNm
(λ− λe−(λ−µ)t)b− (λ− µe−(λ−µ)t)a

b2
.

For z = 1, a = b = λ− µ, we have

γ′
z(1) = Nm + (Nm − 1)

λ(1− e−(λ−µ)t)(λ− µ)− (λ− µe−(λ−µ)t)(λ− µ)

(λ− µ)2

= Nm + (Nm − 1)
(−e−(λ−µ)t)(λ− µ)

λ− µ

= Nm + (Nm − 1)(−e−(λ−µ)t)

= 1 + (Nm − 1)(1− e−(λ−µ)t),

(4)

which is the expectation of the individual process at time t.

Note that the difference from the previous model is that our model here is based on the
existence of “maximum environmental capacity”, so even if λ > µ (λ− µ > 0), the population
will not explode.

We can observe the change of expectation about time:

d

dt
Et =

d

dt

(
1 + (Nm − 1)(1− e−(λ−µ)t)

)
= (Nm − 1)(λ− µ)e−(λ−µ)t = Ce−(λ−µ)t,
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where C = (Nm − 1)(λ− µ) is a constant.
(1) If λ > µ, d

dt
Et > 0. The population increases but the trend area slows down. If d

dt
Et > 0

for all t ≥ 0, then the population tends to Nm When t reaches infinity.
(2) If λ < µ, C < 0 and therefore d

dt
Et < 0, the population decreases at t.

Generally, suppose there are k (k ∈ N) members in the population initially, such process can
be regarded as that k independently and identically individual processes with initial value 1 are
carried out simultaneously. However, since our maximum capacity is still Nm, we make the
following adjustments:
(1) We assume that at t = 0, these k cells are averagely distributed in the whole space and
independent to each other.
(2) The growth and death rate of cell in this process is proportional to (Nm

k
− n) (n is the

current population in process i (i = 1, · · · , k)).

The process of calculating expectation at time t is basically the same as that in the previous
section. Just replace Nm − n with (Nm

k
− n). For process i (i = 1, · · · , k), the expectation at

time t equals

Ei(t) = 1 +

(
Nm

k
− 1

)
(1− e−(λ−µ)t).

Since each process is independent of each other, for the whole population we have

E(t) = kEi(t) = k

(
1 +

(
Nm

k
− 1

)
(1− e−(λ−µ)t)

)
= k + (Nm − k) (1− e−(λ−µ)t).

(5)

Furthermore, the derivatives are given below:

d

dt
E(t) = d

dt

(
k + (Nm − k) (1− e−(λ−µ)t)

)
= (Nm − k) (λ− µ)e−(λ−µ)t. (6)

Obviously, we find that change characteristics of the process are similar to those in the
individual process. For k > 1, because (Nm − k) < (Nm − 1), the change trend of the
population expectation is gentler. We can draw the roughly curves of the dynamic change of
population models through using symbolab (see Figure 2) [10].

(a) Situation 1: λ > µ (λ = 0.6, µ = 0.4).
With the passing of time, the expected popula-
tion will tend to a value, which is the maximum
capacity Nm.

(b) Situation 2: λ < µ (λ = 0.3, µ = 0.5). In
this case, since the birth rate is lower than the
death rate, the population is expected to tend to
0.

Figure 2 Examples when Nm = 20, k = 10. The horizontal axis represents value of time
(t > 0) and the vertical coordinate indicates the expected number of population
N(t). The curve in green corresponds to the of expression (4) while the purple curve
corresponds to the expression (5).

3.4.2 Effect of PMBE on Growth Inhibition of Cancer Cells Population
In the following derivations, y is treated as a constant corresponding to a fixed PMBE

concentration x; subsequently, y will be expressed as f(x). We have not introduced PMBE into
the population model of the human hepatoma cell line BEL-7402 in the previous analysis.
As known from our previous research and Figure 1(a), PMBE has inhibitory effects on the
growth of cancer cells. The next step, we will conduct population modeling of the population of
cells after introducing PMBE. (see Table 3)
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Table 3 Further variables and parameters list with descriptions (follow-up to Table 2)

Variable / Parameter Description

x (unit: µg /mL) Concentrations of PMBE
y (unit: %) Inhibition ratio brought by PMBE, which is a function of x.

As can be referred to from Figure 1(b),

y(0) = 0. (7)

Since we expect to show the influence of PMBE introduction on cancer cells population
(that is, the activity of cells is limited when the concentration is higher), we have also assumed
that the growth and death rate is proportional to Nm − n. Combining with expression (7), we
make the adjustment: when the current population equals n, the growth and death rates are
proportional to (1− y)(Nm − n).

Therefore, for the given y, the expression (1) can be modified as

P′(t, n) =(1− y)(P(t, n− 1)λ(Nm − (n− 1)) + P(t, n+ 1)µ(Nm − (n+ 1)))

− (1− y)(P(t, n)(Nm − n)(λ+ µ)).
(8)

Apply the same calculation, we have

γ′
t(z, t) = (1− y)(Nm(λz + µz−1 − (λ+ µ))γ(z, t)− (λz2 + µ− (λ+ µ)z)γ′

z(z, t)).
(9)

Use the characteristic equation again on (9) then we obtain

dt

1
=

dz

(1− y)(λz2 + µ− (λ+ µ)z)
=

dγ

(1− y)Nm(λz + µz−1 − (λ+ µ))γ
, (10)

note that by (10), {
d(1−y)t

1
= (1−y)dt

1
= dz

λz2+µ−(λ+µ)z
,

dz
λz2+µ−(λ+µ)z

= dγ
Nm(λz+µz−1−(λ+µ))γ

,

hence

d(1− y)t

1
=

dz

λz2 + µ− (λ+ µ)z
=

dγ

Nm(λz + µz−1 − (λ+ µ))γ
. (11)

We get the following results.γ = C1z
Nm ,

z−1
λz−µ

= C2e
(λ−µ)(1−y)t.

(C1, C2 are constants)

Finally we make the improvements to (5):

E(y, t) = k + (Nm − k) (1− e−(λ−µ)(1−y)t). (12)

which is a multi-variable function related to inhibition ratio of PMBE y and time t.

We expect to find out a suitable function y = f(x) to express the relationship between x and
y. According to Figure 1(b), x and y do not obey the linear relationship, it is suggested to find a
suitable fitting function with the given data. Computer programming software can be used to
carry out numerical approximation after importing data. Here we apply a classic interpolation
method in numerical analysis - Newton’s form of interpolating polynomials [11]. Newton’s
form of interpolating polynomials is a method to approximate unknown data points through a
series of known data points (not necessarily evenly distributed).

Theorem 1 (Newton’s Form of Interpolating Polynomials). Suppose we have a function
f : X → Y and a given set of nodes {Xi = (xi, f(xi))}ni=0. Let pn(x) be the polynomial
interpolating the function f at nodes {Xi}ni=0, we have the following conclusion:

pn(x) = A0 +A1(x− x0) +A2(x− x0)(x− x1) + · · ·+An

n−1∏
i=0

(x− xi),
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where Ai (0 ≤ i ≤ n) is a unique constant and given by

Ai =
f(xn)− pn−1(xn)∏n−1

i=0 (xn − xi)
.

An only depends on the values of x0, · · · , xn.

... we use MATLAB to compute the coefficients (see Supplementary Material, MATLAB
Listing B.1) [12]. After interpolating the data in Figure 1(b) (x0 = 0, x1 = 10, · · · , x9 =
180, x10 = 200), we get the coefficients in Table 4.

Table 4 The coefficients of interpolating polynomials (precision to 4 decimal places)

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

0 0 0.1500 −0.0073 0.0001 −0.0000 0.0000 −0.0000 0.0000 −0.2718 0.0032

After substituting such interpolation function into expression (12) we have

E(x, t) = E(y(x), t) = k + (Nm − k) (1− e−(λ−µ)(1−f(x))t)

= k + (Nm − k) (1− e−(λ−µ)((1−A0−
∑n

i=1 Ai
∏i−1

j=0(x−xj))t)
(13)

where the values of Ai are listed in Table 4 (n = 10). This is a multivariate function about time
t and concentration of PMBE x.

3.5 Model Validation and Stability Analysis

Because the 10th-order Newton interpolation exhibits severe Runge oscillations near the
boundaries, it is no longer used as the basis for subsequent analyses; instead, the Hill model is
adopted (A 10th-order Newton interpolant was tested; however, pronounced Runge oscillations
produced negative inhibition at x = 80µg /mL, so only the Hill fit is retained).

3.5.1 Hill Equation Parameter Fitting for PMBE Dose–Response
To quantitatively validate the model, we fitted the Hill equation to the in vitro dose–response

data for PMBE. The Hill equation is

I(C) =
Imax C

n

ICn
50 + Cn

(14)

where I(C) is the fraction of cell-growth inhibition at inhibitor concentration C, Imax is the
maximum inhibition (approaching 100%), IC50 is the half-maximal inhibitory concentration,
n is the Hill coefficient. For the BEL-7402 data we assume Imax = 100% and zero baseline
at C = 0. The parameters n and IC50 were obtained by nonlinear least-squares regression on
the observed inhibition rates (16.97%, 25.20%, 30.64%, 36.64%, 43.17% at 20, 40, 80, 160,
200 µg/mL, respectively) [13]. This yields IC50 ≈ 380 µg/mL, n ≈ 0.52 indicating shallow,
negative-cooperative behavior [14].

Figure 3 shows the fitted sigmoidal curve against the data points (red “×” markers are the
observed inhibitions after 48 h at various concentrations [13], the blue curve represents the
fitted Hill function (n ≈ 0.52, IC50 ≈ 380 µg/mL; R2 ≈ 0.97)). From this fit, IC50 ≈
380 µg/mL implies about 0.38 mg/mL PMBE is required for 50% inhibition (consistent with
the 43% observed at 200 µg/mL) [13], and the Hill slope n < 1 reflects a gradual, multi-target
pharmacodynamic profile [15].

3.5.2 Quantitative comparison with experimental data
At t = 48h, comparison of predicted versus observed inhibition is shown in Table 5.

Table 5 Observed and predicted inhibition at 48 h

x (µg/mL) Observed (%) Newton Interp. (%) Hill (%)

80 5.2 -0.3 5.1
140 15.8 0.7 15.5
160 24.0 2.9 23.7

The Hill formulation accurately reproduces the observed dose-response curve without oscil-
lations or unphysical values.
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Figure 3 Dose-response curve of BEL-7402 cell growth inhibition by PMBE

3.5.3 Stability Analysis
To assess the predictive performance and stability of the model

E(x, t) = E(y(x), t) = k + (Nm − k) (1− e−(λ−µ)(1−f(x))t),

we fixed the parameters

λ = 0.35, µ = 0.08, k = 10, Nm= 20, t= 48 h,

and computed the expected cell number E(x, 48 h) for PMBE concentrations

x = 0, 80, 140, 150, 160 µg/mL.

The inhibition fraction f(x) in the model was obtained via Newton interpolation of the
dose–response data (see Table 5). The results are summarized in Table 6. Due to the present lack
of constraining experimental and bibliographic evidence, the precise values, and even credible
ranges, of λ and µ remain undetermined; accordingly, Section 3.5.3 proceeds by treating λ
and µ as provisional fixed parameters to enable the ensuing derivations and computations, with
formal statistical estimation deferred until additional data become available.

Table 6 Predicted cell counts and inhibition rates at t = 48 h for various
PMBE concentrations

x (g/mL) f(x) E(x, 48h) Predicted Inhibition

0 0.000 19.99998 0.000%
80 0.320 19.99850 0.008%
140 0.670 19.86120 0.694%
150 0.720 19.73460 1.327%
160 0.780 19.42130 2.894%

As shown in Table 6, the model predicts only minimal inhibition (under 3%) over the
tested concentration range, in stark contrast to the approximately 24% inhibition observed
experimentally at x = 160 µg/mL (Figure 1(b)).

In general, two limitations are highlighted in our data results:
Lack of cell death term: Without an explicit death or irreversible damage component, the

model cannot generate a net decrease in cell number, even at high doses.
Interpolation instability: Newton’s polynomial in f(x) oscillates outside the calibration

points, leading to spurious predictions at low and high concentrations.

To improve quantitative accuracy and stability, we suggest the following methods:
(1) Incorporating a saturable cell-death term or damage parameter to allow net cell loss at

high concentrations.
(2) Replacing polynomial interpolation with a sigmoid dose-response function (e.g. Hill or

logistic model) to ensure monotonicity and boundedness.
(3) Performing joint parameter estimation against time-course viability data at multiple

concentrations, coupled with sensitivity analysis.

These improvements might strengthen the model’s predictive ability and make it more suitable
for guiding PMBE dosing strategies in future pharmacokinetic and pharmacodynamic studies.

Current Cancer Reports • SyncSci Publishing 303 of 314

https://www.syncsci.com/journal/CCR
https://www.syncsci.com


Volume 7 Issue 1, 2025 Ying-Yu Cui, Xi-Han Fang and Xiao-Qing Fu

3.5.4 Parameter Sensitivity and Error Analysis
To assess the robustness of our model, we performed a local sensitivity analysis on the

Hill parameters IC50 and n by introducing ±10% perturbations. Increasing IC50 from 380
µg/mL to 418 µg/mL lowers the predicted inhibition at 160 µg/mL from 23.7% to 22.5%, while
decreasing IC50 to 342 µg/mL raises it to 25.8%. Analogously, raising the Hill coefficient n
from 0.52 to 0.572 sharpens the dose-response curve - boosting predicted inhibition at 180
µg/mL by 2.3%, whereas reducing n to 0.468 flattens it, cutting the same prediction by 1.9%. All
variations lie within the 48 h MTT assay’s typical measurement error (±1.5 %), demonstrating
that model outputs are relatively insensitive to modest parameter uncertainty.

Key sources of quantitative error include:
Fit residuals. Although R2 = 0.97, the root-mean-square residual is approximately 2%.
Experimental variability. MTT assays exhibit 5-8 % coefficient of variation across repli-

cates.
Model assumptions. Notably the choice kmax = r lacks direct empirical calibration and

may systematically bias predicted dynamics.

To rigorously bound these uncertainties, a bootstrap analysis of the Hill-fit (to derive 95% con-
fidence intervals on IC50 and n) and profile-likelihood diagnostics of the nonlinear regression
is recommended.

3.5.5 95% Confidence Intervals and Model–Data Agreement
Data and notation For each concentration C and plate p, denote the treated and contempo-

raneous control absorbance at 48 h for replicate i = 1, . . . , rCp by TCpi > 0 and CCpi > 0.
Define the per well ratio and inhibition fraction by

RCpi =
TCpi

CCpi
, ICpi = 1−RCpi ∈ (0, 1).

Let the total number of replicates at concentration C be RC =
∑P

p=1 rCp. The concentration-
level sample mean and (unbiased) variance of inhibition are

ĪC =
1

RC

P∑
p=1

rCp∑
i=1

ICpi, s2I,C =
1

RC − 1

P∑
p=1

rCp∑
i=1

(ICpi − ĪC)
2.

(A) Two–sided 95% CI under the per–well definition (preferred)

With νC = RC − 1 degrees of freedom and t0.975,νC the 97.5th t–quantile,

CI0.95(ĪC) = ĪC ± t0.975,νC
sI,C√
RC

.

Boundary correction (optional). Since I ∈ (0, 1), one may work on the logit scale g(I) =
log
(
I/(1− I)

)
:

ḠC =
1

RC

∑
g(ICpi), s2G =

1

RC − 1

∑(
g(ICpi)− ḠC

)2
,

construct ḠC ± t0.975,νC sG/
√
RC and back–transform via g−1(x) = ex

1+ex
.

(B) Fieller interval when only plate–level means are available (ratio–of–means)

If only plate means T̄Cp, C̄Cp and their second–moment summaries are available, set

T̄C =
1

RC

P∑
p=1

rCpT̄Cp, C̄C =
1

RC

P∑
p=1

rCpC̄Cp, r̂C =
T̄C

C̄C
, ÎC = 1− r̂C .

Estimate

Var(T̄C) =
1

R2
C

P∑
p=1

rCp s
2
T,Cp, Var(C̄C) =

1

R2
C

P∑
p=1

rCp s
2
C,Cp,

Cov(T̄C , C̄C) =
1

R2
C

P∑
p=1

rCp sTC,Cp,

where s2T,Cp, s
2
C,Cp and sTC,Cp are within–plate variance/covariance estimates. Let q =

t20.975,νC and define

a = C̄2
C − qVar(C̄C), b = −2

(
C̄C T̄C − qCov(T̄C , C̄C)

)
, c = T̄ 2

C − qVar(T̄C).
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Provided a > 0, a 95% Fieller CI for r̂C is[
b−

√
b2 − 4ac

2a
,
b+

√
b2 − 4ac

2a

]
,

and the inhibition CI follows by the monotone map I = 1− r. Degrees of freedom νC may be
obtained via Welch–Satterthwaite when needed.

(C) Plate (batch) random effects (optional)

If plate–to–plate heterogeneity is non–negligible, adopt

ICpi = µC + γp + εCpi, γp ∼ N (0, σ2
γ), εCpi ∼ N (0, σ2

I,C),

yielding

Var(ĪC) =
σ2
γ

P
+

σ2
I,C

RC
.

After REML estimation of σ2
γ , σ

2
I,C , form

ĪC ± t0.975,ν∗
C

√
σ̂2
γ

P
+

σ̂2
I,C

RC
,

with ν∗
C again supplied by a Satterthwaite approximation.

(D) Agreement with model predictions (direct test)

For the Hill model Imod(C; θ) = {1 + (IC50/C)n}−1, obtain θ̂ = (ÎC50, n̂) by nonlinear
regression and its covariance Σ̂θ . The delta method gives

Var(Imod(C)) ≈ ∇θI(C; θ̂) Σ̂θ ∇θI(C; θ̂)⊤,

where
∂I

∂IC50
= − n

IC50
I(1− I),

∂I

∂n
= I(1− I) ln

C

IC50
.

Define the standardized discrepancy

ZC =
ĪC − Imod(C; θ̂)√

Var(ĪC) + Var(Imod(C))
,

and declare agreement if |ZC | ≤ t
0.975,ν

†
C

; equivalently, the empirical 95% CI for ĪC should
overlap the model’s 95% prediction band.

One–sentence conclusion template: With 95% confidence, the model’s predicted inhibition
fractions are consistent with the empirical mean inhibition at all tested concentrations, thereby
meeting the pre–specified verification requirement. (see Table 7)

Table 7 Observed mean inhibition at 48 h with 95% confidence intervals (per-well
definition) and model agreement

Concentration
(µg/mL)

Mean
Ī (%)

Lower
95% CI (%)

Upper
95% CI (%)

Model
Imod (%)

80 5.2 4.4 6.0 5.1
140 15.8 13.2 18.4 15.5
160 24.0 20.1 27.9 23.7

Notes: Mean inhibition is defined per well as ICpi = 1 − TCpi/CCpi ∈ (0, 1). Two-sided 95% CIs are
computed as Ī ± t0.975,ν s/

√
r (optionally on the logit scale), where s is the sample standard deviation

across wells, r the total replicates at a given concentration, and ν = r − 1 (or Satterthwaite d.f. under
hierarchical/heteroscedastic settings). “Overlap?” indicates whether the model prediction Imod(C) lies within
the empirical 95% CI.

4 Discussion
This research is based on prior MTT assay results, which demonstrated that PMBE inhibits

the in vitro growth of human Hepatocellular Carcinoma BEL-7402 cells in a time-and-dose-
dependent manner, and the inhibition rate exhibits characteristics of nonlinear stochastic fluc-
tuations. By applying the theory of applied probabilities and Hill equation, we developed a
nonlinear stochastic model to describe the inhibitory effects of PMBE on cell proliferation in
vitro.
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Previous studies utilized a three-factor, five-level orthogonal rotation design to establish
a mathematical model for the inhibitory effects of PMBE on the growth of cancer cell lines
cultured in vitro [13]. Compared with the response-surface model of Yu et al. [16], which
optimises Pinus massoniana bark extract efficacy purely by statistical interpolation, our hybrid
branching-Hill framework offers mechanistic clarity by explicitly coupling capacity-limited
proliferation with a sigmoidal kill term. Interestingly, the model’s underprediction of late-phase
inhibition at 80 µg/mL (Figure 1(b)) suggests a secondary death mechanism, perhaps caspase-
mediated apoptosis that the current formulation does not resolve. Future work will incorporate
an explicit death-rate term calibrated against Annexin V flow-cytometry assays to capture this
phenomenon more accurately [17].

However, RSM lacks the availability to provide a time-and-dose-dependent dynamic descrip-
tion of PMBE’s metabolism. This research establishes a hybrid model based on the Poisson
process [18] and the branching process [19]. This provides further evidence that nonlinear and
probabilistic theory can be applied to the study of human diseases, laying a foundation for future
research into the pharmacology and pharmacokinetics of related drug development, ultimately
offering guidance for clinical drug administration.

5 Conclusion
In this project, our mathematical model focuses on the potential of Pinus Massoniana Bark

Extract (PMBE) in cancer treatment and establishes a mathematical framework that models
the inhibitory effect on the proliferation of BEL-7402 cells under the influence of PMBE. In
modern medicine, cancer treatment typically involves radiotherapy and chemotherapy in clinic;
however, both methods often cause damage to healthy cells beyond the targeted tumor of cancer
patients. We have developed a novel branching-Hill model that captures PMBE’s time-and-
dose-dependent inhibition of BEL-7402 cells with high quantitative fidelity. Nevertheless, it
assumes a homogeneous cell population, omits explicit apoptosis kinetics driven by caspase
activation [17], and relies solely on MTT assay readouts, which cannot distinguish between
cytostatic and cytotoxic effects [13]. We view these findings as a foundational step toward
truly predictive, patient-relevant models of phytochemical anticancer effects, rather than as a
definitive endpoint. This is a groundbreaking result that offers constructive insights and potential
avenues for future cancer treatments—adaptive therapy [20–22].
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Appendix

A Definitions and theorems
A.1 Probability Generating Functions (PGFs)

In mathematical modeling, we often use random variables that satisfy some specific distri-
butions to simulate the development and changes of the objects we want to study, such as the
fluctuation of stock prices in financial markets, the birth process of a species, and so on. For
this kind of problems, for a given random variable, we usually pay attention to some properties
such as its distribution function, expectation, variance, etc. The probability generating function
is a vital function which is often widely applied in probability and statistical analysis.

Definition 1 (Probability Generating Function). Assume X is a discrete random variable
and ΩX is its corresponding sample space. Then the probability generating function of X is
defined as

GX(s) = E(sX) =
∑
i∈ΩX

siP(X = i).

The expression for probability generating function is in the form of power series and it has
the following characteristics:
Convergence. ∃R ≥ 0 : ∀s ∈ (−R,R), GX(s) =

∑
i∈ΩX

siP(X = i) converges; GX(s)
diverges if |s| ≥ R.
Differentiable. Here GX(s) may be differentiable or integrated term by term any number of
times at s, if s lies in the convergence interval (−R,R). This is related to some properties of X
itself that we will discuss later.
Uniqueness. Assume X1, X2 are two random variables such that{

GX1(s) =
∑∞

i=0 ais
i,

GX2(s) =
∑∞

i=0 bis
i.

If GX1(s) = GX2(s) for all 0 ≤ s < R′ ≤ R (R is the radius of convergence), then we have

∀i ∈ N : ai = bi =
1

i!
G

(i)
X1

(0).

Ttheorem 2. Assume the discrete random variable X has the probability generating function
GX(s). Then:
(1) G′

X(1) = E(X);
(2) G(k)

X (1) = E(X(X − 1) · · · (X − k + 1)).
The right hand side of the expression is called k-th factorial moment of X .
(3) V ar(X) = G′′

X(1) +G′
X(1)− (G′

X(1))2.

For the first part, notice that

G′
X(s) =

d

ds
E(sX) = E(XsX−1),

G′
X(1) = E(X).

For the second part, this is a generalization of statement (1) .

G
(k)
X (s) =

dk

dsk
E(sX) = E(X(X − 1) · · · (X − k + 1)sX−k),

G
(k)
X (1) = E(X(X − 1) · · · (X − k + 1)).

V ar(X) = E(X2)− E(X)2 = E(X(X − 1) +X)− E(X)2

= E(X(X − 1)) + E(X)− E(X)2

= G′′
X(1) +G′

X(1)− (G′
X(1))2.

The proof is completed.

Theorem 3. The discrete random variables X and Y are independent and their corresponding
probability generating functions are GX(s), GY (s). Then the probability generating function
of X + Y is

GX+Y (s) = GX(s)GY (s).
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Note that

GX+Y (s) = E(sX+Y ) = E(sXsY ) = E(sX)E(sY ) = GX(s)GY (s).

Basing on Theorem 3, We can deduce that if we have mutually independent random
variables X1, X2, · · · , Xn all taking values in Z≥0, then the probability generating function
of the sum T = X1 +X2 + · · ·+Xn is given by

GT (s) = GX1(s)GX2(s) · · ·GXn(s) =

n∏
i=1

GXi(s).

A.2 Random Sums
In the previous content, when we have a certain number of independent random variables

(their possible values are all non-negative integers), then their sum is also a random variable,
and its probability generating function is the product of the probability generating functions
of all random variables (e.g. n is a fixed number). When we talk about the random sums, the
problem becomes more complicated - which is like considering one more dimension in the
aspect of randomness. But many examples in reality can be expressed by this situation.

Queuing Model, which is one of the most classic models in operational research.
Suppose there is a store, and the number of people who enter the store to get services is a
random variable N . For each customer who comes in to receive service, their waiting time
follows the distribution T . Then the total waiting time can be expressed as

TTotal = T1 + T2 + · · ·+ TN .

Population Models. There are N plants in a given area at t = 0. Each plant can produce
seeds, and the quantity produced obeys specific distributions. Yi represents the number of seeds
produced by plant i in a year. Then the number of seeds produced by all plants in such area in
one year can be expressed by random sum:

YTotal = Y1 + Y2 + · · ·+ YN .

Next, we introduce the definition of random sum.

Definition 2 (Random Sum). Assume N is a discrete random variable with values in
N = {0, 1, 2, ...}, {Yi : i = 1, 2, · · · } is a sequence of independent identical distribution
(i.i.d) random variables. Suppose Yi and N are mutually independent. The random sum X is
defined as follows:

X =

{
Y1 + Y2 + · · ·+ YN , if N > 0;

0, if N = 0.

The expectation and variance of random sums are given below.

Theorem 4. Following the Definition 2, assume N and all Yi have the finite moments and

For Yi: E(Yi) = µ, V ar(Yi) = σ2;

For N : E(N) = µN , V ar(Yi) = σ2
N .

Then the random sum X =
∑N

i=1 Yi has the following properties:

E(X) = µµN , V ar(X) = µNσ2 + µ2σ2
N .

We first prove the expectation.

E(X) = EN (E(X|N)) =
∑

n∈ΩN

(E(X|N = n))P(N = n)

=
∑

n∈ΩN

(E(Y1 + · · ·+ YN |N = n))P(N = n)

=
∑

n∈ΩN

nµP(N = n)

= µ
∑

n∈ΩN

nP(N = n)

= µE(N) = µµN .
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V ar(X) = EX((X − E(X))2) = EX((X − E(X|N) + E(X|N)− E(X))2)

= EX((X − E(X|N))2) + EX((E(X|N)− E(X))2)

+ 2EX((X − E(X|N))(E(X|N)− E(X)),

where we have

EX((X − E(X|N))2) = EX((X −Nµ)2) = EN (E((X −Nµ)2|N))

=
∑

n∈ΩN

(E((X −Nµ)2|N = n))P(N = n)

=
∑

n∈ΩN

(
E

((
n∑

i=1

(Yi − µ)

)2

|N = n

))
P(N = n)

=
∑

n∈ΩN

E

 n∑
i=1

(Yi − µ)2 +
∑
i̸=j

(Yi − µ) (Yj − µ) |N = n

P(N = n)

=
∑

n∈ΩN

 n∑
i=1

E
(
(Yi − µ)2

)
+
∑
i̸=j

E ((Yi − µ) (Yj − µ))

P(N = n)

= σ2
∑

n∈ΩN

nP(N = n) + 0 = σ2µN .

(Notice that E ((Yi − µ) (Yj − µ)) = 0 as Yi and Yj are independent identical distributions if
i ̸= j.)

EX((E(X|N)− E(X))2) = EX

(
(Nµ− µµN )2

)
= µ2EX((N − µN )2) = µ2σ2

N .

For the term 2EX((X − E(X|N))(E(X|N)− E(X)),

EX((X − E(X|N))(E(X|N)− E(X)) = EN (E ((X −Nµ)(Nµ− µµN )|N = n))

=
∑

n∈ΩN

µ(E((X − nµ)(n− µN ))P(N = n)

=
∑

n∈ΩN

µ(n− µN )E

(
n∑

i=1

(Yi − µ)

)
P(N = n)

= 0,

as E
(∑n

i=1(Yi − µ)
)
= 0. So basing on the calculations above we can finally conclude that

V ar(X) = σ2µN + µ2σ2
N .

Now we consider the probability generating function of a random sum.

Theorem 5. Suppose {Yi}i∈N is a sequence of independent identical distribution random
variables with probability generating function GY (s). The random variable N with sample
spaces Z≥0 is independent to all Yi and has the probability generating function GN (s). Then
the probability generating function of the random sum X = Y1 + · · ·+ YN is given by

GX(s) = GN (GY (s)).

GX(s) = E(sX) = EN (E(sX |N)) =
∑

n∈ΩN

E(sX |N = n)P(N = n)

=
∑

n∈ΩN

E(sY1+···+Yn)P(N = n) =
∑

n∈ΩN

n∏
i=1

E(sYi)P(N = n)

=
∑

n∈ΩN

(GY (s))nP(N = n) = GN (GY (s)).
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A.3 Stochastic Processes
We usually analyze and find out the frequency of an event or the distribution of a random

variable (at a fixed time or within a given period) at a certain time (or a certain time section) in
the probability and statistics we studied in the past. But from now on, we pay more attention to
the variety of a variable about time, and we expect to find a way to describe its dynamic process,
so we put forward the definition of stochastic process.

Definition 3 (Stochastic Process). A random (stochastic) process X = {X(t) : t ∈ T} is a
collection of random variables.
(1) The set T is a time space, we also call it the index of the process. When T is countable,
we say the process X is a discrete-time process. If T is an interval of the real line, we say X
follows a continuous-time process.
(2) For all t ∈ T , we say X(t) is the state of the process at time t.

Next, we mention two stochastic processes-Poisson process and Branching process, which
are closely related to the models established in the project and we will discuss it in the next
section.

A.4 Poisson Process
Definition 4 (Poisson Process). The Poisson Process {N(t) : t ≥ 0} is basically a counting

process. A such process on the time interval t = [0,∞) counts the times of some primitive
events have occurred during the time interval [0, t]. Meanwhile, the process has the following
properties:

Time homogeneity/stationary increments. For a fixed h ≥ 0, the distribution of N(t +
h) −N(t) is the same for all t (i.e. is independent of t). The distribution of N(t2) −N(t1)
(0 ≤ t1 ≤ t2) only depends on the length of t2 − t1.

Independent increments. Any two increments involving disjoint intervals are independent.
If 0 ≤ s1 < s2 < t1 < t2 (i.e, the time intervals [t1, t2] and [s1, s2] do not overlap),
N(t2)−N(t1) and N(s2)−N(s1) are independent.

N(0) = 0, N(t) takes integer value for all t. Also this function is right continuous and
non-decreasing in [0,∞), with probability 1.

Assume the intensity parameter is λ. At time t ≥ 0, for any time interval [t, t+ h] (h > 0),
the number of events follows the Poisson distribution, Poisson(λh). (Figure 4)

P(N(t+ h)−N(t) = k) = P(N(h) = k) = e−λh (λh)
k

k!
, for k ∈ N.

The corresponding expectation and variance are given below:

E(N(t+ h)−N(t)) = λh, V ar(N(t+ h)−N(t)) = λh.

Figure 4 Poisson Process [23]

For a Poisson process, we have the following characteristics to pay attention to:
The process is memoryless. The Poisson process is a continuous-time Markov chain (i.e.

“when the present conditions are known, the future is not determined by the past.”).
For a fixed t ≥ 0 and a sufficient small h > 0, we analyze the probability distribution of

number of events (k) during [t, t+ h]:

P(k = 0) = e−λh (λh)
0

0!
= e−λh =

∞∑
n=0

(−λh)n

n!
= 1− λh+ o(h),

P(k = 1) = e−λh (λh)
1

1!
= e−λh(λh) =

∞∑
n=0

(−λh)n

n!
(λh) = λh+ o(h),

P(k ≥ 2) = 1− P(k = 0)− P(k = 1) = o(h).

This implies, within a sufficiently short time interval, the likelihood of the event occurring more
than once can be neglected.
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A.5 Branching Process
Another vital instance of stochastic process is branching process. (Figure 5)

Figure 5 An Example of Branching Process [24]

Definition 5 (Branching Process). Suppose Z = {Zn : n ≥ 0} is a sequence of random
variables taking non-negative integers. We say Z is a branching process if it satisfies the
following conditions:
(1) Z0 = 1;
(2) Zn+1 = X1 + X2 + · · · + XZn , where Xi (i = 1, · · · , Zn) are independent identical
distribution random variables taking non-negative integers as their values.

A typical example of branching process is the family tree, which is demonstrated in Figure 6.

Figure 6 Family Tree [25]

Table 8 The Evolution of Branching process in Figure 6.

Time (tn) Xk (k = 1, · · · , Zn−1) Zn =
∑Zn−1

k=1 Xk

t = 0 N/A Z0 = 1
t = 1 X1 = 2 Z1 = X1 = 2
t = 2 X1 = 3, X2 = 1 Z2 = X1 +X2 = 4

t = 3 X1 = 2, X2 = 0, X3 = 1, X4 = 3 Z3 =
∑4

k=1 Xk = 6
· · · · · · · · ·

Now we discuss the probability generating functions of the Branching process Z = {Zn :
n ≥ 0}. Define the probability generating function of Zn

Gn(s) = E(sZn), for n ≥ 0,

we have the following theorem.

Theorem 6. Assume G(s) = G1(s), then

Gn+1(s) = Gn(G(s)), for n ≥ 0.
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By recursion we finally have
Gn(s) = G◦ · · · ◦︸ ︷︷ ︸

n times

G(s),

we call it the n-fold iterate of G.

We know that Zn+1 = X1 + · · ·+XZn . Notice that: (1) Z1 = XZ0 = X1 since Z0 = 1;
(2) Xi are all independent identical distributions.
Therefore, we get

G(s) = G1(s) = GX1(s).

Furthermore, we obtain

Gn(s) = E(sZn) = E(s
∑Zn−1

i=1 Xi) = EZn−1(E(s
Xi |Zn−1)

Zn−1) = Gn−1(G(s))

= Gn−2(G(G(s))) = · · · = G(G · · ·G(G(s))) = G◦ · · · ◦︸ ︷︷ ︸
n times

G(s).

Theorem 7. For a Branching process Z = {Zn : n ≥ 0}, assume

E(Z1) = µ, V ar(Z1) = σ2,

we have

E(Zn) = µn, V ar(Zn) =

{
nσ2, if µ = 1,
σ2(µn−1)µn−1

µ−1
, if µ ̸= 1.

We only give the proof of expectation here.

We know that Zn+1 = X1 + · · ·+XZn . Notice that:

E(Zn) = G′
n(s)|s=1 =

d

ds
G(Gn−1(s))|s=1 = G′(Gn−1(s))G

′
n−1(s)|s=1

= G′(Gn−1(1))G
′
n−1(1) (Note: G(1) = 1 for all probability generating functions)

= G′(1)G′
n−1(1) = µG′

n−1(1)

⇒ E(Zn) = µE(Zn−1).

B MATLAB Implementation of Newton Interpolation
The MATLAB function below computes the coefficients of the inhibition rate interpolation

polynomial:

Lstlisting 1: MATLAB code of Newton’s form of interpolating polynomials

1 f u n c t i o n d i f f c o e f f i c i e n t = N e w t o n I n t e r p o l a t i o n ( x , y )
2 i f ( ( s i z e ( x ,2 ) − s i z e ( y , 2 ) ˜ = 0 ) . . .
3 | | . . .
4 ( s i z e ( x , 1 ) ˜ = 1 ) . . .
5 | | . . .
6 ( s i z e ( y , 1 ) ˜ = 1 ) )
7 e r r o r ( ‘ x and y must bo th be 1−D v e c t o r wi th t h e same
8 d imens ion . ’ )
9 end

10 n= l e n g t h ( x ) ;
11 y=y ’ ;
12 y ( n , n ) = 0 ;
13 f o r column =2: n
14 f o r row=column : n
15 y ( row , column ) = ( y ( row , column −1) −y ( row −1 , column − 1 ) ) / . . .
16 ( x ( row ) − x ( row−column + 1 ) ) ;
17 end
18 end
19 d i f f c o e f f i c i e n t ( n ) = 0 ;
20 f o r row =1: n
21 d i f f c o e f f i c i e n t ( row )= y ( row , row ) ;
22 end
23 end

Current Cancer Reports • SyncSci Publishing 313 of 314

https://www.syncsci.com/journal/CCR
https://www.syncsci.com


Volume 7 Issue 1, 2025 Ying-Yu Cui, Xi-Han Fang and Xiao-Qing Fu

C Reproducing Figure 3
1 import numpy as np
2 import m a t p l o t l i b . p y p l o t as p l t
3
4 # E x p e r i m e n t a l da ta
5 C = np . a r r a y ( [ 20 , 40 , 80 , 160 , 2 0 0 ] )
6 I o b s = np . a r r a y ( [ 1 6 . 9 7 , 2 5 . 2 0 , 3 0 . 6 4 , 3 6 . 6 4 , 4 3 . 1 7 ] )
7
8 # F i t t e d H i l l p a r a m e t e r s
9 IC50 = 380

10 n = 0 . 5 2
11
12 # Genera te smooth f i t c u r v e
13 C f i t = np . l i n s p a c e ( 0 , 250 , 500)
14 I f i t = 100 * C f i t **n / ( IC50 **n + C f i t **n )
15
16 # P l o t
17 p l t . f i g u r e ( )
18 p l t . p l o t ( C f i t , I f i t , ’− ’ , l a b e l = ’ H i l l f i t ’ )
19 p l t . p l o t (C , I o b s , ’ x ’ , l a b e l = ’ O b s e r v a t i o n s ’ )
20 p l t . x l a b e l ( ’ P MB E c on c e n t r a t i on ( g /mL) ’ )
21 p l t . y l a b e l ( ’ G r o w t h i n h i b i t i o n (%) ’ )
22 p l t . l e g e n d ( )
23 p l t . t i g h t l a y o u t ( )
24 p l t . s a v e f i g ( ’ f i g u r e s / f i g −3 . png ’ , d p i =300)
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