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Resultant gradient information, kinetic energy
and molecular virial theorem

Roman F. Nalewajski

Abstract: Resultant gradient-information is introduced and applied to problems in chemical reactivity
theory. This local measure of the structural information contained in (complex) wavefunctions of electronic
states is related to the system overall kinetic energy combining the modulus (probability) and phase (current)
contributions. The grand-ensemble representation of thermodynamic equilibria in open systems demonstrates
the physical equivalence of the variational energetic and information principles. It is used and to relate the pop-
ulational derivatives of ensemble-average functionals in both these representations, which represent reactivity
criteria for diagnosing the charge-transfer (CT) phenomena. Their equivalence is demonstrated by using the in
situ potential and hardness descriptors to predict the direction and optimum amount of CT. The virial theorem
is generalized into thermodynamic quantities and used to extract the kinetic energy component from qualitative
energy profiles in the bond-formation and (exo/endo)-ergic reactions. The role of electronic kinetic energy in
such chemical processes is reexamined, the virial theorem implications for the Hammond postulate of reactivity
theory are explored, and variations of the structural-information in chemical processes are addressed. The max-
imum thermodynamic information rule is formulated and “production” of the gradient-information in chemical
reactions is addressed. The Hammond postulate is shown to be indexed by the geometric derivative of resultant
gradient-information at transition-state complex.

Keywords: bond formation, chemical reactivity, grand ensemble, information theory, resultant informa-
tion, virial theorem

1 Introduction

The Quantum Information Theory (QIT)[1–4] has been
shown to provide a solid, unifying basis for under-
standing - in chemical terms - the electronic struc-
ture of molecules, and explaining general trends in
their chemical behavior,[5–8] . Thermodynamic energy
principle has been interpreted as physically equivalent
rule for the resultant content of the overall gradient-
information in electronic wavefunction, the dimension-
less descriptor related to the state average kinetic en-
ergy. In the grand-ensemble both these variational prin-
ciples determinetheequilibrium stateofan open molecu-
lar system. This equivalence parallels the same predic-
tions resulting from the minimum-energyandmaximum-
entropyprinciplesofthe ordinarythermodynamics[9] . It
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explains the proportionality relations between energetic
and informational criteria of chemical reactivity, mea-
sured by the corresponding populational derivatives of
the ensemble-average functionals.

The QIT transcription of the variational principle for
the electronic (thermodynamic) energy thus allows one
to interpret reactivity criteria as the associated pop-
ulational derivatives of the state resultant gradient-
information (dimensionless kinetic energy) content. The
latter combines the classical (probability) and nonclas-
sical (current) contributions,due to the modulus and (lo-
cal) phase components of the molecular wavefunction,
respectively. The proportionality between the resultant
gradient-information and the system kinetic energy also
suggests the use of molecular virial theorem[10] in gen-
eral reactivity considerations[5–8] .

To paraphrase Prigogine[11] , the electron density alone
carries the information reflecting a “static” structure of
“being”, missing a “dynamic” structure of “becoming”
contained in the state phase or current distributions.
Both these manifestations of the electronic “organi-
zation” in molecular systems ultimately contribute to
overall measures of the structural entropy or information
content in generally complex wavefunctions, reflected
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by the resultant QIT concepts[1–4] . Their classical
contributions, conceptually rooted in Density Functional
Theory (DFT)[12–17] , probe the entropic content of
incoherent (disentangled) local “events”, while the
nonclassicaltermsprovidetheinformationsupplementdue
to the coherence (entanglement) of such local events.
The resultant measures allow one to distinguish the
information content of states generating the same
electron density but differing in their phase/current dis-
tributions, e.g., the bonded (entangled) and nonbonded
(disentangled) states of molecular fragments[18–27] .

The classical Information Theory (IT) of Fisher and
Shannon[28–35] has been successfully applied to gen-
erate the chemical interpretation of molecular prob-
ability distributions,[36–39] . Information principles
have been explored[5–8, 40–45] and density pieces at-
tributed toAtoms-in-Molecules(AIM) have been ap-
proached,[36–39, 43–47] providing the information ba-
sis for the intuitive (stockholder) division of Hirsh-
feld[48] . Patterns of chemical bonds in molecules
have been extracted from electronic orbital communi-
cations,[1, 36–38, 49–59] and entropy/information densities
have been explored.[1, 36–38, 60, 61] The nonadditive Fisher
information[1, 36–38, 62, 63] has been linked to the Elec-
tron Localization Function (ELF)[64–66] of modern DFT.
This analysis has also formulated the Contragradience
(CG) probe[1, 36–38, 67] for spatial localization of chem-
ical bonds, and the Orbital Communication Theory
(OCT) of the chemical bond has identified the bridge-
bonds originating from the cascade propagations of in-
formation between AIM, which involve intermediate or-
bitals.[1, 38, 68–73] The DFT-based approaches to classical
issues in reactivity theory[74–80] use the energy-centered
arguments in justifying the observed reactivity prefer-
ences. It is the main purpose of this work to show that
general reactivity rules can be alternatively treated us-
ing the resultant-information/kinetic-energy concepts of
QIT.

We begin with a short summary of the overall gra-
dient-information concept. The resultant QIT descrip-
tor will be introduced and its classical and nonclassi-
cal components identified. Populational derivatives of its
thermodynamic, ensemble-average value generate alter-
native indices of chemical reactivity, adequate in predict-
ing both the direction and magnitude of electron flows in
donor-acceptor systems[5–8] . The molecular virial theo-
rem will be used to generate the information perspective
on the bond-formation and the Hammond[81] postulate
of reactivity theory. The theorem will be generalized to
cover the ensemble-average energy components and the
role of electronic kinetic energy or the resultant gradi-
ent-information in chemical processes will be examined.

Physical equivalence of the energy and information reac-
tivity descriptors in the grand-ensemble representation
of thermodynamic-equilibria will be stressed, the rela-
tion between energetic and information reactivity indices
will be examined, and the “production” of the overall
structural information in chemical reactions will be ad-
dressed.

2 Resultant gradient-information and kinetic
energy of electrons

Consider a general (complex) quantum state |ψ〉 of an
electron described by the associated wavefunction in po-
sition representation,

ψ (r) = 〈r|ψ〉 = R(r)exp[iφ (r)] (1)

with R(r) and ϕ(r) denoting its modulus and phase
components, respectively. They determine the particle
probability distribution,

p (r) = ψ(r)
∗
ψ (r) = R(r)

2 (2)

and the current density

j (r) = [~/ (2mi)][ψ(r)
∗∇ψ (r)− ψ(r)∇ψ(r)

∗
]

= (~/m) p (r)∇φ (r) ≡ p(r)V (r)
(3)

The effective velocity V(r) of this probability “fluid”
measures the current-per-particle and reflects the state
phase-gradient:

V (r) = j (r) /p (r) = (~/m)∇φ (r) (4)

The average Fisher’s[28] measure of the classical
gradient-information for locality events containedinthe
electronic probabilitydensityp(r) is reminiscent of von
Weizscker’s[82] inhomogeneity correction to density-
functional for the kinetic-energy:

I [p] =

∫
p(r)[∇lnp(r)]2dr ≡

∫
p(r)Ip(r)dr

= 4

∫
[∇R(r)]2dr ≡ I [R]

(5)

Here p(r) Ip(r) denotes functional’s overall density
with Ip(r) = [∇lnp(r)]2 standing for the associated
density-per-electron. The amplitude form I[R] reveals
that this classical descriptor reflects a magnitude of the
state modulus-gradient. It characterizes an effective
“narrowness” of the probability distribution, i.e., a de-
gree of determinicity in particle’s position.

This classical functional of the gradient-information
in probability distribution generalizes naturally into the
of the quantum state |ψ〉,which combinesthe modulus
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(probability) and phase (current) contributions.[1, 18–22, 62]

It is defined by quantum expectation value of the Hermi-
tian operator Î(r) of the overall gradient information[62]

,related to electronic kinetic-energy operator T̂ (r),

Î(r) = −4∆ = (2i∇)2 = (8m/~2)T̂ (r) ≡ σT̂ (r)

T̂ (r) = −
[
~2/ (2m)

]
∇2

(6)
The integration by parts then gives the following ex-

pression for the average (resultant) gradient-information
contained in quantum state |ψ〉:

I[ψ] = 〈ψ|Î|ψ〉 = −4

∫
ψ(r)

∗
∆ψ(r)dr

= 4

∫
|∇ψ (r) |2dr ≡

∫
p(r)Iψ(r)dr

= I [p] + 4

∫
p(r)[∇φ (r)]2dr

≡
∫
p(r)[Ip (r) + Iφ (r)]dr

≡ I [p] + I[φ] ≡ I[p,φ]

= I [p] + (2m/h)
2
∫
p(r)

−1
j(r)

2
dr

≡ I [p] + I [j] ≡ I [p,j]

(7)

This quantum gradient-information concept I[ψ] =
I[p,ϕ] = I[p,j] is seen to combine the classical (proba-
bility) contribution I[p] of Fisher and the corresponding
nonclassical (phase/current) supplement I[ϕ] = I[j] . It
also reflects the particle average (dimensionless) kinetic
energy T[ψ]:

I[ψ] = σ〈ψ|T̂|ψ〉T [ψ] = σT [ψ] (8)

The above one-electron development can be straight-
forwardly generalized into general N-electron state
|Ψ(N)〉, exhibiting electron density ρ(r)= Np(r), where
p(r) stands for its probability (shape) factor. The corre-
sponding information operator then combines terms due
to each electron,

Î(N) =
N∑
i=1

Î(ri) = σ
N∑
i=1

T̂ (ri) ≡ σT̂ (N) (9)

and determines the (dimensionless) average gradient-
information as its expectation value proportional to the
state average kinetic energy T(N).

I(N) =
〈
ψ (N) |Î (N) |ψ (N)〉

= σ 〈ψ (N) |T̂ (N) | ψ (N)〉 = σT (N)
(10)

In the given electron (orbital) configuration specified

by a single Slater determinant Ψ(N) = |ψ1ψ2 . . .ψN |,
e.g., in the familiar Hartree-Fock of Kohn-Sham theo-
ries, these N-electron descriptors combine the additive
contributions due to all (singly occupied: ns = 1), molec-
ular orbitals (MO) ψ = (ψ1, ψ2, . . . , ψN ) = {ψs}:

T (N) =
∑

s
ns〈ψs|T̂ |ψs〉 ≡

∑
s
nsTS

= σ−1
∑

s
ns〈ψs|Î|ψs〉 ≡ σ−1

∑
s
nsIs

(11)

In the analytical LCAO MO representation, when
these occupied MO are expressed as linear combinations
of the (orthogonalized) atomic orbital (AO) basis χ =
(χ1, χ2, . . . , χk, . . . ),

|ψ〉 = |χ〉C,C = 〈χ|ψ〉 = {Ck,s = 〈χκ|ψs〉} (12)

the average gradient information contained in Ψ(N), for
the unit matrix of MO occupations, n = {nsδs,s′ = δs,s′},
thus reads:

I(N) =
∑

s
ns〈ψs|Î|ψs〉

=
∑

κ

∑
l
{
∑

s
Ck,snsCs

∗
,l}〈χl|Î|χκ〉

≡
∑

k

∑
l
γk,lIl,k = tr(γI)

(13)

Here, the AO representation of the resultant gradient-
information operator,

I = {Ik,l = 〈χk|Î|χl〉 = σ〈χk|T̂ |χl〉 ≡ σTk,l} (14)

and the Charge/Bond-Order (CBO) (density) matrix of
LCAO MO theory,

γ = CnC† = 〈χ|ψ〉n〈ψ|χ〉 ≡ 〈χ|P̂ψ|χ〉 (15)

represents the AO-representation of the projection oper-
ator onto the occupied MO-subspace,

P̂ψ = N [
∑

s
|ψs〉(ns/N)〈ψs|]

≡ N [
∑

s
|ψs〉Ps〈ψs|] ≡ N d̂

(16)

proportional to the density operator d̂ of the configura-
tion MO “ensemble”.

This expression for the average overall gradient-
information assumes thermodynamic-like form, as trace
of the product of CBO matrix, the AO representation
of the (occupation-weighted) MO projector, which es-
tablishes the configuration density operator d̂, and the
corresponding AO matrix of the Hermitian operator for
the resultant gradient-information, related to the sys-
tem electronic kinetic energy. In this MO “ensemble”
averaging the AO information matrix I constitutes the
quantity-matrix, while the CBO (density) matrix γ pro-
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vides the “geometrical” weighting-factors reflecting the
system electronic state. It has been argued elsewhere
that elements of the CBO matrix also generate ampli-
tudes of electronic communications between molecular
AO “events”.[1, 36–38, 49–59] This observation adds a new
angle to interpreting the average-information expression
as the communication-weighted (dimentionless) kinetic
energy of the system electrons[83] .

A separation of the modulus- and phase-components
of general N-electron states calls for wavefunctions
yielding the specified electron density[14] . It can effected
using the Harriman-Zumbach-Maschke (HZM)[84, 85]

construction of DFT, which uses N (complex) equiden-
sity orbitals, each separately generating the molecular
probability distribution p(r) and exhibiting the density-
dependent spatial phase which safeguards the MO or-
thogonality.

3 Grand-ensemble description of molecular
equilibria

In an open molecule M(v), identified by the external
potential v(Q) of the Born-Oppenheimer (BO) approx-
imation for the molecular geometry Q specified by co-
ordinates of the fixed nuclei of the system constituent
atoms, the populational derivatives of the average elec-
tronic energy or the resultant gradient-information call
for the grand-ensemble representation of thermody-
namic equilibria.[5–8, 15, 86, 87] A molecule is then coupled
to a hypothetical (macroscopic) electron reservoir R(µ)
exhibiting the chemical potential µ, and the heat bath
B(T) identified by its absolute temperature T in the com-
posite (macroscopic) system

M(µ, T ; v) = [R(µ)M (v)B (T )] (17)

where the vertical broken lines separating subsystems
symbolize their freedom to exchange electrons or energy.
The average number of electrons in such an externally-
open molecule,

〈N〉ens. ≡ N = tr(D̂N̂) =
∑

i
PiNi∑

i
Pi = 1, Pı > 0

(18)

exhibits a continuous (fractional) spectrum of values,
thus justifying the very concept of the populational (N)
derivative itself. Here,

N̂ =
∑

i

∑
j
|ψj (Ni)〉Ni〈ψj (Ni) | (19)

stands for the particle-number operator in Fock’s space
and the density operator identifies the equilibrium statis-
tical mixture of the system stationary states {|ψj[Ni,v]〉

≡ |ψji〉},

D̂(µ, T ; v) =
∑

i

∑
j
|ψj (Ni) 〉Pji(µ, T ; v)〈ψj (Ni) |

(20)
eigenstates of Hamiltonians {Ĥ(Ni,v)≡ Ĥi} for differ-
ent (integer) numbers of electrons {Ni ≡ i} correspond-
ing to energies {Ej[Ni,v] ≡ Eji},

Ĥ(Ni,v)|ψj [Ni,v]〉 = Ej(Ni)|ψj [Ni,v]〉
or Ĥ|ψji〉 = Ej

i|ψji〉
(21)

these (pure) quantum states appear in the grand-
ensemble with the (externally-imposed) equilibrium
thermodynamic probabilities {Pji(µ, T; v) ≡ Pji≥ 0}
and the “condensed” probability in Equation 18 is ob-
tained by the partial summation over eigenstates of Ĥi:
Pi =

∑
jPji.

Such electronic N-derivatives are involved in defini-
tions of the system Charge Transfer (CT) criteria of
chemical reactivity,[15, 74–79] e.g., the chemical poten-
tial (negative electronegativity)[15, 86–90] or the hardness
(softness)[91] and Fukui Function (FF)[92] descriptors of
electrons. They are thus definable only for the mixed-
state of the molecular (microscopic) system M(v), e.g.,
that corresponding to the thermodynamic equilibrium
imposed by intensities (µ, T) characterizing the exter-
nal (macroscopic) subsystems R(µ) and B(T) in M(µ,
T; v), µ = µR and T=TB , i.e., for the equilibrium
grand-canonical density operator of Equation 20: D̂eq.≡
D̂(µ,T; v).

The grand-canonical intensities determine the ensem-
ble thermodynamic potential, called the grand-potential,
given by the corresponding Legendre-transform[9] of the
ensemble-average energy

〈E〉ens. ≡ E[D̂] ≡ E(N,S; v) = tr(D̂Ĥ)

=
∑

i

∑
j
Pj

iEj
i (22)

Ω = E − (∂E/∂N)N − (∂E/∂S)S

= E[D̂]− µN [D̂]− TS[D̂]
(23)

It minimizes at the optimum state-probabilities
{Pji(µ,T;v)} ≡ Peq.(µ,T;Q):

min
D̂

Ω[D̂] = Ω[D̂(µ,T ;v)]

= E[D̂eq.]− µN [D̂eq.]− TS[D̂eq.]

≡ Ω(µ,T ;v)⇒ Peq.(µ,T ;Q)

(24)

As indicated in the preceding equation, the ensem-
ble parameters µ and T ultimately determine the associ-
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ated optimum probabilities of the (pure) stationary states
{|ψj[Ni,v]〉}, eigenstates of Hamiltonians {Ĥi},

{Pji(µ,T;v) = Ξ−1exp[β(µNi − Eji)]}
≡ Peq.(µ,T ;Q)

(24-1)

which define the equilibrium density operator of Equa-
tion 20 for the specified geometrical structure Q. Here
Ξ stands for the grand-ensemble partition function, kB
denotes the Boltzmann constant, and β = (kBT)−1.

The electronically-relaxed, equilibrium ensemble
probabilities thus satisfy the following relations between
the probability “gradients” for the adopted molecular ge-
ometry Q:

∂Ω(P,Q)

∂P

∣∣∣∣
Peq.

= 0 or

∂E(P,Q)

∂P

∣∣∣∣
Peq.

= µ
∂N(P )

∂P

∣∣∣∣
Peq.

+ T
∂S(P )

∂P

∣∣∣∣
Peq.

(25)
where the explicit dependence of on nuclear coordi-
nates Q, resulting from the external potential contribu-
tion in the ensemble Hamiltonians {Ĥ i},also influences
eigenvalues{Eji}.

The grand-potential corresponds to replacing the “ex-
tensive” state-parameters, of the average values of the
particle number N = N [D̂] and thermodynamic en-
tropy[93]

S[D̂] = tr(D̂Ŝ) = −kB
∑

i

∑
j
Pj

ilnPj
i

Ŝ = −kB
∑

i

∑
j
|ψji〉lnPji〈ψji|

(26)

bytheir “intensive” conjugates: the chemical potential µ
and absolute temperature T, respectively. This Legendre-
transform includes these “intensities” as Lagrange mul-
tipliers enforcing, at the minimum of , the constraints of
the specified values of the system ensemble-average val-
ues of the conjugate “extensive” parameters: the system
overall number of electrons,

〈N〉ens. = N [D̂eq.] =
∑

i
[
∑

j
Pj

i(µ,T ; v)]Ni

=
∑

i
Pi(µ,T ; v)Ni = 〈N(µ,T ; v)〉ens.

= N[µ,T ; v] = N
(27)

and of thermodynamic (von Neumann’s[93] ) entropy:

〈S〉ens. = S[D̂eq.]

= −kB
∑

i

∑
j
Pj

i(µ, T ; v)lnPj
i(µ,T ; v)

= 〈S(µ,T ; v)〉ens. = S(µ,T ) = S
(28)

In equilibrium state the prescribed average extensive
descriptors N and S also uniquely identify the externally-
imposed state intensities, µ = µ(N,S)andT= T(N,S), and
hence also the equilibrium energy function

E[D̂eq.] = 〈E(µ, T ; v)〉ens.
=
∑

i

∑
j
Pj

i(µ, T ; v)〈ψji|Ĥi|ψji〉

=
∑

i

∑
j
Pj

i(µ, T ; v)Ej
i

= E(µ,T )

≡ E(N,S)

(29)

It allows one to formally identify the intensive param-
eters as its partial derivatives with respect to the con-
strained values of the extensive state-variables:

µ =

(
∂E

∂N

)
S

∣∣∣∣
D̂eq.

and

T=

(
∂E

∂S

)
N

∣∣∣∣
D̂eq.

(30)

In the T→ 0 limit[15, 86, 87] only two ground-states (j =
0), {|ψ0

i〉, |ψ0
i+1〉}, corresponding to the neighboring

integers “bracketing” the given (fractional) 〈N〉ens. = N,
Ni ≤ 〈N〉ens. ≤ Ni + 1, appear in the equilibrium
statistical mixture. Their ensemble probabilities for the
specified

〈N〉ens. = iPi + (i+ 1) (1− Pi) = N (31)

then read:

Pi = 1 + i−N ≡ 1− ω and

Pi+1 = N − i ≡ ω
(32)

The continuous energy function E(N,S) then consists
of the straight-line segments between the neighboring
integer values of N. This implies constant values of
the chemical potential in all such admissible ranges of
the average electron number and µ-discontinuity at N =
Ni(integer).[15, 86, 87]

The ensemble-average value of the resultant gradient-
information,

〈I〉ens. ≡ I[D̂eq.] = tr [D̂eq.Î]

=
∑
i

∑
j

Pj
i(µ,T ; v)〈ψji|Î(Ni)|ψji〉

≡
∑
i

∑
j

Pj
i(µ,T ; v)Ij

i

Ij
i =

(
8m/~2

)
〈ψji|T̂ (Ni)|ψji〉 ≡ σTji

(33)
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is related to the ensemble-average kinetic energy T:

〈T 〉ens. ≡ I[D̂eq.] = tr(D̂eq.T̂ )

=
∑
i

∑
j

Pj
i(µ,T ; v)〈ψji|T̂ (Ni)|ψji〉

≡
∑
i

∑
j

Pj
i(µ,T ; v)Tj

i = σ−1〈I〉ens.

(34)

The proportionality constant results from relation be-
tween the associated electronic operators:

T̂ (Ni) =
−~2

2m

Ni∑
k=1

∇2
k and

Î(Ni) = −4
Ni∑
k=1

∇2
k

(35)

Therefore, the thermodynamic rule of Equation 24, for
the minimum of the constrained average value of elec-
tronic energy can be alternatively interpreted as the cor-
responding extremum principle for the ensemble-average
(resultant) gradient-information:[5–8, 36–38, 40]

σmin
D̂

Ω[D̂] =σΩ[D̂eq.]

=I[D̂eq.] + σ{W [D̂eq.]− µN [D̂eq.]− TS[D̂eq.]}
(36)

where the ensemble-average value of the system overall
potential energy,

W [D̂eq.]=V [D̂eq.]+U [D̂eq.] (37)

combines the nuclear-attraction (V [D̂eq.]) and electron-
repulsion (U [D̂eq.]) contributions. This information
principle is seen to contain an additional constraint of
the fixed potential energy, 〈W〉ens. = W , multiplied by
the Lagrange multiplier

λW = −σ =

(
∂I

∂W

)
N,S

∣∣∣∣∣
D̂eq.

≡ K (38)

besides the remaining constraints, now multiplied by the
“scaled” conjugate intensities[5–8] : information “poten-
tial”

ξ ≡ σµ=

(
∂I

∂N

)
W,S

∣∣∣∣∣
D̂eq.

(39)

information “temperature”

τ ≡ σT =

(
∂I

∂S

)
W,N

∣∣∣∣∣
D̂eq.

(40)

The conjugate thermodynamic principles, for con-

strained extrema of the ensemble energy,

δ
(
E[D̂]− µN [D̂]− TS[D̂]

)
D̂eq.

= 0 (41)

and its overall gradient-information,

δ
(
I[D̂]− κW [D̂]− ξ N [D̂]− τ S[D̂]

)
D̂eq.

= 0

(42)
have the same optimum-probability solutions of Equa-
tion 25. This manifests the physical equivalence of the
energetic and “entropic” principles in determining the
equilibrium states in thermodynamics[9] .

Several N-derivatives of the ensemble-average elec-
tronic energy or of the resultant gradient-information
define useful and adequate CT criteria of chemical re-
activity.[15, 74–79] The physical equivalence of the en-
ergy and information principles indicates that such con-
cepts are mutually related, being both capable of describ-
ing the electron-transfer phenomena in donor-acceptor
systems[5–8] . The above ensemble interpretation also
applies to diagonal and mixed second derivatives of
the electronic energy or its kinetic-energy (information)
component, which involve the population differentiation.

In energy-representation the chemical hardness[91] ,
the “diagonal” populational second- derivative of the en-
semble energy, reflects the N-derivative ofchemical po-
tential,

η =

(
∂2E

∂N2

)
S

∣∣∣∣
D̂eq.

=

(
∂µ

∂N

)
S

∣∣∣∣
D̂eq.

> 0 (43)

while the information “hardness” reflects the N-
derivative of information “potential”[5–8] :

ω =

(
∂2I

∂N2

)
W,S

∣∣∣∣∣
D̂eq.

=

(
∂ξ

∂N

)
W,S

∣∣∣∣∣
D̂eq.

= ση > 0

(44)
The positive signs of these diagonal population deriva-

tives assure the external stability of an open M(v), with
respect to hypothetical electron flows between molecular
system and its reservoir. They indeed imply an increase
(a decrease) of the global energetic and information “in-
tensities” coupled to N, µ and ξ, in response to perturba-
tions created by the initial electron inflow (outflow). This
accords with the Le Chtelier and Le Chtelier-Braun prin-
ciples of thermodynamics[9] , that spontaneous responses
in system intensities to the initial population displace-
ments diminish effects of the primary perturbations.

By the cross-differentiation identity the “mixed” sec-
ond-derivative of the ensemble energy, measuring the
system global FF[92] , can be alternatively interpreted as
either the response in global chemical potential per unit

Chemical Reports c© 2019 by Syncsci Publishing. All rights reserved.



28 Chemical Reports, February 2019, Vol. 1, No. 1

displacement in the external potential, or the density re-
sponse per unit populational displacement.

f(r) =

(
∂2E

∂N∂v(r)

)
S

∣∣∣∣
D̂eq.

=

(
∂µ

∂v(r)

)
S

∣∣∣∣
D̂eq.

=

(
∂ρ(r)

∂N

)
S

∣∣∣∣
D̂eq.

(45)

The associated mixed derivative of the resultant gradient
information in the grand-ensemble similarly reads:

ϕr =

(
∂2I

∂N∂v(r)

)
W,S

∣∣∣∣∣
D̂eq.

=

(
∂ξ

∂v(r)

)
W,S

∣∣∣∣∣
D̂eq.

= σ

(
∂ρ(r)

∂N

)
W,S

∣∣∣∣∣
D̂eq.

= σ f(r)

(46)
It has been argued elsewhere[5–8] , that the in situ mea-

sures of these energy and information derivatives con-
stitute fully equivalent descriptors of electron flows be-
tween the polarized subsystems. These CT phenomena
in the polarized reactive system R+ = (A+|B+), contain-
ing the mutually-closed and molecularly polarized ac-
ceptor (acid, A) and donor (basis, B) reactants {α+},
are described by populational derivatives: the substrate
chemical potentials µR+ = {µa+} and elements of the
hardness matrix ηR+ = {ηα,β}. These descriptors again
call for the grand-ensemble representation of the po-
larized (externally-open) reactants, in contact with their
separate (macroscopic) electron reservoirs {Ra}. They
represent the electron population {Na ≡ Na} deriva-
tives of the ensemble-average electronic energy in R+,
E[{Nβ}, v] ≡ Ev({Nβ}), the microscopic subsystem
in the macroscopic (composite) system,

MR
+ = (MA

+|MB
+)

= (RAA
+|B+RB)

≡ (RAM(v)
+
RB)

(47)

where the solid and broken vertical lines separating sub-
systems again denote their mutual closeness and open-
ness, respectively, with respect to hypothetical flows of
electrons. They are calculated for the fixed molecular
external potential v(Q) reflecting the “frozen” molecular
geometry Q.

The in situ descriptors of CT are thus derived from the
corresponding partials of the system ensemble-average
energy with respect to ensemble-average electron popu-
lations {Na} on (externally-open) molecular-subsystems
{α+} in the (mutually-closed) composite fragments
{Ma

+ = (a+Ra)} of MR
+:

µa ≡ ∂Ev({Nγ})/∂Na

ηα,β = ∂2Ev({Nγ})/∂Nα∂Nβ = ∂µα/∂Nβ

= ∂µβ/∂Nα = ηβ,α

(48)

The optimum amount of the (fractional) CT is deter-
mined by the difference in chemical potentials of the
(equilibrium) polarized reactants in R+,

µCT = ∂Ev (NCT ) /∂NCT = µA
+ − µB

+ < 0 (49)

which defines the effective CT-gradient, and the in situ
hardness (ηCT ) or softness (SCT ) for this process,

ηCT = ∂µCT/∂NCT

= (ηA,A − ηA,B) + (ηB,B − ηB,A+) ≡ ηA
R + ηB

R

≡ ΣCT
−1

(50)
representing the effective CT-Hessian and its inverse, re-
spectively. The optimum amount of the inter-reactant
CT,

NCT = −µCTSCT = −µCT/ηCT (51)

then generates the associated (2nd-order) stabilization
energy:

ECT = µCTNCT/2 = −µCT 2SCT
/
2 < 0 (52)

The corresponding CT-derivatives of the average gradi-
ent-information in AB systems similarly involve the in
situ information potential,

ξCT = ∂I (NCT )/∂NCT = ξA
+ − ξB+ = σµCT

(53)
and the associated hardness descriptor, the inverse of the
information softness θCT ,

ωCT = ∂ξCT/∂NCT ≡ θCT−1 = σηCT = σ SCT
−1

(54)
In terms of these information descriptors the amount of
CT in the acid-base system reads:

NCT = −ξCT/ωCT = −ξCT θCT
= −µCT/ηCT = −µCTSCT

(55)

Thus, the in situ populational derivatives (ξCT ,
ωCT = θCT

−1) of the ensemble-average measures of
the (resultant) gradient-information functionals, pro-
vide alternative reactivity descriptors, fully equiva-
lent to the chemical potential and hardness/softness
indices (µCT , ηCT = SCT−1) of the energy repre-
sentation. This demonstrates the physical equiva-
lence of the energy and information treatments of
CTphenomenainmolecularsystems.Onethus concludes
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that the resultant gradient-information, the quantum gen-
eralization of the classical Fisher measure, indeed con-
stitutes a reliable basis for an “entropic” description of
reactivity phenomena.

4 Virial theorem implications

The virial theorem for the stationary electronic states
|ψji〉 = |ψj[Ni,v]〉 in molecules reflects homogeneities
of the kinetic and potential energy contributions in such
pure quantum states,

Tj
i = 〈ψji|T̂ (Ni)|ψji〉 and Wj

i = 〈ψji|Ŵ (Ni, v)|ψji〉

Ŵ (Ni, v) =
Ni∑
k=1

[v(k) +
1

2

∑
l 6=k

g(k, l)]

= V̂ (Ni, v) + Û(Ni, v)
(56)

with respect to the uniform scaling of the system elec-
tronic and nuclear positions. Here, g(k,l) denotes the re-
pulsion between electrons k and l, and the state electronic
energy in |ψji〉

Ej
i = 〈ψji|Ĥi|ψji〉 = Tj

i +Wj
i (57)

In BO approximation both this average energy and its
components are parametrically dependent upon molec-
ular geometry specified by the fixed (Cartesian) coordi-
nates Q of the nuclei, and so are the energy differences
with respect to the adopted reference, e.g., the Separated
Atoms Limit (SAL) or the separated reactants,

Ej
i (Q) = Tj

i (Q) +Wj
i (Q) and

∆Ej
i (Q) = ∆Tj

i (Q) + ∆Wj
i (Q)

(58)

The molecular virial theorem for the pure stationary
state in BO approximation reads[10] :

2Tj
i (Q) +Wj

i (Q) +Q · [∂Eji (Q)
/
∂Q]

≡ 2Tj
i (Q) +Wj

i (Q) +Q · ∇QEji (Q) = 0
(59)

It extracts the kinetic and potential components of
the overall electronic energy for the current geometrical
structure of the molecular system,

Tj
i (Q) = −Eji (Q)−Q · ∇QEji (Q) and

Wj
i (Q) = 2Ej

i (Q) +Q · ∇QEji (Q)
(60)

or similarly partitions the relative energies ∆Eji(Q) of
Equation 58.

These relations assume a particularly simple form for
the energetical profiles, sections of the BO Potential
Energy Surface (PES), e.g., the energy function in di-

atomics, for which the internuclear distance R uniquely
specifies the molecular geometry, or along the reaction-
coordinate (RC) Rc in chemical processes, with the tra-
jectory arc-length P = |Rc| determining the reaction-
progress variable. In diatomics the virial theorem ex-
pressed in terms of energy changes relative to SAL reads:

2∆Tj
i (R) + ∆Wj

i (R) +R[d∆Ej
i (R)

/
dR] = 0 or

∆Tj
i (R) = −∆Ej

i (R)−R[d∆Ej
i (R)

/
dR]

= −d[R∆Ej
i (R)]

/
dR and

∆Wj
i (R) = 2∆Ej

i (R) +R[d∆Ej
i (R)

/
∂R]

= R−1d[R2∆Ej
i (R)]

/
dR

(61)
The virial theorem is satisfied in each stationary
state |ψji〉 of the molecular system under consider-
ation. Therefore, it is also obeyed bytheensemble-
averagecomponents corresponding to thermodynamic
equilibria. Indeed, multiplying Equation 59 and Equa-
tion 60 bythe ensemble-probabilities {Pji(µ,T; v)} ≡
P(µ,T;Q)}, from the grand-canonical equilibrium prin-
ciple of Equation 24 and Equation 25, and summing over
all stationary states involved in this statistical mixture
gives directly the associated thermodynamic relations:

2T (Q) +W (Q) +Q · ∇QE (Q) = 0 or

T (Q) = −E (Q)−Q · ∇QE (Q) and

W (Q) = 2E (Q) +Q · ∇QE (Q)
(62)

They determine both the system thermodynamic en-
ergy,

E[D̂eq.] = T [D̂eq.] + W [D̂eq.] (63)

its kinetic component T [D̂eq.] = σ - 1I[D̂eq.] propor-
tional to the associated overall gradient-information de-
scriptor I[D̂eq.], and the ensemble-average potential en-
ergy

W [D̂eq.] = 〈W 〉ens. = tr (D̂eq.Ŵ)Qeq.

=
∑

i

∑
j
Pj

i(µ, T ; v)〈ψji|Ŵ(Ni, v)|ψji〉

≡
∑

i

∑
j
Pj

i(µ, T ; v)Wj
i

(64)
One observes that this generalized, mixed-state partition-
ing also includes the pure-state relations of Equation 58
and Equation 59 as the special (micro-canonical) case
corresponding to Pji = 1 and {Plk6=j

6=i
= 0}.

Let us briefly examine some implications of this gen-
eral balance between the kinetic and potential compo-
nents of the thermodynamic value of electronic energy.
For the energy-minimum geometry Qeq.(E) = Qeq. ,
determined by the vanishing gradient of thermodynamic
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energy,
∇QE|eq. = 0 (65)

the thermodynamic virial relations simplify:

T (Qeq.) = −E (Qeq.) = σ−1I (Qeq.) and

W (Qeq.) = 2E (Qeq.)
(66)

For such a geometrically-relaxed structure the mini-
mum-energy principle of thermodynamics thus implies
the thermodynamic maximum-information rule in QIT:

{minP [E (P )]µ,T ;Qeq.
⇒ maxP [I (P )]µ,T ;Qeq.

}
⇒ P (µ, T ;Q)}

(67)
Inother words, in thermodynamic (electronically-

relaxed) equilibrium the geometrically-relaxed molec-
ular systems assume the maximum resultant gradient-
information related to its average kinetic energy. This in-
formation principle complements the familiar maximum-
entropy rule of ordinary thermodynamics[9] .

It should be observed that the energy-optimum struc-
ture Qeq.(E ) of Equation 65 differs from that deter-
mined by the vanishing geometric gradient of the grand-
potential,

∂Ω(P,Q)

∂Q

∣∣∣∣
Q̄eq.

= 0 ⇒ Qeq.(Ω) = Q̄eq. 6= Qeq.

(68)
since then

∂E(P,Q)

∂Q

∣∣∣∣
Q̄eq.

= µ
∂N(P )

∂Q

∣∣∣∣
Q̄eq.

+T
∂S(P )

∂Q

∣∣∣∣
Q̄eq.

=

(
µ
∂N(P )

∂P
+ T

∂S(P )

∂P

) (
∂P

∂Q

)∣∣∣∣
Q̄eq.

(69)
Consider now the pure-state (micro-canonical) case

summarized by the virial relations of Eqs. Equation 58-
60, which allow to extract the kinetic-energy/gradient-
information differences from the corresponding energy
profiles. Elsewhere[7, 8] we have examined the BO energy
profiles corresponding to the bond-formation process, A
+ B = AB (see Figure 1), and the bimolecular chemical-
reaction, A + B→ Rz → C + D (see Figure 2), where
Rz denotes the Transition-State (TS) complex, in order
to examine the accompanying changes in the resultant
gradient information. Let us summarize some general
conclusions of this analysis.

Figure 1 presents qualitative plots reflecting vari-
ations with internuclear distance of the ground-state
bond-energy and its kinetic-energy contribution. The
BO potential ∆E(R) and its kinetic-energy component
∆T(R) also reflecting variations in (resultant) gradient-

information ∆I(R) = σ∆T(R), relative to SAL, allow
one to examine the energy/information variations with
inter-nuclear distance R in the bond formation process.
It follows from the figure that during a mutual approach
by the constituent atoms the kinetic-energy/gradient-
information is first diminished relative to the SAL refer-
ence, due to the longitudinal Cartesian component of the
kinetic energy, associated with the “z” direction (along
the bond axis).[94, 95] At the equilibrium distance Re the
resultant information rises above the SAL value, due to
the dominating increase in transverse components of the
kinetic energy, corresponding to “x” and “y” directions
perpendicular to the bond axis. Therefore, at the equi-
librium bond length Re the chemical bond gives rise to
a net increase in the resultant gradient-information rel-
ative to SAL, where electrons of each atom experience
the external potential of only its own nucleus. This re-
flects a relatively more compact electron distribution in a
molecule, where electrons move in the field of both nu-
clei.

Figure 1. Qualitative diagram of variations in the BO elec-
tronic energy ∆E(R) (solid line) with the internuclear distance R
in a diatomic molecule, and of its kinetic energy component from
the virial-theorem partitioning, ∆T(R) = -d/dR[R∆E(R)] (broken
line), also reflecting the state resultant gradient-information ∆I(R)
= σ∆T(R)

Another interesting case of variations in molecular
geometry is the (intrinsic) reaction coordinate Rc, or
equivalently the progress-variable (arc-length) P along
this trajectory, for which the virial relations assume the
diatomic-like form (see Figure 2). Let us again examine
the virial theorem decomposition of the corresponding
energy profile along the Rc-section of PES, ∆E(Rc) ≡
∆E(P), in an elementary bimolecular reaction, to which
the qualitative Hammond[81] postulate of reactivity the-
ory applies. Again, the ground-state virial-theorem de-
composition can be used to extract qualitative plots of
the resultant gradient-information from the energy pro-
files corresponding either to endo- or exo-ergic reactions
(upper panel), or to the energy-neutral chemical process
on symmetric PES (lower panel).

The qualitative rule of Hammond is seen to be fully
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indexed by the sign of the geometric, P-derivative of the
average resultant-information at the TS complex.[5, 8–10]

More specifically, this postulate emphasizes a relative
resemblance of the reaction TS complex R‡ to its sub-
strates (products) in the exo-ergic (endo-ergic) reactions,
while for the vanishing reaction energy the position of
TS complex is predicted to be located symmetrically be-
tween substrates and products. In other words, the acti-
vation barrier appears “early” in the exo-ergic reactions,
e.g., H2 + F→ H + HF, with the reaction substrates be-
ing only slightly modified in R‡≈ [A − − − B] , both
electronically and geometrically. Accordingly, in the
endo-ergic bond-breaking-bond-forming process, e.g., H
+ HF→ H2 + F, the barrier is “late” along the reaction
progress-variable P and the activated complex resembles
more the reaction products: R‡≈ [C − − − D] . This
qualitative statement has been subsequently given sev-
eral more quantitative formulations and theoretical ex-
planations, based upon both the energetic and entropic
arguments[96–103] .

The energy profile along the reaction “progress” coor-
dinate P,

∆E (P ) = E (P )− E (Psubstrates) (70)

is directly “translated” by the molecular virial theorem
into the associated displacement in its kinetic-energy
contribution,

∆T (P ) = T (P )− T (Psubstrates) (71)

proportional to the corresponding change in the system
resultant gradient-information:

∆I (P ) = I (P )− I (Psubstrates) = σ∆T (P )
(72)

∆T (P ) = −∆E (P )− P [d∆E (P ) /dP ]

= −d[P∆E (P )]/dP
(73)

The energy profiles ∆E(P) in the endo- or exo-
directions, for the positive and negative reaction energy

∆Er = E (Pproducts)− E (Psubstrates) (74)

respectively, thus determine uniquely the associated pro-
files of kinetic-energy (or resultant-information): ∆I(P)
= σ∆T(P). A reference to qualitative plots in Figure 2
shows that the latter indeed distinguishes these two di-
rections by the sign of its geometrical derivative at R‡:

endo− direction :

{(dI/dP )‡ > 0 and (dT/dP )‡ > 0, ∆Er > 0

energy − neutral :

(dI/dP )‡ = 0 and (dT/dP )‡ = 0, ∆Er = 0

exo− direction :

(dI/dP )‡ < 0 and (dT/dP )‡ < 0, ∆Er < 0
(75)

This demonstrates that the ground-state RC-derivative
dI/dP|‡ of the resultant gradient-information at TS com-
plex, proportional to dT/dP|‡, can serve as an alterna-
tive detector of the reaction energetic character: its pos-
itive/negative values identify the positive/negative reac-
tion energy ∆Er in endo/exo-ergic reactions, exhibiting
the late/early activation barriers, respectively; the neu-
tral case (∆Er = 0 or dT/dP|‡ =0) exhibits an equidistant
position of TS between the reaction substrates and prod-
ucts on a symmetrical potential energy surface, e.g., in
the hydrogen exchange reaction H + H2→ H2 + H.

Figure 2. Variations of the BO total electronic energy (∆E)
and its kinetic energy component (∆T) in the exo-ergic (∆Er <
0) and endo-ergic (∆Er > 0) reactions (upper Panel), and for the
symmetrical PES (∆Er = 0) (lower Panel)

Since the forces acting on nuclei in the equilibrium,
separated reactants or products vanish, the reaction en-
ergy ∆Er of Equation 74 determines the corresponding
change in the resultant gradient-information,

∆Ir = I (Pproducts)− I (Psubstrates) = σ∆Tr (76)

proportional to the associated variation in the electronic
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kinetic energy:

∆Tr = T (Pproducts)− T (Psubstrates) = −∆Er
(77)

The virial theorem thus implies a net decrease of the
resultant gradient-information in endo-ergic processes,
∆Ir(endo) ∝ -∆Er(endo) < 0, its increase in exo-ergic
reactions, ∆Ir(exo) ∝ -∆Er(exo) > 0, and a conserva-
tion of the overall gradient-information in the energy-
neutral chemical rearrangements: ∆Ir(neutral) ∝ -
∆Er(neutral) = 0.

One recalls that the classical part of this information
displacement probes an average change in the spatial in-
homogeneity of electron density. Therefore, the endo-
ergic processes, requiring a net supply of energy to the
reactive system R, give rise to relatively less-compact
electron distributions in reaction products,comparedto
substrates. Accordingly, the exo-ergic transitions, with a
net release of energy from R, generate on average more
concentrated electron distributions in products, and no
such a change is predicted in energy-neutral case.

5 Conclusion

In this overview we have explored qualitative re-
activity applications of the resultant information mea-
sure in QIT. First, the concept of the overall gra-
dient-information in specified quantum state, which
combines the classical (probability) and nonclassical
(phase/current) contributions, has been introduced as the
expectation value of the corresponding (Hermitian) in-
formation-operator related to that of electronic kinetic
energy. We have then explored the thermodynamic-
average measure and its variational principle in the
grand-ensemble. The electron-population derivatives,
information reactivity descriptors of CT phenomena in
donor-acceptor systems, have been examined, the phys-
ical equivalence of variational principles for ensemble-
averages of energy and information (kinetic-energy) in
thermodynamics has been emphasized, and the relation
between the in situ energy and information CT criteria
have been examined.

The proportionality relation between the resultant gra-
dient-information and kinetic energy of electrons indi-
cates that the latter plays a more important role in chemi-
cal reactivity than previously thought. The electronic en-
ergy and information/kinetic-energyrepresent alternative
descriptors of molecular equilibria. They generate phys-
ically equivalent and adequate reactivity criteria for de-
scribing CT phenomena in the acid-base systems. Since
for representative energy-profiles this component is read-
ily available from the molecular virial theorem, we have
briefly examined the theorem general implications for

changes in the overall information content of equilibrium
molecular structures, the bond-formation process, and
the Hammond postulate of reactivity theory. The prin-
ciple of the maximum thermodynamic information has
been formulated and the dependence in chemical pro-
cesses of the change in the overall gradient-information
upon the reaction energy has been addressed. The Ham-
mond postulate has been shown to be quantitatively in-
dexed by the geometrical information derivative at TS
complex.
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