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Azo-dye adsorption activity of iron(III) loaded

novolac-based network sorbents

Samaresh Ghosh1
∗

Mridula Acharyya1

Abstract: Iron(III) loaded novolac-based network adsorbents 1 and 2 were studied for efficient removal
of azo-dye pollutants from aqueous solutions. The adsorption behavior was evaluated by using methyl orange
and orange-G as model azo dyes. The effect of parameters such as contact time and initial dye concentration
on the adsorption of azo dyes was studied. The results showed that loading of Fe(III) onto the sorbent networks
has noticeable effect on azo-dye sorption capacity. The adsorption equilibrium data were fitted to Freundlich
isotherm model. Besides, the reusability of the dye loaded sorbents was investigated on adjusting pH of solu-
tions.

Keywords: adsorption, novolac-based network, iron(III) loading, azo-dye

1 Introduction

With the fast growth in the usage of azo-dye colorants

in many dyestuffs and allied industries, azo-dye pollu-

tion in water stream has become a major environmental

problem. Some of the azo dyes originating from the ef-

fluents of industrial sites and their degradation products

are connected to toxic, carcinogenic and mutagenic ef-

fects on human health and marine organisms.[1–5] There-

fore, there is an urgent need to treat effluents before

dischange into water bodies. Various physico-chemical

methods including coagulation and flocculation, oxi-

dation or ozonization, membrane-filtration processes,

ion exchange, chemical precipitation, and adsorption

focused on the removal of azo dyes from wastewa-

ter.[6–17] Among these methodologies, adsorption-based

process[6–8] has received increasing interest because of

its economics, design simplicity and efficiency in mini-

mizing pollutants. Polymeric sorbents[18–36] enjoy exclu-

sive attributes namely low density, high thermal and/or

chemical stability, mechanical rigidity, wide variations in

porosity and surface functionality tailoring, high adsorp-

tion capability, easy handling and feasible regeneration.

Phenolic resins due to their low-cost, easy availability,
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and dimensional stability, are popular for innovative ap-

plications in various domains. These polymers by their

structural features are particularly appealing in the de-

sign of new macromolecular sorbent materials for the re-

moval of dye pollutants from waters. In this direction,

our research group has paid attention on the design of

novolac type phenolic resin-based network polymers for

eliminating azo dye contaminants from water.[27, 31] Ad-

equate functionality in this network can allow interaction

with metal ions constituting new type of hybrid materi-

als. In the present work, we focused on the preparation of

iron(III) loaded novolac-based networks 1 and 2 ( Figure

1 ) to apply on the adsorptive removal of azo-dye pollu-

tants from aqueous media.

Figure 1. Iron(III) loaded novolac-based networks 1 and 2

2 Experimental

2.1 Preparation of adsorbents 1 and 2

Adsorbents 1 and 2 were prepared using Fe(NO3)3
and novolac-based precursor networks 1a and 2a as pro-

duced from our published method.[27, 31] In a typical
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preparation, network and iron(III) nitrate nonahydrate

[Fe(NO3)3.9H2O] were first mixed in the ratio ( 1:10,

w/w) in deionised water and left for adsorption for 24

h. The network was then filtered, and impregnated with

deionized water for another 24 h. The solid separated by

filtration, washed thoroughly with deionized water and

dried for 12 h at 50-60◦C to yield Fe(III) loaded net-

work. The filtrates and washings were combined. The

amount of Fe(III) loaded onto the network was evalu-

ated by measuring the concentration of Fe3+ remain-

ing in combined solution using UV-vis spectrophotomet-

ric method by measuring maximum absorbance of fer-

ric thiocyanate color complex, located at λ = 480 nm.

Graphical plot of absorbance (y axis) against Fe3+ (aq)

concentration was used to find the concentration of Fe3+

in aqueous solution after adsorption. Iron content in 1

and 2 were estimated to be 38 mg/g and 85 mg/g respec-

tively.

2.2 Adsorption experiments

The batch adsorption experiments were conducted by

adding pre-weighed amount of sorbents to the aqueous

solution of azo dye at pH 7.20 and shaken at room tem-

perature. The pH was adjusted to a given value with

dilute NaOH or HCl solutions. The solutions were pe-

riodically separated from the adsorbents, and the resid-

ual concentrations of azo dyes were estimated by UV-

vis spectrophotometer at λmax = 484 nm. The amount

of dye adsorbed (mg/g) at equilibrium was calculated

by using the formula: qe = [(C0 − Ce)V] /W; where

C0 and Ce are the initial and equilibrium dye concen-

trations (mg/L) respectively. V is the volume of so-

lution (L), W is the weight of the sample (g). Fre-

undlich isotherm model was employed to assess the ad-

sorption equilibrum. The logarithmic form of the Fre-

undlich equation is represented by the following equa-

tion: ln qe = lnKf + 1/n lnCe where Kf and n are

Freundlich constants related to the adsorption capacity

and adsorption intensity, respectively. Kf and 1/n were

obtained from the linear plot of ln qe vs. ln Ce.

2.3 Desorption and regeneration experiments

Azo-dye loaded adsorbents were kept in deionised wa-

ter and the pH of the medium was adjusted to 12.0 by

adding dilute NaOH solution. The mixtures were shaken

at 25◦C for a period of 24h to desorb azo dyes (MO/OG).

Thereafter, the regeneration process of adsorbents was

performed by putting them in fresh deionised water. The

pH was adjusted to neutral with dilute HCl. The result-

ing regenerated sorbents were filtered, dried and reused

in the next cycle. The adsorption/desorption process was

repeated three times.

3 Results and discussion

3.1 Synthesis and characterization

Recently, polymer/inorganic hybrid materials have at-

tracted interest to remove trace pollutants from wa-

ters.[24, 30] Their unique properties arise from the com-

bination of both polymer and inorganic characteristics.

Novolac-based network polymers 1a and 2a deserve par-

ticular attention in loading metal ions especially fer-

ric minerals, due to the nonhydrolyzable polyfunction-

ality in combination with the feature of novolac struc-

tural support providing mechanical, chemical, and ther-

mal strength. The ligating groups ( amino, hydroxyl ) in

their backbone have the ability to complex with Fe(III).

This might avoid dissolution of Fe(III) in the medium

during waste treatment applications. Figure 2 illustrates

the loading of Fe(III) ions in the networks to yield 1 and

2.

Iron(III) loaded networks 1 and 2 were characterized

by FTIR and XRD analyses. FTIR spectra of 1 and 2

show the broad band located in the region 3000 − 3500

cm−1, assignable to the O-H and N-H stretching frequen-

cies Compared to 1a and 2a, this band was found to be

further broadened and shited to longer wavenumbers (∆
ν = 25-30 cm−1) indicating the involvement of ferric

ions in coordination with amino and hydroxyl moieties in

association with the coordinated water molecules. Fur-

thermore, there were shifts to longer wavenumbers (∆
ν = 6-27 cm−1) of O–H bending vibrations appearing

at 1610 cm−1 and 1627 cm−1 when iron loaded onto

the networks. The shifting of these peaks to longer val-

ues underlines the presence of coordinated OH groups in

the networks. The absorption band near 1382 cm−1 ap-

peared due to the vibrations of nitrate ions,[37, 38] which

confirms the incorporation of ferric nitrate in the net-

works. Figure 3 shows the XRD pattern of 2. The pat-

tern showing broad peak centered at 2θ = 21.220 and

very low intensity peak centered at 2θ = 40.750 was

characteristic for amorphous material. The appearance

of no sharp peaks further indicates the amorphous struc-

ture of Fe3+ salt loaded within the polymer matrix. This

could be advantageous since amorphous compounds are

known to be especially effective in achieving adsorption

compared to crystalline forms.[39]

3.2 Adsorption evaluation

Molecular structures of methyl orange (MO) and

orange-G (OG) employed in the evaluation of adsorption

abilities of 1 and 2 are shown in Figure 3. The absorption

spectra of both MO and OG in water exhibit characteris-

tic absorption band peaked at 484 nm (Figure 4).
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Figure 2. Preparative scheme for iron(III) loaded novolac-based sorbents 1 and 2

Figure 3. The XRD pattern of 2

We examined azo dye adsorption behaviors as a func-

tion of contact time at pH 7.20. Adsorbents 1 and 2 ex-

hibit significant dye removal bebavior for MO and OG

as estimated from the decrease in maximum absorbance

at 484 nm. As shown in Figure 5, the rapid adsorption at

the initial stage was occurred and reached a nearly equi-

librium within 48 h. This could probably be attributed

to the abundance of unoccupied adsorption sites. The

dye adsorption gradually slowed down with time which

is probably associated with the slow diffusion of the dye

molecules into the sorbents porous structures. The rapid

adsorption at the initial stage demonstrates the suitability

of the sorbents in reducing reactor volumes and times.

Figure 6 displays the effect of Fe(III) loading on the

adsorptive removal of MO and OG. Network 2 has higher

dye uptake capacity compared to 1 due to higher loading

of Fe(III). The results of azo-dye removal by 1a and 2a

have recently been reported by our group.[31] However,

under comparable conditions 1 and 2 achieved higher ad-

sorption capacities than 1a and 2a which was attributed

to the role of Fe(III) being immobilized onto the net-

Figure 4. Molecular structures and UV-vis spectra of azo

dyes: (a) Methylorange: 7.64 × 10−5M and (b) Orange-G: 2.21

× 10−4M

Figure 5. The effect of adsorption time on azo-dye adsorption
of 1 and 2 at pH = 7.20 (a) MO adsorption (C0 = 50 mg/L; 1.52 ×

10−4M); (b) OG adsorption (C0 = 150 mg/L; 3.31 × 10−4M)

works. In addition, sorbents 1 and 2 showed higher up-

take of OG than MO indicating more favorable interac-

tion.

The visual changes in color of the azo dye solutions

from red to very light yellow during the same process

were recorded in Figure 7. This result demonstrates

the effective adsorptive response of sorbents in color re-

moval.

Meanwhile, the adsorbents 1 and 2 turned to deep red

and orange after adsorbing MO and OG, respectively

(Figure 8). This accounted for a visual indication of

MO/OG loaded sorbent surfaces.
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Figure 6. Azo dye adsorption capacity of 1 and 2 ( pH = 7.20;

t = 48h; T= 298 K ); (a) MO adsorption (C0 = 50 mg L−1; 1.52 x

10−4M); (b) OG adsorption (C0 = 150 mg L−1; 3.31 x 10−4M)

Figure 7. Color changes of MO and OG solutions before and
48 h after adsorption onto 1 and 2 at pH = 7.20

Freundlich model[40, 41] was used to fit the equilibrium

adsorption isotherm data. The model parameters along

with the correlation coefficients (R2) were listed in Ta-

ble 1. The Kf values revealed the good adsorption ca-

pacity of both 1 and 2. The value of n in the range

1-10 indicated thermodynamically favorable adsorption.

The values of R2 reflected adequate description of dye

adsorption by Freundlich isothermal model. Therefore,

iron loading in the networks provides new kind of mate-

rials applicable in the manipulation of azo dye adsorption

capacities.

Table 1. Freundlich fitting parameters in MO and OG adsorp-
tion isotherms for the studied samples at pH 7.20

Kf n R2

MO 2.027 1.044 0.9729
OG 39.251 4.594 0.9731
MO 9.55 1.448 0.9971
OG 41.952 3.855 0.9868

Fe(III) loaded
polymer network Azodye

Freundlich Constants

1

2

To further explore the reusability, the adsorption-

desorption cycle was repeated upon pH adjustment with

Figure 8. Photographs of sorbents on adsorption of MO and
OG after 48h

dilute HCl or NaOH solutions. As presented in Figure 9,

the desorptions are visually followed by gradual disap-

pearance of sorbents colors, and the color development

in aqueous solutions. We found that more than 90% des-

orption happens during 24 h in the alkaline condition

(pH ≈ 12.0). UV-vis spectral investigation quantified

the desorbed amount of azo dyes (MO/OG). After des-

orption the sorbents were regenerated by pH adjustment

to 7.0 and reused for a number of cycles for its adsorp-

tion efficacy. However, adsorption efficiency remained

comparable with increasing cycle number. After three

consecutive cycles, the azo dye adsorption efficiency is

still above 80%. This is quite important not only in the

effective regeneration and reuse of the sorbents, but also

the reuse of recovered azo dyes during the dyeing pro-

cess impacting associated environmental issue.

Figure 9. Desorption of MO and OG from dye loaded networks
in water at pH = 12.0 (A) MO loaded 1 (B) OG loaded 1(C) MO
loaded 2 and (D) OG loaded 2

The qualitative information on the chemical interac-

tions was obtained from the FTIR spectral analysis of

the dye-adsorbed networks (dry). The broad absorp-

tion band in the region 3200-3500 cm−1 ( O-H and N-

H stretching ) experienced better resolution when dye
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adsorbed. In addition, the stretching vibrations of azo-

dye SO3
− groups shifted to lower wavenumber (∆ν=

2-9 cm−1) appearing at 1171 and 1033 cm−1 with re-

duced intensity when loaded onto the sorbents. This

is ascribed to the interaction of sorbents with azo dyes

through SO3
− groups. The decrease in intensity of the

NO3
− peak (1382 cm−1) also occurred, which indicated

ion exchange sorption of anionic azo dye molecules. On

the basis of our previous reports[27, 31] and experimental

observations, the proposed mechanism for dye adsorp-

tion and desorption is outlined in Figure 10. In this con-

text, structures of MO and OG and iron species loaded

onto the network having a variety of interacting motifs

(amino, hydroxy and ether functionalities) must be taken

into account. Iron species might create more active sites

synergic with functional adsorptive motifs of networks

to cater more azo dye pollutants on the surface. The

involvement of physical forces, such as metal ion co-

ordination as well as hydrogen bonding interactions in-

volving functional groups of dye molecules (Fe3+ −−

−O3S-Dye, and Network–O-H −−
−O3S-etc) might ac-

count for higher adsorption capacity (Figure 7, Figure

8). It is worth to note the occurrence of desorption of

azo dyes from sorbents in the very basic condition (pH

≈12.0). This likely is related to the change of Fe3+ to

Fe(OH)3 and other complex hydroxides embedded in the

network, which make the materials redundant favoring

desorption. In addition, desorption might be related to

the high enough concentration of hydroxyl ions (OH−)

competing with the anionic dye molecules (Dye-SO3−)

for adsorption sites.

Figure 10. A proposed mechanism of adsorption-desorption of
azo dye pollutants onto the sorbent networks

4 Conclusion

Iron(III) loading onto the novolac-based networks

facilitates enhanced adsorption capacity for azo dye

molecules. Adsorbent 2 with more iron(III) loading

shows high adsorption capacities toward azo dye pol-

lutants ( MO and OG ). Equilibrium adsorption phe-

nomenon was expressed using Freundlich isotherm. The

result indicates that adsorption is a typical physical

process (n>1). The feasible mechanism toward azo-

dye removal was proposed. Quite effective adsorption-

desorption-regeneration-reuse cycle under pH adjust-

ment offers great economic potential for sustainable re-

mediation of azo-dye containing wastewaters. Further

study is under progress in our laboratory.
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