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Controlled growth and waste water treatment of light rare earth
(La, Ce, Pr) oxides with 3D superstructures
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Abstract:

Bohui Wei?

Hui Li®> Chenzhong Yao!'?"

Light rare earth (La, Ce, Pr) oxides with 3D superstructure are a kind of particularly interesting

materials because of their unique optical, electronic, magnetic, and catalytic properties arising from the confine-
ment of the 4f electrons. Here, we report a rapid and simple electrodeposition methodology for the assembly of
three-dimensional (3D) superstructures of La;O3, CeO,, and ProO3 nanobelts using the nitrates based electrolytes
with NH4Ac, and KCl as additives. The removal efficiencies of Congo red solution for La;O3, CeOs, and PryO3
nano superstructures can reach 68%, 76% and 71% in dark. But CeO, show better removal efficiency than La; O3

and Pr,O3 under light irradiation.

Keywords:

1 Introduction

Recently, nanoscience development has gone beyond
the simple pursuit of single nanoparticles, and many ef-
forts have been focused on the assembly of functional
nanoscale building blocks, such as nanorods, nanowires or
nanotubes, into an appropriate superstructure!'*>!. Once
such building blocks can be rationally assembled into
appropriate three-dimensional (3D) superstructures, they
will offer new scientific opportunities for investigating the
influence of size and dimensionality with respect to their
collective optical, magnetic, and electronic properties and
could provide the possibility to probe novel properties
and applications resulting from the spatial orientation and
arrangement of the nanocrystals>’!. To date, a wide va-
riety of superstructures of inorganic materials, including
metals, metal oxides, sulfides, hydrates, and other min-
erals, have been successfully prepared. However, there
has only been limited success in assembling nanobelts
into 3D superstructures. It still remains a significant chal-
lenge to develop facile methods for the fabrication and
architectural control of 3D superstructures!®-'%,
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The rare-earth oxides (REO) are a particularly inter-
esting class of materials because of their unique optical,
electronic, magnetic, and catalytic properties arising from
the confinement of the 4f electrons!!'~'3). Despite intense
experimental efforts, a simple and general route for the
preparation of shape-controlled rare earth oxide 3D su-
perstructures has been lacking!"-'*'%1. Here we report
the development of a rapid, simple, and versatile elec-
trodeposition methodology for the synthesis of 3D nano
superstructures of light rare earth oxides (LayO3, CeOs,
and Pry03). To the best our knowledge, this is the first
report on a general and rapid method for the synthesis
of 3D superstructures of light rare earth oxide. The elec-
trodeposition method is a good candidate for the synthesis
of 3D superstructures because of its low cost, rapidity,
and potential for large-scale production. The electrodepo-
sition also offers a higher degree of freedom in altering
the interplay between the crystal growth rate and the mass
transport rate. Also, these kinds of REO show potential
application in waste water treatment.

2 Experimental

All reagents used were analytical grade and were
used directly without any purification. A simple three-
electrode cell was used in our experiments. A Ti foil of
about 3.0 cm?, a graphite rod of about 4.0 cm? and a satu-
rated calomel electrode (SCE) were used as the working
electrode, counter electrode and reference electrode, re-
spectively. The electrodeposition of La;O3/CeOs/PryO3
nanobelts was performed in the solution of containing
La(NO3)3/Ce(NO3)3/Pr(NO3)3, NH Ac, and KCI under
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galvanostatic conditions with a cathodic current density
at 70°C.

The deposition equipment is a transistor rectifier of
auto-control (HDV-7C, Fujian Changlian Electronic Co.,
Ltd)The obtained deposits were characterized by field
emission scanning electron microscope (FE-SEM, JSM-
6330F), energy-dispersive X-ray spectroscopy (EDS,
FEI/Quanta 400). The isothermal adsorption experiment
was carried out in dark and light in a glass reactor with a
stirring speed of 500 rpm/min at room temperature. The
visible light condition is 500 W Xenon lamp (wavelength:
200-800 nm). Typically, 20 mg of REO samples (pow-
ders) were suspended in 100 ml Congo red solution (60
mg/L). Then, at the given time intervals, 3 ml solution
samples were collected, filtered by a 0.45 pum film to
remove the catalyst. The concentration of the dyes was
tested with wavelength of 498 nm by using a Cary5000
UV-Vis-NIR spectrophotometer immediately. For the
recycling experiment of La;O3 and PryOg3, they were
treated under NaOH solution (pH=10) after each recycle.

3 Results and discussion

The electrochemical formation process of the rare earth
oxides can be summarized in two main steps. Firstly, the
electroreduction of the nitrate or the aerated aqueous sol-
vent, induces an increase of the interfacial concentration
of OH™ at the cathode surface (Reaction (1)). Then the
OH™ ions produced will result in the formation of rare
earth oxides by precipitation Reaction (2 or 3) or Reaction
(4) (M=La and Pr; R=Ce)!'"- '8,

NO; +H,0 + 2e — NO; +20H" (1)
2M (II1) +60H~ — M,03+3H,0 )
2M (IIT) +20H" +0, — M,03+H,0  (3)
4R (III) +120H" +0, — 4RO,+6H,0  (4)

Herein 3D nano-superstructures of light rare earth ox-
ides (Lay03, CeO,, and Pr,03) having various shapes
were prepared via electrodeposition (90 min, 70°C) with
NH,4Ac and KCl as additives: chloride baths usually in-
creasing coating adhesion!!'”). Taking CeO, as a represen-
tative example, the 3D superstructures were successfully
prepared when the electrodeposition was carried out in a
solution of 0.01 M Ce(NO3)3+0.2M NH,Ac+0.05 M KCl
with different current density. Typical SEM images are
shown in Figure 1(a, b). The average radius and length
are about 40 nm and 2 pm, respectively. The formation
of loose and ordered structures is correlative with the H,
gas bubbles, which move towards the electrolyte/air in-
terface during electrodeposition. Thus, nanorods growth

towards the gas bubble will be prohibited, which leads to
deposition only occurring between gas bubbles and the
formation of porous structures accordingly. When the
deposition current is 2 mA-cm~2, lower density nanorod
structures were synthesized as shown in Figure 1(c, d,
which clearly shows the 3D structures are also composed
of nanorods. Figure 2 is EDS results of CeOs.

Figure 1. EM images of 3D superstructures of CeO2 nanorods
prepared in solution of 0.01 M Ce(NOs3)3+0.2 M NH4Ac+0.05 M

KClI with different current density. Fig(a, b): 4 mA-cm~2; Fig(c,
d): 2 mA-cm 2

When electrodeposition was carried out in a solution
containing 0.02 M NH,Ac, the flower-like porous nanos-
tructures were synthesized. SEM images of the samples
are reported in Figure 3(a), which clearly shows that the
3D flower-like structures consist of nanowires. The aver-
age diameter of these nanowires is about 50 nm. The pore
sizes are about 1 yum. When the electrodeposition current
density was shifted to 2 mA-cm~2, lower density flower-
like structures were synthesized as shown in Figure 3(b),
which clearly shows the 3D flower-like structures are also
composed of nanowires.

The LayO3 and ProO3 3D superstructures are also as
shown in Figure 4 and Figure 5. With decrease of the
current density, the nanobelts of La;O3 will become much
thinner. The nanobelts have been changed to be bricks
with a thickness of 400-600 nm. At 1 mA-cm~2, the
SEM of Pro0O3 nanorods shows that the densities of the
structure can be affected seriously by the current densities.
Also, the EDS results of La;O3 and PryO3 are given in
Figure 6.

Figure 7 illustrates the whole process of CeO- deposit
morphology evolution. On this basis, 3D superstructures
of other light rare earth oxides, such as La;O3 and PryO3
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Figure 2. EDS of CeO-

were also successfully synthesized via electrodeposition
by adding NH,Ac and KCI. In all cases, the concentration
of NH4Ac and deposition current appears to be crucial
for the formation of the various 3D superstructures. The
formation of rare earth oxide superstructures was previ-
ously attributed to the effect of NH; on the deposition
rate through their adsorption on the surfaces of nucleil®’!.,
Concerning the changes of 3D superstructures, the in-
fluence of acetate seems to be preponderant due to the
formation of soluble stable complexes, depending on the
Ac/M(III) or Ac/R(IIN) ratio®!). The greater the level of
complexation, the slower the dissociation step and the
higher the time allowed to the nucleation and growth phe-
nomena'??l. However, the particular formation of belts
on the nanoscale and different 3D superstructures on the
mesoscopic scale are as yet not fully elucidated. They
could result from preferential kinked surfaces, such as the
(IIT) plane, according to the periodic bond chain (PBC)
theory!?*!. But other mechanisms are usually required
for the formation of needle-like structures with a high
aspect ratio: previous studies suggested thus topotactic
mechanism in alkaline media'®*! or defect-induced growth

e

Figure 3. 3D superstructures of CeO» were successfully pre-
pared when the electrodeposition was carried out in a solution of
0.01M Ce(NO3)3+0.02M NH4Ac+0.05M KCl at 70°C. Fig(a): 4

mA-cm™2; Fig(b): 2 mA-cm ™2

LT

Figure 4. 3D superstructures of La;O3 belts were successfully
prepared when the electrodeposition was carried out in a solution
of 0.01 M La(NO3)3+0.2 M NH4Ac+0.05 M KCI at 70°C with
different current density. Fig(a, b): 4 mA.cm~2; Fig(c, d): 2
mA-cm™2; Fig(e, ): 1 mA-cm ™2

Figure 5. SEM images of 3D superstructures of ProOs
nanorods prepared in solution of 0.01 M Pr(NO3)3+0.2 M
NH4Ac+0.05 M KCI with different current density. Fig(a, b): 4
mA-cm™?; Fig(c, d): 2 mA-cm™?
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Figure 6. EDS of La;O3 and ProO3

and/or impurity-inhibited growth!®*!. From this point of
view, NH] adsorption and/or the remaining small quan-
tity of La(IIl) impurity and/or the possible incorporation
of chloride into the fresh precipitates would be significant.

La(NO,),
Electrodeposition '—
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Figure 7. Schematic illustration of the evolution of the whole
morphology process
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To demonstrate the potential applications in waste wa-
ter treatment under visible light, the absorption rates of
a solution of Congo red in the presence of the resulting
samples at different time intervals are shown in Figure
8. The removal efficiencies of Congo red solution for
La;03, CeO,, and PryO3 nano superstructures reached
68%, 76% and 71% in the first 20 min in dark. With time
prolonging, the variation of the removal efficiencies of the

three is relatively small (Figure 8(a)). It is worth noting
that the visible light has an obvious effect on the removal
efficiency of CeO,, which reached 94.7% in the first 20
min (Figure 8(b)). This may be due to the properties of
semiconductor photocatalysts of nano CeO5**?>!. The
result demonstrates that both catalytic effect and phys-
ical absorption of CeO, have an effect on the removal
of Congo red. Moreover, the CeO, nano superstructures
have good cycling stability, which exhibits no any decay
of their photocatalytic activities after three cycles. But
for La;O3 and ProO3 samples, the light condition scarely
affects their removal capacities, which are 74% and 77%,
respectively (Figure 8(c)). The removal efficiency of 59%
and 55% are only retained after three loop operations for
La203 and PryOs. This illustrates that the pollution re-
moval is just by physical absorption. This change might
be caused by the decrease of the surface areal!!.

4 Conclusion

In summary, a general, rapid, and efficient electrode-
position methodology is reported for the first time for
the synthesis of various 3D superstructures of REO. This
electrodeposition approach has shown great flexibilities
in controlling the sizes and shapes of the light rare earth
oxides. These novel 3D nano superstructures of light rare
earth oxides may bring new opportunities to this estab-
lished but active field of research. Furthermore, the re-
moval efficiency of Congo red solution for Lay; O3, CeOs,
and ProO3 nano superstructures reaches 68%, 76% and
71% in dark. But CeO, show better removal efficiency
than La;O3 and ProO3 under light irradiation. This work
not only demonstrates a facile electrochemical method to
synthesize REO nano superstructures, but may also open
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Figure 8. Adsorption rates of Congo red under different con-
ditions: Fig(a): dark light; Fig(b): visible light; Fig(c): cycling
stability with visible light

up new opportunities for the design and preparation of
highly efficient photocatalysts.
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