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Abstract: Background: Bipolar disorder (BD) is a deleterious psychiatric disorder, and the
available pharmacotherapies have limited efficacy with significant side effects. Trace amine-
associated receptor 1 (TAAR1) is an emerging drug target for neuropsychiatric disorders such as
schizophrenia and substance user disorders. However, it is unknown whether TAAR1 is involved
in the pathogenesis of BD. This study examined the effects and underlying mechanisms of a
novel TAAR1 agonist, PCC0105004, in a rat model of ouabain (OUA)-induced BD. Methods:
Intracerebroventricular (ICV) administration of OUA-induced BD model was established. The
in vitro cell-based cAMP assay was used to examine TAAR1 agonism of PCC0105004. The
receptor specificity of PCC0105004 was determined by an off-target panel assay that included
radioligand binding and enzymatic assays. The effects of PCC0105004 on manic-like and
depressive-like behaviors were evaluated in the rat BD model. TAAR1-mediated signaling
and oxidative stress parameters were biochemically determined in the prefrontal cortex and
the hippocampus of rats. Results: Western blotting revealed reduced TAAR1 expression
level in the prefrontal cortex but unchanged in the hippocampus in model rats. PCC0105004,
a TAAR1 agonist with the agonism EC50 value of 0.06182 µM, attenuated the manic-like
behaviors on the 7th day and the depressive-like behaviors on the 14th day at doses that
did not affect locomotor activity in the BD rats. Mechanistically, PCC0105004 exerted its
behavioral effects via the reduction of ROS damage through the phosphorylation activation of
the TAAR1/Akt/GSK3β/BDNF signaling pathway. Conclusion: These results demonstrated the
potential antimanic-like and antidepressant-like efficacy of a novel TAAR1 agonist PCC0105004
in rats and revealed its underlying molecular basis, which supports the possibility of TAAR1
agonists as candidate pharmacotherapeutics for BD.
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1 Introduction
Bipolar disorder (BD) is a complex psychiatric mood disorder influenced by multifactorial

elements, including social, environmental, and genetic risk factors that contribute to its etiology.
The disorder is characterized by fluctuating mood states, encompassing periods of mania and
depression interspersed with intervals of wellbeing lasting days or weeks. BD encompasses
various subtypes, such as BD type I, BD type II, and cyclothymia [1,2]. The World Mental Health
Survey Initiative reported lifetime and 12-month prevalence estimates for bipolar disorders as
2.4% and 1.5%, respectively [3]. While psychological, social, and occupational interventions
play crucial roles in managing BD, medication currently stands as the primary treatment
modality [4]. Therapeutic options for BD are limited, with key categories including mood
stabilizers like lithium and sodium valproate, as well as atypical antipsychotic medications such
as aripiprazole and olanzapine. Most drugs are approved for maintenance therapy or treating
the manic phase. Consequently, there is an urgent need to develop drugs proven effective in
under-treated subpopulations, such as BD ll type depression. Moreover, there is a demand
for drugs that enhance tolerance, particularly in mitigating weight gain and extrapyramidal
reactions [5]. The search for new therapeutic mechanisms is crucial to identify drugs that are
not only effective but also associated with minimal side effects and high tolerability.

Trace amine-associated receptor 1 (TAAR1) is a G-protein-coupled receptor (GPCR) ex-
pressed in various mammalian brain regions, including the prefrontal cortex, limbic and mesolim-
bic areas crucial for emotion regulation, cognition, and behavior. In individuals with BD, these
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functions are often impaired. Evidence indicates that TAAR1 is involved in the modulation of
dopaminergic, serotonergic and glutamatergic signaling, thereby influencing aspects of reward-
processing, cognition and mood relevant to schizophrenia and other mental disorders [6]. The
TAAR1 gene is located in the chromosomal area 6q23.2, adjacent to regions where susceptibility
loci for BD have been identified. Thirteen missense variants of TAAR1 have been observed at a
higher frequency in patients with mood disorders [6]. The identification of endogenous TAAR1
ligands and subsequent development of small-molecule agonists has revealed antipsychotic-,
anxiolytic-, and antidepressant-like properties [7]. Therefore, TAAR1 could be a potential
therapeutic target for BD [8], a possibility that has not been explored.

In this study, we reported the characterization of a novel TAAR1 agonist, PCC0105004 [(S)-
4,7,8,9,10,10a-hexahydro-5H-thieno[2’,3’:3,4]pyrido[1,2-a]pyrazine] for its in vitro TAAR1
agonist property, in vivo pharmacokinetics, in vivo anti-BD efficacy and underlying molecular
mechanisms.

2 Materials and Methods
2.1 Animals

Adult Wistar rats (Rattus norvegicus; 250–350 g) were purchased from a commercial vendor
(Beijing Vital River Laboratory Animal Technology Co, Ltd, Beijing, China), and housed
in a certified animal facility with a 12 h light/dark cycle, constant temperature and humidity
(21-23°C and 40-60%), and free access to food and water. All animals were acclimated to the
test environment for at least 2 days before any behavioral testing. All behavioral tests were
conducted between 8:00 and 15:00 h by experimenters blinded to the treatment conditions.
All experimental procedures in this study were conducted in accordance with the ARRIVE
guidelines (Kilkenny, Browne, Cuthill, Emerson & Altman, 2010) and all animal protocols were
approved by the Laboratory Animals Care and Use Committee of Yantai University (registration
number is YTU20220329) (Yantai, China).

2.2 Drugs and Chemicals
PCC0105004 (formula C10H14N2S, Figure 1) was provided by WuXi AppTec (Tianjin,

China) with a purity of > 95%. Valproate sodium was purchased from Sigma (United States).
Ouabain (OUA) was purchased from MedChemExpress (United States). Artificial cerebrospinal
fluid (aCSF) was purchased from Shanghai Xin Yu Biotech Co., Ltd (Shanghai, China). For in
vivo studies, PCC0105004 and valproate were dissolved in physiologic saline (0.9% NaCl, Sal).
OUA was dissolved in aCSF.

Figure 1 The chemical structure of PCC0105004, (S)-4,7,8,9,10,10a-hexahydro-5H-thieno
[2’,3’:3,4]pyrido[1,2-a]pyrazine

2.3 cAMP Detection Assay
CHO-K1 cells expressing the human TAAR1 receptor (Accession number NP 612200.1)

were cultivated in media (Advanced DMEM supplemented with 1% dialyzed fetal bovine serum)
without antibiotics. The cells underwent detachment through gentle flushing with phosphate
buffered saline containing 5 mM EDTA, followed by recovery through centrifugation and
resuspension in assay buffer (Krebs-Ringers Henseleit buffer: 5 mM KCl, 1.25 mM MgSO4,
124 mM NaCl, 25 mM HEPES, 13.3 mM Glucose, 1.25 mM KH2PO4, 1.45 mM CaCl2, 0.5 g/l
BSA, supplemented with 1mM Isobutylmethylxanthine). The testing was conducted in 384-well
plates. With 10 µl of cells (6000 cells) mixed with 10 µl of the test compound diluted in assay
buffer and then incubated for 30 minutes at 37°C. For the determination of the amount of cAMP
formed, the HitHunter cAMP XS kit (DiscoveRx, Fremont, CA) was employed. The cAMP
formation assay was concluded by the addition of 10 µl of cAMP XS antibody/lysis mix. After
a 1-hour incubation, 10 µl of cAMP XS ED reagent was added, followed by an additional
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1-hour incubation. Subsequently, 20 µl of cAMP XS EA/CL substrate mix was added, and the
plates were covered with sealing tape. The plates were allowed to stand for 1-hour and then
centrifuged at 200 g for 5 min. A further incubation of 14 hours in the dark ensues, followed by
counting using a PerkinElmer 1450 MicroBeta TriLux counter (PerkinElmer Life and Analytical
Sciences) in luminescence mode. A natural agonist of TAAR1 p-Tyramine(pTyr), was employed
as a positive control.

2.4 In vitro off-target panel assay
This panel of assays comprises 71 radioligand binding assays and 16 enzymatic assays. In

this preliminary screen, all assays were conducted using PCC0105004 at a concentration of 10
µM. The criteria for determining a significant effect were arbitrarily established at either 50%
above or below the baseline.

2.5 Pharmacokinetic (PK) study
The concentration of PCC0105004 in the plasma and brain of rats was measured following a

single oral dose administration of 5 mg/kgto healthy Wistar rats. Blood samples were collected
from the orbital venous plexus of all rats (n=3 per group) at various timepoints, including
pre-dose, 0.25, 0.5, 1, 2, 4, 6, 8 and 12 hours post-dose. Additionally, 0.3 mL of blood was
collected from the orbital venous plexus, and whole brain tissues were obtained from all rats (n =
3/sex/group) following anesthesia and perfusion with physiological saline at timepoints of 0.25,
1, and 6 hours post-dose. Plasma was prepared by centrifugation at 8000 × g for 5 min, while
brain tissues were homogenized with saline (1:4, w/v). The concentration of PCC0105004 in
both plasma samples and brain tissues was determined using LC-MS/MS system, consisting of
Agilent 1100 and TSQ Quantum Access (Thermo Electron Corporation, San Jose, CA, United
States).

2.6 Stereotaxic surgery
Animals were intramuscularly anesthetized with ketamine (80 mg/kg) and xylazine (10

mg/kg). In a stereotaxic apparatus, the skin of the rat skull was removed, and a 27-gauge
9-mm guide cannula was positioned at 0.9 mm posterior to bregma, 1.5 mm right from the
midline, and 1.0 mm above the lateral brain ventricle. A cannula was implanted 2.6 mm
ventral to the superior surface of the skull through a 2-mm hole made at the cranial bone,
and it was secured in place with dental acrylic cement. To minimize animal suffering, rats
received an intramuscular injection of tramadol (10 mg/kg) after surgery for post-operational
analgesia. Animals recovered from surgery within 3 days. On the fourth day after surgery, the
animals received a single intracerebroventricular (ICV) injection of 5 µl of aCSF or OUA 10−3

M dissolved in aCSF [9, 10]. A 30-gage cannula was inserted inside the guide cannula and
connected by a polyethylene tube to a microsyringe. The tip of the cannula infusion protruded
1.0 mm beyond the cannula guide, aiming at the right lateral brain ventricle.

2.7 Open-Field Test
Manic-like behaviors, including hyperactivity, are easily evaluated in the open-field test.

The apparatus consists of a 60 × 60 × 50 cm (length × width × height) box, with the floor
divided into nine equal squares (20 × 20 cm). In the test, the animals were placed to explore
the area for 5 min. Locomotor activity was recorded and analyzed for 5 min using the TopScan
monitoring system (CleverSys Inc. Reston, VA, United States). The parameters used in the
test included: crossings (the total number of times rats crossed the squares during the entire
test period), rearings (the total number of instances where the rats exhibited erect postures
throughout the whole test period), and total activity (the distance the rat moved throughout the
test period) [11, 12].

2.8 Forced Swimming Test
The forced swimming test (FST) is a procedure that involves two individual exposures to a

cylinder filled with warm water. The cylinder designed with a height that prevents the animal
from touching the floor of the apparatus or escaping. Composed of transparent acrylic and
measuring 80 cm height and 30 cm diameter, the cylinder was filled with water (22–26°C) to a
depth of 40 cm. The day before the official experiment, rats underwent an individual training
session in the water-filled cylinder 15 min. On the day of the official experiment, rats were once
again subjected to the FST for 6 min during the test session. A trained observer, blinded to the
experimental groups, recorded the rats’ immobility in seconds.
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2.9 Brain Samples
After behavioral analysis, rats were euthanized by decapitation The skull was opened, and

the cerebral content was excised and rapidly dissected on a chilled dish Petri. The prefrontal
cortex and hippocampus were isolated and cleaned from subcortical structures and white matter.
All samples were kept frozen at -150◦C until the analyses were performed.

2.10 Western blot
The prefrontal cortex and the hippocampus tissues were rapidly dissected and homogenized

in radioimmunoprecipitation assay (RIPA) lysis buffer. Lysates were incubated on ice for 30 min,
and the prefrontal cortex and the hippocampus samples were spun at 12000 rmin−1 for 20 min.
Then, the supernatants were collected and transferred to fresh tubes, and the protein concentra-
tions were analyzed using the bicinchoninic acid (BCA) Protein Assay kit (BioTek SYNERGY
neo2, United States). A total of 50 µg of protein samples were resolved on a 10-12.5% SDS-
PAGE gel and transferred to polyvinylidene difluoride membranes for immunoblotting. After
blocking for 2 h in 5% nonfat milk (m/v), the membranes were co-incubated at 4◦C overnight
with the following primary antibodies: rabbit anti-TAAR1 (1:1000; Abcam, Cambridge, United
Kingdom, Cat#ab150646), rabbit anti-BDNF (1:1000; Abcam, Cambridge, United Kingdom,
Cat#ab108319), rabbit anti-GSK-3β (GSK-3β) (1:1000; Abcam, Cambridge, United Kingdom,
Cat#ab32391), rabbit anti-phospho-GSK-3β (Ser 9) (p-GSK-3β) (1:1000; Abcam, Cambridge,
United Kingdom, Cat#ab75814), rabbit anti-total AKT (1:1000; Cell Signaling Technology, MA,
United States, Cat#4691), rabbit anti-phospho-AKT (Ser 473) (p-AKT) (1:1000; Cell Signaling
Technology, MA, United States, Cat#4060), mouse anti-GAPDH (1:1000, Beyotime Institute
of Biotechnology, Shanghai, China, Cat#AF0006), and mouse anti-β-actin (1:1000, Beyotime
Institute of Biotechnology, Shanghai, China, Cat#AF0003). After overnight incubation with
primary antibodies, the membranes were then washed three times in TBST-Tween 20 and
incubated for 1 h with the corresponding secondary antibodies: goat anti-mouse HRP (1:2000,
Beyotime Institute of Biotechnology, Shanghai, China, Cat#A0216) and goat anti-rabbit HRP
(1:2000, Beyotime Institute of Biotechnology, Shanghai, China, Cat#A0208), and exposed onto
ChampChemi 610 (Sagecreation, Bejjing, China) with Sage CapturePro software (Sagecreation,
Beijing, China). Signal intensities were quantified using Image J software and normalized to
the corresponding β-actin or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) band.

2.11 Evaluation of Oxidative Stress in the prefrontal cortex in BD
Rats

2.11.1 Measurement of lipid peroxidation
The levels of the thiobarbituric acid-reactive species (TBARS), specifically malondialde-

hyde (MDA), were measured in samples of cerebral structures using RIPA Lysis Buffer. The
Lipid Peroxidation MDA Assay Kit (Beyotime Institute of Biotechnology, Shanghai, China,
Cat#S0131S) was employed for the direct quantitative measurement of MDA levels in the brain
tissue samples.

2.11.2 Determination of protein carbonyl content
Carbonyl group content was determined using a Protein Carbonyl assay kit purchased

from Nanjing Jiancheng Bioengineering Institute (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China, Cat#A087-1-2).

2.11.3 Determination of antioxidant enzyme activity
Glutathione peroxidase (GPx) catalyzes the reduction of peroxides coupled to glutathione

oxidation. The Total Glutathione Peroxidase Assay Kit with NADPH (Beyotime Institute
of Biotechnology, Shanghai, China, Cat#S0058) was employed for the direct quantitative
measurement of GPx activity levels.

2.12 Statistical analysis
All the data were presented as mean ± SEM. Data were analyzed using IBM SPSS Statistics

version 21.0 (Chicago, IL, United States) and plotted using Graph Pad Prism software version
8.0 (San Diego, CA, United States). Data were analyzed by unpaired Student’s t tests, or one-
way analysis of variance (ANOVA) followed by Dunnett’s post-hoc test. Statistical significance
was accepted at the level of p < 0.05. For detailed information, see the figure legends of the
respective figures.

Journal of Pharmaceutical and Biopharmaceutical Research • SyncSci Publishing 399 of 411

https://www.syncsci.com/journal/JPBR
https://www.syncsci.com


Volume 5 Issue 1, 2024 Linyao Yu, Wei Zhang, Yaoqin Shi, et al.

3 Results
3.1 Low expression of TAAR1 in the prefrontal cortex and hip-

pocampus of OUA-induced BD rats
To investigate the association between TAAR1 and BD, we assessed protein expression in

the prefrontal cortex and hippocampus of model rats. The timeline for the establishment of
BD model, behavioral testing, and brain tissue collection is depicted in Figure 2A. Following 7
days of ICV administration of OUA, the open field test revealed increased numbers of crossings,
rearings, and total activity in rats, signs of manic-like behaviors in this model (Figure B, C and
D). After 14 days of ICV administration of OUA, depressive-like behaviors were produced, as
evidenced by an increase in the time of immobility and a decrease in the time of swimming in
the forced swimming test (Figure 2E). Western blotting was performed to examine the protein
expression levels of TAAR1 in the prefrontal cortex and hippocampus during the manic and
depressive phases, respectively. The results indicated that the BD model significantly reduced
the expression of TAAR1 in the prefrontal cortex during both manic and depressive phases,
whereas this change was not evident in the hippocampus (Figure 2F and 2G).

Figure 2 Expression of TAAR1 in the prefrontal cortex and hippocampus of OUA-induced BD rats. Scheme
illustrating the experimental design used in this study (A). The number of crossings (B), rearings (C)
and total activity (D) in the OFT of rats after ICV administration of OUA on the 7th day. The time of
immobility in the FST of rats with ICV administration of OUA on the 14th day (E). Representative
Western blot bands and quantitative analysis of TAAR1 in the prefrontal cortex and hippocampus of
rats after injection of OUA 7 days (F) and 14 days (G) by densitometry. Data were expressed as
percentage of value of aCSF group. Data were analyzed by Unpaired Student’s t test. Values are
expressed as mean ± SEM, n = 6-8 per group. #p < 0.05 ##p < 0.01 compared to aCSF group.

3.2 In Vitro activity of PCC0105004
The EC50 values of pTyr and PCC0105004 for TAAR1 activity were determined using the

cAMP Detection Assay. The experimental results are presented in Figure 3B and 3C. Both
pTyr and the small molecule agonist PCC0105004 demonstrated TAAR1 agonistic activity, with
EC50 of 1.235 µM and 0.06182 µM, respectively. PCC0105004 underwent a comprehensive
binding selectivity assessment against an off-target panel comprising more than 80 receptors
(Table 1) and enzymes (Table 2). At a concentration of 10 uM, PCC0105004 exhibited binding
to Adrenergic α1A (49%), Calcium Channel L-Type, Phenylalkylamine (43%), Serotonin (5-
Hydroxytryptamine) 5-HT1B (46%), Monoamine Oxidase MAO-B (32%) and Adrenergic α1B

(31%).
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Table 1 Radioligand binding assays

Assay Name Conc. % Inhibition

Protein Tyrosine Kinase, EGF Receptor 10 µM -7
Protein Tyrosine Kinase, Insulin Receptor 10 µM -6
Tyrosine Hydroxylase 10 µM -14
Adenosine A1 10 µM -6
Adenosine A2A 10 µM 7
Adenosine A2B 10 µM 2
Adenosine A3 10 µM 8
Adrenergic α1A 10 µM 49
Adrenergic α1B 10 µM 31
Adrenergic β1 10 µM 6
Adrenergic β2 10 µM -1
Androgen (Testosterone) 10 µM 3
Bradykinin B2 10 µM 3
BZDp (TSPO) 10 µM 5
Calcitonin Gene-Related Peptide CGRP1 10 µM 5
Calcium Channel L-Type, Benzothiazepine 10 µM 28
Calcium Channel L-Type, Dihydropyridine 10 µM -5
Calcium Channel L-Type, Phenylalkylamine 10 µM 43
Calcium Channel N-Type 10 µM 6
Cannabinoid CB1 10 µM -9
Cannabinoid CB2 10 µM 3
Cholecystokinin CCK1 (CCKA) 10 µM 5
Cholecystokinin CCK2 (CCKB) 10 µM 5
Dopamine D1 10 µM 16
Dopamine D2L 10 µM 8
Dopamine D3 10 µM 12
Dopamine D4.4 10 µM -7
Endothelin ETA 10 µM -5
Estrogen ERα 10 µM 1
GABAA, Chloride Channel, TBOB 10 µM -10
GABAA, Flunitrazepam, Central 10 µM 6
GABAB1B 10 µM 0
Glucocorticoid 10 µM 2
Glutamate, AMPA 10 µM 0
Glutamate, Kainate 10 µM 10
Glutamate, Metabotropic, mGlu5 10 µM 8
Glutamate, NMDA, Agonism 10 µM 11
Glutamate, NMDA, Phencyclidine 10 µM -5
Glycine, Strychnine-Sensitive 10 µM 9
Histamine H1 10 µM 31
Histamine H3 10 µM -16
Melatonin MT1 10 µM -3
Muscarinic M1 10 µM -5
Muscarinic M2 10 µM 6
Muscarinic M3 10 µM -3
Muscarinic M4 10 µM -4
Muscarinic M5 10 µM 8
Neuropeptide Y Y1 10 µM 0
Neuropeptide Y Y2 10 µM -6
Nicotinic Acetylcholine α4β2, Cytisine 10 µM -3
Nicotinic Acetylcholine α7, Bungarotoxin 10 µM 5
Opiate δ1 (OP1, DOP) 10 µM 3
Opiate κ (OP2, KOP) 10 µM 0
Opiate µ (OP3, MOP) [3H]morphine 10 µM 10
Orexin OX1 10 µM -3
Orexin OX2 10 µM -6
Oxytocin 10 µM 0
Potassium Channel [SKCA] 10 µM 0
Purinergic P2X 10 µM -6
Serotonin (5-Hydroxytryptamine) 5-HT1B 10 µM 46
Serotonin (5-Hydroxytryptamine) 5-HT2A 10 µM 21
Serotonin (5-Hydroxytryptamine) 5-HT2B 10 µM 36
Serotonin (5-Hydroxytryptamine) 5-HT3 10 µM 17
Sodium Channel, Site 2 10 µM 19
Tachykinin NK1 10 µM 1
Transporter, Adenosine 10 µM -4
Transporter, Dopamine (DAT) 10 µM -1
Transporter, GABA 10 µM 9
Transporter, Norepinephrine (NET) 10 µM 9
Transporter, Serotonin (5-Hydroxytryptamine) (SERT) 10 µM 1
Vasopressin V1A 10 µM -7
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Figure 3 TAAR1 agonism of pTyr (B) and PCC0105004 (C). Mean drug concentration-
time curve of rats after gavage with 5 mg/kg PCC0105004 (D). The content of
PCC0105004 in plasma (E) and brain (F) and brain/plasma ratio (G) at 15, 60 and
360 min after administration in normal rats. Data were expressed as mean ± SEM,
n = 3 per time point.

Table 2 Enzymatic assays

Assay Name Conc. % Inhibition

ATPase, Na+/K+, Heart, Pig 10 µM 1
Carbonic Anhydrase II 10 µM -1
Catechol-O-Methyl Transferase (COMT) 10 µM -3
Cholinesterase, Acetyl, ACES 10 µM 18
CYP450, 1A2 10 µM 2
CYP450, 2C19 10 µM 2
CYP450, 2D6 10 µM 4
CYP450, 3A4 10 µM 0
GABA Transaminase 10 µM 1
Monoamine Oxidase MAO-A 10 µM -1
Monoamine Oxidase MAO-B 10 µM 32
Peptidase, Angiotensin Converting Enzyme 10 µM 1
Peptidase, CTSB (Cathepsin B) 10 µM -2
Peptidase, CTSL (Cathepsin L) 10 µM 2
Phosphodiesterase PDE4D2 10 µM 0
Protein Serine/Threonine Kinase, MAPK14 (p38α) 10 µM -9

3.3 The PK profile of PCC0105004 after a single oral administra-
tion in rats

To evaluate the mean plasma and brain concentration-time profiles, PK testing was conducted
in rats. A preliminary study revealed that PCC0105004 could be detected in plasma at 0.25, 0.5,
1, 2, 4, 6, 8 and 12 h following a single oral dose of 5 mg/kg in rats (Figure 4D). In plasma,
Cmax was 3730±846 nM, Tmax was 0.417±0.144 h and T1/2 was 1.85±0.217 h. In brain
tissue distribution tests, PCC0105004 was detectable in both plasma and brain at 0.25, 1 and 6 h
following a single oral dose of 5 mg/kg in rats. The highest concentrations of PCC0105004 in
plasma and brain were observed at 0.25-1 h after administration, with the brain/plasma ratio
ranging from 8.45 to 4.22 (Figure 4E to 4G). These results demonstrated that PCC0105004 can
be readily absorbed into the blood, cross the blood-brain barrier and reach the brain.

Figure 4 Mean drug concentration-time curve of rats after gavage with 5 mg/kg PCC0105004 (D). The content
of PCC0105004 in plasma (E) and brain (F) and brain/plasma ratio (G) at 15, 60 and 360 min after
administration in normal rats. Data were expressed as mean ± SEM, n = 3 per time point.
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3.4 Effects of PCC0105004 on locomotor activity in normal rats
The open field test was used to evaluate the impact of PCC0105004 at doses ranging from 0.75

mg/kg to 6 mg/kg on locomotor activity in normal rats. The results indicated that PCC0105004
at 0.75 mg/kg and 1.5 mg/kg did not produce significant effects on the spontaneous activity of
rats. However, when the dose exceeded 3 mg/kg, PCC0105004 exhibited pronounced sedative
effects on rats (Figure 5).

Figure 5 Effects of PCC0105004 on locomotor activity in normal rats. Effects of administra-
tion of PCC0105004 ranging from 0.75 mg/kg to 6 mg/kg on the number of crossings
(A) and rearings (B) and total activity (C) in the OFT in normal animals. Data were
analyzed by one-way ANOVA followed by Dunnett’s post hoc test. Values were
expressed as mean ± SEM, n = 8 per group. ∗ p < 0.05 ∗∗p < 0.01 compared to
Control group.

3.5 Effects of PCC0105004 on manic-like and depressive-like be-
haviors in OUA-induced BD rats

To determine the optimal dose of PCC0105004 for subsequent studies in rats with BD, we
conducted the open-field test on day 7 after the OUA injection. The timeline for establishing BD
models and behavioral testing is depicted in Figure 6A. Our results revealed that PCC0105004
at doses ranging from 0.75 mg/kg to 3 mg/kg dose-dependently improved manic-like behaviors
in BD rats (Figure 6B, 6C and 6D). Considering the results of the open field test in normal rats,
a dose of 1.5 mg/kg of PCC0105004 was selected for the subsequent studies.

Figure 6 The dose-dependent effects of PCC0105004 on manic-like behaviors in OUA rats. Scheme illustrating
the experimental design used in this study (A). Effects of administration of valproate (200 mg/kg) or
PCC0105004 from 0.75 mg/kg to 3 mg/kg on the 7th day on the number of crossings (B), rearings (C)
and total activity (D) in the OFT in animals treated with OUA. Data were analyzed by one-way ANOVA
followed by Dunnett’s post hoc test. Values were expressed as mean ± SEM, n = 10 per group. ### p <
0.001 compared to aCSF+Sal group. ∗∗∗ p < 0.001 compared to OUA+Sal group.

To assess the effects of PCC0105004 on manic-like and depressive-like behaviors in rats with
BD, we performed the open-field test and forced swimming test. The timeline for establishing
BD models and conducting behavioral tests is depicted in Figure 7A. Compared to the artificial
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cerebrospinal fluid + physiologic saline (aCSF + Sal) group, both PCC0105004 (1.5 mg/kg)
and valproate (200 mg/kg) demonstrated no significant effects on locomotor activity in sham
rats on day 7 and day 14 after the OUA injection, indicating that their effects on rats with BD
were not associated with sedation. In contrast to the ouabain + physiologic saline (OUA+ Sal)
group, both 1.5 mg/kg PCC0105004 and 200 mg/kg valproate significantly reduced the number
of crossings, rearings, and total activity in OUA-induced BD rats in the open-field test on day 7
(Figure 7B, 7C and 7D) and decreased the immobility time in the forced swimming test on day
14 (Figure 7E).

Figure 7 Effects of PCC0105004 on manic-like and depressive-like behaviors in OUA rats. Scheme illustrating the
experimental design used in the manic phase and depressive phase study (A). Effects of 200 mg/kg valproate
or 1.5 mg/kg PCC0105004 on the 7th day on the number of crossings (B), rearings (C) and total activity (D)
in the OFT in animals treated with OUA (n = 10 per group). Effects of 200 mg/kg valproate or 1.5 mg/kg
PCC0105004 on the 14th day on the time of immobility (E) in animals treated with OUA (n = 15 per group).
Data were analyzed by one-way ANOVA followed by Dunnett’s post hoc test. Values were expressed as
mean ± SEM. ##p < 0.01 ###p < 0.001 compared to aCSF + Sal group. ∗∗∗p < 0.001 compared to OUA
+Sal group.

3.6 Mood-stabilizing effect of PCC0105004 in OUA-induced BD
rats

To assess the mood-stabilizing effect of PCC0105004 in rats with BD, we conducted the
open-field test and forced swimming test after a continuous dosing period. The timeline for
establishing BD model and conducting behavioral testing is depicted in Figure 8A. Following
6 days of continuous administration, both 1.5 mg/kg PCC0105004 and 200 mg/kg valproate
effectively reversed manic-like behaviors on day 7 after the OUA injection, evidenced by
the reduction in the number of crossings, rearings, and total activity of rats in the open field
test (Figure 8B, 8C and 8D). After 13 days of continuous administration, both 1.5 mg/kg
PCC0105004 and 200 mg/kg valproate continued to reverse depressive-like behavior on day
14 after the OUA injection, as evidenced by the decrease in immobility time in the forced
swimming test (Figure 8E).
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Figure 8 Mood-stabilizing effect of PCC0105004 in OUA-induced BD rats. Scheme illustrating the experimental design used
in the study of maintenance therapy in the manic phase and maintenance therapy in the depressive phase (A). Effects
of 200 mg/kg valproate or 1.5 mg/kg PCC0105004 for 6 days of continuous dosing on the number of crossings (B)
and rearings (C) and total activity (D) in the OFT on the day 7 in animals treated with OUA. Effects of 200 mg/kg
valproate or 1.5 mg/kg PCC0105004 for 13 days of continuous dosing on the time of immobility (E) on the day 14
in animals treated with OUA. Data were analyzed by one-way ANOVA followed by Dunnett’s post hoc test. Values
were expressed as mean ± SEM, n = 10 per group. #p < 0.05 ###p < 0.001 compared to aCSF+Sal group. ∗p <
0.05 ∗∗p < 0.01 ∗∗∗p < 0.001 compared to OUA +Sal group.

3.7 Effects of PCC0105004 on oxidative stress in the prefrontal
cortex of OUA-induced BD rats

To demonstrate alterations in oxidative stress in the prefrontal cortex of BD rats, we assessed
the levels of protein carbonyl content, MDA and GPx. During the manic and depression phases,
compared with the aCSF + Sal group, protein carbonyl content (Figure 9A and 9D), MDA
activity (Figure 9B and 9E) and GPx activity (Figure 9C and 9F) in the prefrontal cortex of
BD rats were all significantly increased. However, these changes were effectively reversed by
treatment with 1.5 mg/kg PCC0105004.

3.8 Effects of PCC0105004 on the TAAR1/Akt/GSK-3β/BDNF
pathway in the prefrontal cortex of OUA-induced BD rats

As PCC0105004 was a TAAR1 agonist, we subsequently examined its effects on the TAAR1
signaling pathways through western blot analysis in the prefrontal cortex. This assessment
included the expression levels of TAAR1 and its downstream molecules including BDNF,
phosphorylated AKT at Ser473 and GSK3β at Ser9. During the manic and depression phases,
in comparison to the aCSF + Sal group, the expression of TAAR1 (Figure 10A and 10E),
BDNF (Figure 10B and 10F) and phosphorylated AKT at Ser473 (Figure 10C and 10G), as
well as GSK3β at Ser9 (Figure 10D and 10H), in the prefrontal cortex of BD rats were all
significantly downregulated. However, these changes were significantly reversed with 1.5 mg/kg
PCC0105004 treatment.
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Figure 9 Effects of PCC0105004 on the oxidative stress in the prefrontal cortex of OUA-induced BD rats. Effects of
administration of PCC0105004 1.5 mg/kg on the levels of protein carbonyl (A) and the activity of MDA (B)
and glutathione peroxidase (C) in the prefrontal cortex of rats after injection of OUA for 7 days(n = 10-12
per group). Effects of PCC0105004 treatment on the levels of protein carbonyl (D) and the activity of MDA
(E) and glutathione peroxidase (F) in the prefrontal cortex of rats after injecting with OUA for 14 days (n =
8 per group). Data were analyzed by one-way ANOVA followed by Dunnett’s post hoc test. Values were
expressed as mean ± SEM. #p < 0.05 ##p < 0.01 ###p < 0.001 compared to aCSF+ Sal group. ∗p <
0.05 ∗∗p < 0.01 ∗∗∗p < 0.001 compared to OUA+ Sal group.

Figure 10 Effects of PCC0105004 on the TAAR1/BDNF and TAAR1/Akt/GSK-3β pathway in the prefrontal cortex of
OUA-induced BD rats. The representative western blot level of TAAR1 (A), BDNF (B), p-Ser473-Akt/Akt
(C) and p-Ser9- GSK-3β/ GSK-3β (D) in the prefrontal cortex of rats after injecting with OUA for 7
days. The representative western blot level of TAAR1 (E), BDNF (F), p-Ser473-Akt/Akt (G) and p-Ser9-
GSK-3β/ GSK-3β (H) in the prefrontal cortex of rats after injecting with OUA for 14 days. Data were
quantified by densitometric analysis and expressed as percentage of value of aCSF+ Sal group. Data were
analyzed by one-way ANOVA followed by Dunnett’s post hoc test. Values were expressed as mean ±
SEM, n = 8-10 per group. ##p < 0.01 ###p < 0.001 compared to aCSF+ Sal group. ∗p < 0.05 ∗∗p <
0.01 ∗∗∗p < 0.001 compared to OUA+ Sal group.
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4 Discussion
BD is a challenging clinical condition and currently the available treatments only have

limited efficacy but have various adverse effects. In an effort to explore novel drug targets for the
development of new therapies of BD, we focus on TAAR1 in this study, which is a novel GPCR
that may be involved in BD pathophysiology [13]. Here, we report that, using a rat OUA-induced
BD model, we observed a reduced TAAR1 receptor expression in the model rats, suggesting
the direct involvement of TAAR1 in BD. Then, we reported a small molecule TAAR1 agonist,
PCC0105004, which showed high efficacy, good potency (EC50 value of 0.06182 µM), good
receptor selectivity and favorable pharmacokinetics. In the in vivo efficacy study, PCC0105004
demonstrated clear efficacy against both the manic-like and depressive-like behaviors in the
OUA-induced rats at the doses that did not affect general locomotion. In an effort to decipher
the mechanistic underpinnings of PCC0105004 effects, we found that PCC0105004 alleviated
oxidative stress possibly via the up-regulation of the Akt/GSK3β/BDNF pathway. Combined,
these results revealed the important role of TAAR1 in BD and suggested that TAAR1 agonists
such as PCC0105004 have the potential as novel pharmacotherapies for BD. A schematic figure
depicting the potential mechanisms was provided in Figure 11.

Figure 11 A schematic figure depicts proposed mechanism of oxidative stress modulation by
TAAR1/Akt/GSK3β/BDNF signaling pathway

Evidence suggests that sodium and potassium-activated adenosine triphosphatase (Na+, K+-
ATPase) is involved in BD pathophysiology [14]. OUA is a digitalis-like compound that inhibits
Na+, K+-ATPase activity [15–17]. ICV administration of OUA in rats leads to a behavioral
phenotype that mimics specific manic and depressive-like symptoms and consequently this
model has been proposed as one of the best to mimick human BD [18, 19]. Therefore, to test
our hypothesis that TAAR1 is involved in the pathophysiology of BD, we first established an
OUA-induced model of BD, and examined the TAAR1 protein expression levels in the prefrontal
cortex and hippocampus. Our results were consistent with the literature [20] which showed that
OUA-induced BD rats exhibited manic-like symptoms on day 7 and depressive-like symptoms
on day 14. Western blotting analyses showed that TAAR1 expression was down-regulated in
both manic-like and depressive-like phases in the prefrontal cortex, respectively. Taken together,
these results suggest that TAAR1 may be involved in the pathophysiology of BD.

We then characterized a small molecule TAAR1 agonist, PCC0105004 [(S)-4,7,8,9,10,10a-
hexahydro-5H-thieno[2’,3’:3,4]pyrido[1,2-a]pyrazine] in both in vitro and in vivo assays.
PCC0105004 demonstrated a strong agonistic activity in cells expressing TAAR1 with an es-
timulated EC50 of 0.06182 µM. Subsequent pharmacokinetics study showed that PCC0105004
had good in vivo pharmacokinetics prolife and blood-brain barrier permeability. In vitro
counter-selectivity assay showed that PCC0105004 was highly selective against a broad panel
of enzymes and receptors in a pan-screen assay. These results support further evaluation of
PCC0105004 as a TAAR1 agonist.

One confounding factor for evaluating the in vivo efficacy of compounds using behavioral
animal models is its behavioral specificity. In models wherein the suppression of the expression
of certain behaviors is anticipated evidence of efficacy, general behavioral inhibition such as
significant sedation will lead to difficulty in interpretating the behavioral data. Therefore, we
evaluated the potential sedative effects of PCC0105004 both in normal rats and in BD rats.
PCC0105004 at the dose of 1.5 mg/kg displayed specific antimanic-like effects without affecting
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the general spontaneous activity in normal rats. Thus, the antimanic-like effects of PCC0105004
was behaviorally-specific. Similar results were also observed in the FST study where 1.5 mg/kg
PCC0105004 reduced the immobility time in OUA-induced BD rats. As such, these results
suggest that the antimanic-like and anti-depressant-like effects of PCC0105004 in BD rats
were behaviorally specific. Additionally, PCC0105004 also demonstrated mood-stabilizing
effect similar to the classical mood stabilizer valproate. Together, these results suggest that
PCC0105004 has the potential to specifically treat BD-related symptoms.

Oxidative stress is known to be associated with the pathophysiology of BD and alterations
in the activity of antioxidant enzymes and other oxidative disturbances have been reported
in BD patients [21]. The oxidative stress occurs when the levels of reactive oxygen species
(ROS) exceed the capacity of the antioxidant defense mechanisms, which may lead to protein
oxidation, lipids peroxidation, and cell death. It was previously shown that, in OUD-induced BD
model, the manic-like behavior and depressive-like behavior were accompanied by increased
oxidative stress [20, 22]. Here, we found that the levels of protein carbonyl content, MDA,
and GPx increased in OUA-induced BD rats, consistent with the literature [20]. Additionally,
PCC0105004 attenuated OUA-induced increases in protein carbonyl content, MDA and GPx
activity. Thus, PCC0105004-induced relief of oxidative stress may be the underlying mechanism
attributing to its antimanic and antidepressant-like effects.

TAAR1 is the primary target of trace amines such as pTyr and β-phenylethylamine (β-PEA),
which are endogenous amines closely related to classical monoamines such as dopamine and
serotonin [23]. Emerging evidence suggests that TAAR1 is a promising target for the treatment
of neuropsychiatric disorders such as schizophrenia, depression, and substance abuse [8, 24–31].
Although the exact molecular mechanisms of TAAR1-assocaited signaling remains to be
elucidated, TAAR1 interacts with and modulates other GPCRs by the formation of heterodimers.
Putative partners include dopamine, serotonin, adrenergic and glutamate receptors, although
the exact machinery mechanisms of such interactions remain elusive [32]. TAAR1 reportedly
interacts with dopamine D2 receptor, resulting in decreased cAMP signaling and enhanced
β-arrestin2 (βArr2) signaling. This results in the formation of βArr2-dependent cascade which
includes the phosphorylation of Akt and subsequent inactivation of GSK3β signaling by its
phosphorylation. This signaling pathway is particularly relevant because it was shown that
the dopamine signaling/Akt/GSK3β phosphorylation was inhibited in BD [32]. BD patients
were found to have lower serum levels of BDNF [33–35]. The literature demonstrates the
involvement of neurotrophic factors in BD pathophysiology since they regulate neurotransmitter
release and neuronal excitability [36, 37]. Recent studies show that TAAR1 activation increases
the production of BDNF both in vivo [38] and ex vivo, which was abolished by TAAR1
antagonism [39]. GSK-3β inactivates cAMP response element-binding protein (CREB) by
phosphorylation [40]. CREB, a regulator of BDNF expression, can directly regulate BDNF
transcription [41]. Previous studies have shown that GSK-3β plays an essential role in oxidative
stress [42–46]. Decreased BDNF can also cause oxidative stress, providing another way through
which it may drive changes associated with BD [47]. In this study, we found that the expression
of TAAR1 protein in the prefrontal cortex of BD rats was down-regulated during the manic
and depressive phases, which were associated with AKT/GSK3β/BDNF signaling pathways.
These changes were reversed by PCC0105004 treatment. These findings suggest that the effect
of PCC0105004 in the treatment of BD may be achieved by reducing oxidative stress through
the TAAR1/Akt/GSK3β/BDNF pathways.

In conclusion, this study is the first to describe reduced TAAR1 expression in the pre-
frontal cortex of OUA-induced BD rats and the first to demonstrate the antimanic-like and
antidepresssive-like activities of a TAAR1 agonist. Combined with the favorable PK profiles of
PCC0105004, these results suggest that PCC0105004 may represent a novel candidate with new
mechanisms of action to treat BD and warrant further investigations.
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