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Abstract: The phenomenon of climate change in recent years has led to significant changes in

climatic elements and as a result the status of surface and groundwater resources, especially in

arid and semi-arid regions, this issue has sometimes caused a significant decline in groundwater

resources. In this paper, the effects of climate change on the status of groundwater resources in

Marvdasht plain have been investigated. Water supply of different parts of this region is highly

dependent on groundwater resources and therefore the study of groundwater changes in future

periods is important in the development of this plain and the management of its water resources.

In order to evaluate the effects of climate change, the output of atmospheric circulation models

(GCM) has been used. Then, in order to adapt the output scale of these models to the scale

required by local studies of climate change, precipitation and temperature data have been

downscaled by LARS-WG model. Downscaled information was used to determine the amount

of feed and drainage of the aquifer in future periods. To investigate changes in groundwater

levels at different stages, a neural network dynamic model has been developed in MATLAB

software environment. It is also possible to study and compare other points using other scenarios

and mathematical modelling. The results of the study, assuming the current state of development

in the region, indicate a downward trend in the volume of the aquifer due to climate change and

its effects on resources and uses of the study area. The results also introduce Scenario A2 as the

most critical scenario related to climate change, which also shows the largest aquifer decline in

neural network modelling.
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1 Introduction

Climate change has a significant impact on groundwater and surface water resources. Due to

the fact that the impact of climate change on groundwater resources is indirect and slower than

surface water resources.

Monitoring the status of these resources and maintaining their sustainability under the

influence of these changes is of great importance. In this regard, various studies by [1–3]

on surface water on groundwater recharge [4–6], and on groundwater level [7–10] on the

sensitivity of the coastal aquifer using mathematical models and Physics has been done to

assess the effects of climate change. Also, [11] and [12], modelling on groundwater and [13]

has modelled the aquifer using the neural network model. In the following, we will review

the studies conducted. [14] investigated the effect of climate change scenarios on rainfall and

temperature and consequently changes in the water level of the Great Lakes of North America.

The results of the study show that the pure water supply of large lakes decreases in response to

climate change. [15] Using information from the downscale output of large-scale climate models

according to studies by [16–19] and applying two parameters of precipitation and evaporation

Giving this information in a hydrological model, the effects of climate change on groundwater

recharge and soil moisture have been investigated. The results of this study show that climate

change has a direct effect on two parameters of precipitation and evaporation. [20] using a

hydrogeological model based on geological, hydrogeological and geochemical information and

also by closing a linear regression of the precipitation model for the next 20 years showed that

the groundwater level is gradually affected by climate change and reduced.

[21–23] were able to study the effect of climate change on the groundwater resource system

in Morocco by using the moving average method. The results of this study using a numerical

model show that coastal aquifers are less sensitive to precipitation changes. [24–26] used a
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combination of hydrological modelling using neural networks and climatic modelling using a

fuzzy inference system for long-term Zayandehrud river volume at the inlet to the Zayandehrud

dam. In this study, modelling using neural network was used indirectly in a long-term prediction

structure. This trend is also seen in the [27–32].

[33–37] evaluated the capabilities of artificial neural networks in modelling the aquifer of

Tabriz complex. In this study, different structures of artificial neural networks have been used to

predict the water table of this aquifer in the central piezometer. Among the various structures

used, the best results are related to networks Leading artificial neuron with Lunberg-Algorithm

Marcourt (FNN-LM). In the next step, this structure was used to predict the water table of 8

selected piezometers in the region. The results obtained from the presentation of a single model

for predicting the water level of 8 selected piezometers did not seem desirable. For this purpose,

the selected piezometers were divided into two categories and a single model was presented

for each category. By increasing the number of output nodes of each model to the number of

piezometers in each category, two models with acceptable results were obtained. These results

were able to provide a monthly forecast of groundwater water level in selected piezometers over

a period of two years. The purpose of this study is to investigate the effects of climate change on

the groundwater status of Marvdasht plain located in the western part of Iran, which is an arid

to semi-arid region. For this purpose, first, using the output of GCM model, precipitation and

temperature information have been micro-scaled and simulated under the influence of climate

change scenarios for the coming years. The values of groundwater piezometric surface height

in future periods have been determined, assuming that the current state of development of the

region is maintained and according to the downscaled results, and the status of the aquifer in

future periods has been simulated. The following is a description of the case study and the

method of doing the work, discussing the results and conclusions of the research.

2 Case study

Case study of Marvdasht plain study area with geographical location, longitude 63◦ 39’ to

73◦ 40’ East and latitude 32◦ 31’ to 33◦ 35’ North has a total area of 2037 square kilometers.

It is located in the center of Tasht-Bakhtegan watershed area which is the semi-arid area. The

important rivers in the Marvasht are Kor and Sivand. Figure 1 shows the geographical location

of this basin with the wells.

Figure 1 Location of the study area

3 Materials and methods

In this paper, observational meteorological information including daily precipitation, mini-

mum and maximum daily temperature from 1980 to 2010, Ramhormoz Synoptic Station, in

order to evaluate the effects of climate change, the output of atmospheric circulation (GCM)

models has been used. Then, in order to adapt the output scale of these models to the scale

required by local studies of climate change, precipitation and temperature data have been down-

scaled by LARS-WG model. Downscaled information was used to determine the amount of

feeding and drainage of the aquifer in future periods. Then, in order to predict the decrease of
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groundwater level with artificial neural network model, 23 active piezometric wells in Marvdasht

plain with data collected with a period of 20 years have been used to model the neural network.

The NARX dynamic neural network model was developed in MATLAB software environment

and the values of the simulated input components were entered into the neural network model

due to climate change and the aquifer status was predicted for a future period of 7 years. The

effect of climate change on the status of the aquifer is assessed assuming that the existing

conditions for the development of the region are maintained. It should be noted that long-term

predictions increase the probability of error occurring, so the shorter the time period selected,

the less error is associated.

4 Model of LARS-WG

The LARS-WG model can simulate the information of a meteorological station under current

and future climatic conditions. The required information is the model of daily time series

of precipitation (mm), minimum and maximum temperature ◦C) and sunny hours (1- (MJ

m-2 day). A1B and B1 were performed, showing the most critical conditions as Scenario A2,

during the precipitation microscaling steps using the LARS-WG model, to obtain the statistical

characteristics of dry and wet days and the average daily precipitation per month of the year at

the station. Ramhormoz, the observational daily rainfall time series was analyzed on a monthly

basis.This information was used to develop the quasi-experimental distribution of dry and wet

daily series duration and daily rainfall and using these semi-experimental distributions, random

values For daily series of dry and wet days for each month of production, also the amount of

precipitation was produced from the semi-experimental distribution of precipitation.

To perform the sensitivity analysis of the input pattern, the Kolmogorov-Smirnov (KS) and

t-test statistical validation methods were used, and thus the calculated values were compared

with the observed ones, and the calculated values that were closer to the observed values and

had less error and more validity were selected.

Artificial neural networks of NARX

The NARX neural network model can be represented by Equation (1).

Y(t) = f (y(t− 1), y(t− 2)ℓ . . . yy(t− ny), u(t− 1), u(t− 2), u(t− nu) (1)

u (t-2), . . . u (t-nu), which is the value of the dependent output (y (t) based on the outputs of the

previous steps and the independent values of the external input signal. it has been shown.

The NARX network output of Equation 2 is considered as an estimate of a non-linear dynamic

system (Figure 2).

Figure 2 View of NARX neural network simulation

Y(t+1) = ϕ0
{

wb0 +
∑

wh0.ϕh
(

wh0 +
∑

wihu (t− i) +
∑

wih. y(t− j)
)}

(2)

In the Equation (2), Y (t + 1) is the predicted time series of precipitation and temperatureand

y (t), y (t-1),. . . , y (t-d y) to(Output) indicates (.-U (t), u (t-1),. . . , u (t as past output data (water

level du)) which is introduced as underground time series). Figure 3 shows a view of past

observations (meteorological signals such as neural network predictions).

According to the hydrogeological characteristics, in addition to monthly precipitation data,

temperature and sunny hours and piezometric surface height and data generated by LARS-WG

monthly precipitation, minimum temperature and maximum temperature and sunny hours as

the input for the selected neural network. First, the monthly data of precipitation, temperature

and sunny hours and the height of the piezometric surface were entered into the artificial neural

network model for simulation and then the model was connected between the 4 simulated inputs
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Figure 3 A view of the NARX neural network prediction

and outputs (piezometer height) and reconnected them. As input and simulate the rate of decline

for the next month, then the simulated data is entered into the NARX neural network model for

prediction and the one-month delay model is eliminated and forecasted for the next month based

on the initial conditions. Pay. According to the time interval used to predict the height of the

piezometric surface, the NARX neural network model repeated the above steps for 74 months.

In the NARX neural network model, due to the heterogeneity of the input measurement

criteria, data standardization was used and the error evaluation and correlation coefficient

(2RMSE) (R) were used and the calculated values were compared with the observed ones.

For calibration of Marvdasht plain aquifer, water balance information of 1988-2010 has been

used. Calibration parameters include minimum and maximum precipitation and temperature.

Calibration error was evaluated using RMSE index.

In the above relation yi is the observational results, yˆi is the computational results and N

is the total number of observations. RMSE shows the difference between the observed value

and the calculated values. The lowest RMSE value indicates the highest prediction accuracy.

Also, R2 indicates the network efficiency (Equation 4). The optimal answer for the model will

be created when the RMSE tends to zero and R2 tends to one.

5 Results

The results are shown in Table 1. By comparing the test results with the number extracted

from the table for this test, it can be concluded that the statistical distribution of data is more

appropriate than the distribution of observational data in the acceptable range.

Table 1 Respondents’ profile

Month
Precipitation Minimum temperature Maximum temperature

KS-test t-test KS-test t-test KS-test t-test

Jan 0/08 0/69 0/11 0/11 0/16 0/01

Feb 0/17 0/53 0/11 0/08 0/11 0/26

Mar 0/20 0/86 0/05 0/02 0/05 0/15

Apr 0/10 0/27 0/11 0/63 0/11 0/20

May 0/28 0/90 0/05 0/38 0/05 0/53

Jun 0/36 0/67 0/11 0/29 0/16 0/06

Jul 0,2 0/87 0/11 0/97 0/10 0/64

Aug 0,23 0/19 0/11 0/65 0/10 0/15

Sep 0/42 0/30 0/05 0/89 0/11 0/90

Oct 0/31 0/98 0/11 0/06 0/08 0/32

Nov 0/20 0/12 0/05 0/84 0/10 0/82

Dec 0/03 1/00 0/05 0/30 0/05 0/51

Note: KS-test: Dn, α = 0.390, (α = 0.05, n = 12), t-test: tα, ν = 2.57, (α = 0.05, ν = ∞)

According to Figure 4(a), 4(b), if the emission trend is according to Scenario A2, the average

maximum and minimum temperatures will increase by a maximum of 1.9 degrees in the next

30 years, respectively. Due to the need for simulated temperature information to investigate

the effect of climate change on groundwater, the average between the minimum and maximum

temperature values has been averaged.

Also in Figure 4(c), a change in precipitation pattern (reduced rainfall) is observed, especially

in the late months of autumn and early winter.

Results of NARX neural network model

For calibration, the NARX neural network model is given, which is based on the lowest error

and the amount of error and correlation coefficient in Table 2 shows the highest correlation.
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(a) Mean of maximum temperature

(b) Mean of minimum temperature

(c) Mean of precipitation

Figure 4 Comparison between observational and simulated values of LARS-WG model under

scenarios A2, B1, A1B

Figure 5 Average of several piezometric well samples away from the river (simulated) Evalu-

ation of the effect of climate change on groundwater resources in Ramhormoz plain
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Table 2 Results of performance evaluation of NARX neural network model based on less

error and more correlation

Compare results and evaluate errors in selecting the best simulation

Well characterization Correlation coefficient Error

R2 Nash Sutcliffe RMSE MAE

8 wells 0.93 0.89 0.25 0.160

15 wells 0.78 0.76 2.7 1.530

Mean of wells near river 0.91 0.85 3.18 1.730

Mean of wells far from river 0.88 0.82 0.2108 0.148

The most important parameter affecting groundwater recharge is precipitation, so the aquifer

recharge component is considered as a linear function of precipitation in the base year (1988-

2010 balance). According to the results of LARS-WG model under climate change scenarios

B1, A2, A1B of aquifer balance components in the period 2040-2011 for several piezometric

wells by entering the results of LARS-WG model in neural network model and level prediction

Groundwater assuming that the level of development of the region remains constant in Table 3

and 4, it is shown that the results of the simulated water level under scenarios B1, A2, A1B in the

period 2040-2011 based on the distance of piezometric wells with the upper river (middle Plain

and close to Ramhormoz synoptic station (measured), which compares the level of groundwater

with the amount of precipitation and groundwater nutrition with the neural network model

NARX is calculated. And Scenario A2 shows more critical conditions based on the severity of

water loss in piezometric wells.

Table 3 Comparison of observed and simulated water levels under scenarios A1B, B1, A2

over time 2011-2040 For some examples of piezometric wells far from the river

Calculated level of

groundwater B1

(m)

Calculated level of

groundwater A1B

(m)

Calculated level of

groundwater A2

(m)

Observed level of

groundwater

(m)

Number of

piezometer

63.41 63.01 62.0 2 68.51 3

71.0 5 70.80 70.65 82.51 4

66.93 66.80 66.34 76.71 5

68.86 68.53 68.3 75.85 8

63.91 63.64 63.01 70.51 27

Table 4 Comparison of observed and simulated water levels under scenarios A1B, B1, A2

over time 2011-2040 For some examples of piezometric wells near the river

Calculated level of

groundwater B1

(m)

Calculated level of

groundwater A1B

(m)

Calculated level of

groundwater A2

(m)

Observed level of

groundwater

(m)

Number of

piezometer

121.23 120.11 119.01 123.65

101.33 100.77 99.67 103.52 11

152.1 151.61 150.01 182.83 15

153.01 152.76 152.11 190.42 19

135.26 135.01 134.11 155.81 38

Figure 5 shows the validation of the NARX neural network model in the period 1988-2010.

In this way, the height of the observed piezometers is matched with the height of the piezometers

simulated by the NARX neural network model. The height of the observational piezometers

obtained from the information received from the Regional Water Organization was selected

based on the averaging of several well samples in the northwest of the plain with the maximum

distance from the upper river and compared with the height of the piezometers simulated by

the neural network model. . In Figure 6, the height of observation piezometers located in the

southeast of the plain with the minimum distance from the river is selected and compared with

the height of the simulated piezometers with the neural network model.

As Figure 7 and 8 show, the groundwater level is decreasing in all parts of the aquifer, so a

suitable plan to improve the aquifer and limit groundwater abstraction in this plain, especially

in the southeast of the plain should be considered. However, due to the high river, the drop in

groundwater level has received less attention. Also, according to the neural network modeling

for all three scenarios, it is quite clear that the rate of decline in all three scenarios over a period

of 30 years is almost the same, although in scenario A2 I see more decline in the aquifer, if the
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Figure 6 Mean of several piezometric well samples near the river (simulated)

same conditions in terms of nutrition And if the aquifer is drained in the future, we will see the

possibility of further aquifer decline over longer periods of time.

Figure 7 Neural network prediction of piezometers far from the river

Figure 8 Predicting the neural network of piezometers near the river

6 Discussion

According to the study of climate change scenarios on precipitation and temperature elements

in Ramhormoz plain, we found that with decreasing rainfall, a gradual decrease in the height of

piezometers was obtained, which is less sensitive to precipitation changes due to the coastal

aquifer. The results of this study are consistent with the studies presented by [38, 39]. Also with

[40, 41] studies on climate change scenarios on precipitation and temperature, in miniaturizing

the precipitation parameter, [42] have examined the groundwater level, which is consistent with

current studies. [43, 44] studies in the field of neural network are related to the leading artificial

neural networks with Lunberg-Marcourt algorithm (FNN-LM). In the next step, this structure

has been used to predict the water table in the region, which in the present article, using this

method and the NARX neural network, the groundwater level has been predicted.

7 Conclusion

In this study, the effects of climate change on groundwater resources in Ramhormoz plain

have been investigated. To achieve this goal, based on the meteorological variables of the GCM
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model in the study area, precipitation and temperature simulations have been performed using

the micro-scale statistical model (LARS-WG) under climate change scenarios, which considers

scenario A2 as the most critical case. Selected for the future and then Ramhormoz aquifer is

simulated using a neural network dynamic model. Finally, based on the A2 climate change

scenario, feeding and discharge information is simulated and the amount of groundwater level

in future periods is investigated. The results show the significant effects of climate change on

groundwater in this area, although these changes are not uniform in all parts of the aquifer.

Due to the shallow depth and coastal nature of the aquifer, the topography of the plain and the

direction of groundwater flow from to southeast, the highest drop in groundwater level in the

aquifer is related to the southeast of the plain with a drop of about 30 meters. The lowest drop is

in the northwest of Ramhormoz plain and about 10 meters.

Also, in the central part of the aquifer, the drop is about 12 meters. Also, in the eastern and

southeastern part of the plain, due to the proximity of this part of the plain to the upper river,

there is less attention to groundwater abstraction for agriculture. The amount of water that is

currently prevailing in the southeastern part of the aquifer should be the amount of groundwater

discharge in this area, taking into account a specific strategy.
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