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Abstract: Selecting a rainfall-runoff model for applying in flood forecasting is an important
decision that effects on other hydrological parameters. In order to forecast flow . They
are different in transfer function (empirical black box), through lumped conceptual to more
physically-based distributed models. The rainfall-runoff models also are often supplemented
through updating techniques for taking account of recent measurements of flow so as to develop
the accuracy of model predictions in real-time. Against this diversity of available modelling
methods, this study try to develop realizing of the most important and well known rainfall-
runoff models for flood forecasting and underlining their similarities and differences. The
models which are selected in this study include: the Probability Distributed Moisture (PDM)
model, the Isolated Event Model (IEM), the US National Weather Service Sacramento model,
the Grid Model, the Transfer Function (TF) model and the Physically Realizable Transfer
Function (PRTF) model. The first three are conceptual soil moisture accounting models, with
the Grid Model having a distributed formulation, whilst the TF and PRTF are “black box”
time-series models. Also new model for the forecasting (e.g neural network (NN), fuzzy rule-
based are studied. Ability to integrate recent observations of flow in order to develop forecast
performance is an important feature of the use of rainfall-runoff models in a real-time forecasting
environment. The available methods for forecast updating are reviewed with specific reference
to state correction and error prediction techniques.

Keywords: rainfall-runoff model, flood forecasting, soil moisture

1 Introduction
Alerting the general public and concerned authorities of the future flood as much in advance,

and with as much reliability, as possible is the purpose of a flood forecasting and warning
system (FFWS) [1]. The crucial components of an FFWS contain: (i) data (hydrological,
meteorological) gathering and transmission; (ii) forecasting, which contains examination of
observations as well as prediction of future rainfall, elevations of water and discharge for
periods varying from a limited hours to a limited days ahead; and (iii) distribution of data to
user agencies and societies [2]. Amongst the numerous products, the most effective outputs of
FFWS are elevations of river, stream extent, and time of incidence for peak discharges with
lead times which are acceptable to start proper reactions through authorities and influenced
populations [3]. Lead time known as the period of time between the deliver time of the forecast
and the commencing of the forecast validity period [4]. The lead time relevant to the catchment
lag time, which differs with basin size and characteristics, as well as features of the storm
event [5]. For smaller catchments, especially in mountainous areas where flash floods, related to
the meteorological phenomenon, dam failures rapid snow melt, ice jams etc., occur frequently,
the catchment lag is too small (i.e. minutes to hours) [6]. In these areas, containing only the
rainfall forecast in FFWS might not always develop the utility of FF to users and therefore a
modified approach may require [7–9]. For larger basins where catchment lag time is long, an
operative lead time can range from hours to days, and presence of rainfall forecast is crucial to
improving the lead time [10–13]. The aspects that effect lead time of forecast in the project of
FFWS for a catchment contain topographic and hydro-meteorological structures of the basin, the
dynamics of basin reaction, and the availability of data [14–17]. Furthermore, restrictions on the
level of services (the frequently forecasts are originated and updated, reliability, etc.) are largely
determined through the cost of data collection, modelling constraints, trained professionals,
FFWS infrastructure, trans-boundary issues, and institutional factors [18–22].

Figure 1 presents various rainfall-runoff models for flood forecasting and warning system
which examined in this study.
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Figure 1 Categorization of models applied for Flood Forecasting established on model struc-
ture and type

Advances in flood forecasting have been emphasized in some reviews ( [23–27] including
a special issue on ‘River flow forecasting’. Also, Mirramazani et al. [28–30] used a few grid
models and distributed models for flood forcasting across Europe. In addition, Javadinejad et
al. [31–35] used Hec model for flood forecasting.

However, these reviews only narrowly focused on one specific model/ algorithm to analyze
aspects of flood forecasting. Also previous studies did not compare various models for flood
forecasting [40–44]. So, the objective of this chapter is therefore to provide a current, concise,
and comprehensive review of flood forecasting practices by using rainfall-runoff models. Also
the results of this chapter can help water managers for proper design and planning of flood
management, and support decisions for appropriate flood forcasting. In addition, this study can
help the future studies with the aim of forcasting of flood impact assessment.

2 Material and methods
2.1 Selection of rainfall-runoff models for review and assessment

This chapter aims to help provide the improved understanding of rainfall-runoff models that
most of the flood management institution/agencies need in order to support decisions on the
selection of models for flood forcasting. Therefore, this chapter collected the most common and
recently used rainfall-runoff models for flood forcasting in different aspects. Table 1 summarizes
the six main models used for flood forecasting in this paper.

Table 1 Considerable models employed for flood forecasting

PDM Probability distributed moisture model

IEM Isolated event model
ISO Input storage output model
TF Transfer Function model
PRTF Physically realizable transfer function model
GRID Grid based model

2.2 The review of forecasting methods
In this section, a summary of description of each model is provided, however, in following

sections the full explanations of each model is presented.
Among the six models which is mentioned before, the Transfer Function model (TF) model

is a physically based model that developed by Bogner et al. [45]. However, the Probability
Distributed Moisture model (PDM) encompasses a range of model structures applying the
probability distributed storage principle, and is representative of other models of this type such
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as ARNO [46]. The US National Weather Service model (NWS) is classic lumped conceptual
rainfall-runoff model and it is well structured model as well.

The Grid Model is a model that was developed for flood warning and the model can accom-
modate grid square radar rainfall, and encompasses the topographic index formulation of runoff
production employed by Top model as one model variant.

Snowmelt model components are available for PDM, NWS and Grid Model. However, these
are not reviewed here as snowmelt modeling is outside the scope of this chapter.

Newer modeling approaches including artificial neural network, fuzzy rule based are de-
scribed in section 2.3.7.2.

The data requirements for the several models (The six model in table 1) are similar in all
necessitating rainfall and flow data, the latter for initialization and updating and off-linear for
model calibration and performance estimations. Although explicit soil moisture accounting
models employ evaporation as an additional input, this can take the form of a simple since
curve over the seasons of the year or a standard annual profile but can utilize near real time
evaporation estimates from an automatic weather station if available [47].

The review of each model is deliberately presented in a style that is didactic rather than
judgmental. A model with greater functionality is not necessarily better and different models
may prove more appropriate for different conditions. Thus, the emphasis is on gaining an
understanding of how a model works and not its strengths and weaknesses.

2.3 Description of the models in details
2.3.1 The probability distributed moisture model

The Probability Distributed Moisture model or PDM known as a finally general conceptual
rainfall-runoff model which transforms rainfall and evaporation data to flow at the catchment
exit.

Figure 2 displays the overall form of the model. Runoff production at a point in the catchment
is regulated via the absorption capacity of the soil to pick up water: this can be abstracted
as a regular store with a specified storage capacity. Through studying that numerous points
in a catchment have opposing storage capacities and that the spatial variation of capacity
could be designated by a probability distribution, it is possible to formulate a simple runoff
making model which mixes the point runoffs to yield the catchment surface runoff into surface
storage. Groundwater recharge from the soil moisture store delivers into subsurface storage. The
outflow from surface and subsurface storages, together with any arranged flow representing, say,
compensation releases from reservoirs or constant abstractions, forms the model production.

Figure 2 The PDM rainfall-runoff model

2.3.2 Nonlinear storage models: The isolated event and ISO function models
Nonlinear storage models commonly occur as one or more elements in many conceptual

models of the rainfall-runoff process. The outflow from a conceptual model store, q = q(t), is
considered to be proportional to some power of the volume of water held in the storage, S =
S(t), so that

q = KSm k > 0,m > 0 (1)
The storage, for example, could be a soil column or aquifer storage at the catchment scale.

Combining the power Equation (1) with the equation of continuity:

ds

dt
= u− q (2)

Where u = u(t) is the input to the store (e.g. effective rainfall) gives,

dq

dt
= a(u− q)qn q > 0, −∞ < n < 1

Resources Environment and Information Engineering • SyncSci Publishing 186 of 199

https://www.syncsci.com/journal/REIE
https://www.syncsci.com


Volume 4 Issue 1, August 23, 2022 Safieh Javadinejad, Rebwar Dara and Forough Jafary

where a = mk1/m and b = (m-1)/m are two parameters. This ordinary differential equation
has become known as the Horton-Izzard model (Dooge. 1973) and can be solved exactly for
any rational value of n [4]. In this Section two specific nonlinear storage models developed
and applied in the UK are reviewed. The first is the Isolated Event Model or IEM, originally
developed for design use as part of the UK Flood Study [5], which employs a quadratic storage
function (m:2 in Equation (1)) so that n:1/2 in the Horton-Izzard equation. The second is the
Input-Storage-Output or ISO-function model [6] which employs a linear storage function (m =
0, n = 0) and/or an exponential storage function which yields the Horton-Izzard equation with n
= 1. The Isolated Event Model are reviewed in below.

The Isolated Event Model, or IEM, was initially established for design applications as part
of the UK Flood Studies Project [7]. In numerous values it is very similar to the single zone
statement of the Thames Catchment Model in operating the Penman stores concept and a
quadratic reservoir for routing. Nonetheless, the use of the Penman stores concept is not done
as part of an obvious soil moisture accounting procedure as is the case with the TCM. Rather
the soil moisture shortage it provides is applied as an indicator of catchment wetness within an
empirical equation which interacts the proportion of rainfall that becomes runoff (the runoff
coefficient) to the soil moisture deficit, D. Specifically the exponential function

f = α exp(−βD) (3)

which is used where β is a parameter with units (mm water)−1 and α is a dimensionless
parameter.

Note that the IEM uses as standard a Penman upper store of depth 75 mm, the root constant
for short grass, with no bypassing (Φ = 0). Since the unique formulation was event-based
and for project, the runoff coefficient, f, was employed to the whole storm and D was the
soil moisture shortage at the start of the storm. The factor α could be interpreted as a “gauge
representativeness factor” since, with zero shortage (saturated conditions), a quantity α of the
rain becomes runoff.

In the IEM approach the storm rainfall time series is multiplied by the factor f to give an
“effective rainfall” series. This is then subject to a time delay before being used as input to the
quadratic storage reservoir.

The above formulation was classic equation, however, in real-time flood forecasting appli-
cations the concept of an “event” is often an awkward notion to work with. It becomes more
natural then to define f as a time variant function of the deficit D, maintained as a water balance
calculation throughout the storm. Thus we have

ft = α exp(−βDt) (4)

The calculation of Dt throughout the storm can be achieved using the Penman stores employed
within the Thames Catchment Model, and indeed can be calculated continuously between events.
In practice the latter is most easily achieved (at least in off-line model calibration mode) using
daily rainfall data and a daily time step, changing to the smaller interval of the flood event data
at the start of each event. Note that in the IEM model formulation no use is made of the outflows
from the Penman stores, only the deficit as an index of catchment wetness and its impact on the
ensuing volume of flood runoff. In many respects the use of the IEM was as an engineering
expedient at a time when continuous rainfall records were not widely available at the Institute
of Hydrology and the soil moisture deficit calculated routinely at the Meteorological Office
provided a readily available, and succinct, source of information on the antecedent conditions
of selected flood events. In the 199os there is no real justification for keeping these modelling
components separate. It is also more attractive to use the Penman stores concept as part of an
integrated, explicit water account model, as is done in the TCM, rather than through invoking
an empirical function to account for “losses” as is the case with the IEM.

2.3.3 US National Weather Service model
The US National Weather Service (NWS) rainfall-runoff model is also called the Sacramento

Soil Moisture Accounting Model or simply the Sacramento Model. It was developed in the
early 1970s at the NWS River Forecast Centre in Sacramento (California), principally by Bob
Burnash and Larry Ferral, as a classic lumped, conceptual, soil moisture accounting model.

A schematic of the model is shown in Figure 3 which highlights that the model comprises
three principal storages:

(i) unsaturated zone store generating direct runoff to the basin outlet and rainfall excess
feeding the saturated zone below after a proportion contributes to surface runoff;
(ii) saturated zone store generating interflow and draining downwards as percolation to
the groundwater zone; and
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(iii) groundwater zone store which is divided into water held under tension and water that is
free to drain, both contributing to baseflow after losses have been taken into account.

Figure 3 The US National Weather Service model

2.3.4 Transfer Function models
Transfer Function or TF models are a class of time-series models popularized by Revilla-

Romero et al. [48]. They are linear models with which an output variable can be forecast as a
linear weighted combination of past outputs and inputs. In a rainfall-runoff context the output is
usually flow and the input rainfall. Any residual model error can be represented through a noise
model which is normally of autoregressive moving average (ARMA) form. The overall model
is termed a Transfer Function Noise, or TFN, model.

An overview of the TF approach to forecasting is given next. This is followed by a review of
a special variant, called the Physically Realisable Transfer Function or PRTF model, developed
by Taormina and Chau [49] specifically for use as a rainfall-runoff model. Other variants of
the TF model and their application are outlined in the concluding section. 10.2 The Transfer
Function (TF) Model

A linear transfer function model relates an output at time t, yt, to r previous values of the
output and s previous values of an input with delay b, ut−b, such that Yt= -δ 1 t y t−1-δ2 y
t−2-. . . .- δ r y t−r+ ω 1ut−b+. . . .+ ω s−1ut−b−s+1. where {δi} are r autoregressive parameters
and {ω} are s moving average parameters operating on the past outputs and inputs respectively.
With yt as basin runoff (or baseflow separated runoff) and ut as rainfall (or effective rainfall)
this TF model can be used as a simple rainfall-runoff model. The notation TF(r,s,b) is used to
indicate the order of the model in terms of the number of parameters and the time delay.

Equation (5) may be written in a more compact form through the introduction of the backward
shift operator, B, defined by Br yt = yt−rt, and the polynomials in B.

δ(B) = 1 + δ1 B + δ2 B2 + . . .+ δrB
r

ω(B) = ω1 B + ω2 B2 + . . .+ ωS−1 BS−1
(5)

It then follows that Equation (5) can be written as

δ(B)yt = ω(B)ut−b (6)

and rearranging gives

Yt =
ω(B)

δ(B)
ut−b (7)

This is the transfer function model written in operator form and with )/ δ (ω (BB) defining
the form of the transfer function. An equivalent form is given by ν (B) = ω (B)

δ (B)
with

ν(B) = ν + ν1B + ν2B2 + ... (8)
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a polynomial in B of infinite order, so that

yt = ν (B)ut−b = ν ut−b + ν1 ut−b−1 + ν2 ut−b−2 + . . . (9)

The polynomial v(B) defines the impulse response function (equivalent to the unit hydrograph
for effective rainfall as input and baseflow separated runoff as the output). In general the number
of parameters s+r in the transfer function representation is far fewer than in the impulse function
representation: this is strictly infinite although in practice can be treated to correspond to a signif-
icant memory length. The transfer function model thus offers a parsimonious parameterisation
of a linear system response.

The model output, yt, can be related to the observed output, Yt, though the relation

Yt = yt + ηt =
ω(B)

δ(B)
ut−b + ηt (10)

Where ηt = Yt-yt , is the simulation mode model error. This model error may be represented
by an ARMA error predictor to obtain real-time updated forecasts. In this form, the overall
model is referred to as a Transfer Function Noise (TFN) model. An alternative formulation,
referred to as Autoregressive Moving Average on eXogenous inputs or ARMAX, is given by

δ(B)Yt = ω(B)ut+ ξt (11)

where , also rξepresents model error and can be represented by an ARMA noise model
structure. This is a special case of the TFN model formulation with ξ = δ (B) ηt.

2.3.5 Physically Realizable Transfer Function (PRTF) model
The basic idea in formulating the Physically Realisable Transfer Function, or PRTF, model

[49] is to choose a parameterisation which constrains the impulse response function, v(B), to
have a physically realistic form in a hydrological context. Principally, this means that it should
be positive and not exhibit oscillatory behaviour (it is stable). Taormina and Chau [49] considers
the impulse response function:

ν(B) =
ω(B)

δ(B)
=

S−1∑
I=0

ωi(B)i

δ(B)
(12)

and restricts attention to the special case where the polynomial δ (B) of order r has equal roots
β so that

δ(B) =
(
1− β−1 B

)
= (−β)−r(B− β)r = 1 + δ1 B + δ2 B2 + . . . ..+ δrBr (13)

This gives a stable impulse response function for B > 1.
First note the expansion:

(B− β)r =Br + rBr−1(−β) +
r(r− 1)

2!
Br−2(−β) + . . .

+
r(r− 1) . . . (r− (k− 1))

k!
Br−k(−β)k + . . .

+ (β)r

(14)

and the definition of a combinatorial as

Crk=
r!

(r− k)!k!
=

r(r− 1) . . . (r− k + 1)

k!
(15)

Then equating terms in (r-k) in Equation (15) gives

(−β)−rCrk Br−k(−β)r−k(−β)k = δr−kBr−k (16)

so
δr−k = (−β)r−kCrk (17)

and, in geCrkneral, it follows that

δi = (−β)−iCrr−i (18)

A signifCrr−iicant feature of the equal root parameterization is that it allows the r autoregres-
sive parameters of the TF model to be reduced to one, the root B, through the use of the above
relation. However, the form of TF model is restricted as a result.
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It is of interest to note special cases of the above. For dependence on one past output (r
= l) we have δ 1 = -1/β and for two past outputs (r = 2) δ 1 = -2/ β and δ 2 = 1/B2. From a
consideration of Equation (16) and Equation (17) it follows that the impulse response function
for a single, unlagged input (s = l, b = 0), so that v(B) = l/ δ (B):

V(t) = Cr−1+t
t β−t (19)

which gives v(t)= β−t for r = 1 and v(t) = (1+t) β−t for r = 2. Taormina and Chau [49] proposes
that choosing r to be 2 or 3 provides sufficient flexibility of the impulse response function,
provided the moving average parameters {ωi} can take on negative values so as to lower the
recession limb. To make the model more physically intuitive the equal root parameterisation
B is substituted by the time to peak, tpeak, of the impulse response function of v(B):l/8(B) as
given by Equation (19). This is obtained from the solution of dv(t)/dt = 0 for t. For r = 2 when
v(t):(l +t)β−t we have the solution:

tpeak =
1

lnβ
− 1 (20)

giving the reparameterisation:

B = exp

{
1

1 + tpeak

}
(21)

For r = 3 when v(t)=(2+t) (1+t) β−t/2 we have the solution:

tpeak =
1

2

 2

lnβ
− 3 +

√(
3− 2

lnβ

)2

− 4

(
2− 3

lnβ

)
(22)

giving the reparameterisation

B = exp

{
2t peak+3

t2peak + 3t peak+2

}
(23)

Higher order solutions may be sought by solving the general relation

lnβ =

r−1∑
k=1

(r − k + t)−1 (24)

for t and chosen values of r. Chang et al. [50] recognizes that the TF model, with its fixed
impulse response function, will not provide an adequate representation of the rainfall-runoff
process which is both nonlinear and time variant. He selects to report this problem through
adjusting the form of the impulse response function to redirect each flood situation as it is
encountered in real-time. To ease this task Han introduces three types of adjustment factor
designed to alter the volume, shape and time response of the TF model. For volume alteration
the moving average parameters, {ωi} are scaled using a factor oc, the proportion of volume
change, such that the adjusted parameters are given by

ωi∗(1 + α) ωi i = 0, 1, . . ., s− 1 (25)

Note that the autoregressive parameters, {δi } , are not affected by this adjustment.
The shape of the impulse response function is changed with reference to a shift in the position

of the peak of the 1/δ(B) part of the impulse response function. The shape adjustment factor, y,
is defined as

γ = t∗peak − tpeak (26)

where t*peakdenotes the adjusted peak time. For r = 2 this may be expressed in terms of the
equal root parameterisation, β of the original model and the adjusted model β* using Equation
(20) to give

γ =
1

lnβ∗ −
1

lnβ
(27)

so

β∗ = exp{(γ +
1

lnβ
)
−1

} (28)

It follows that the adjusted autogressive parameters are obtained by substituting the above in

δ∗ = (−β∗)−iCrr−i (29)
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Similarly, for r:3 and using Equation (22) it follows that

γ =
1

2

 2

ln β∗
− 3 +

√(
3 −

2

ln β

)2

− 4

(
2 −

3

ln β∗

)
−

2

ln β
− 3 +

√(
3 −

2

ln β

)2

− 4

(
2 −

3

ln β

)
(30)

and

β∗ = exp

{(
2ψ + 3

(ψ2 + 3ψ + 2)

)1
}

(31)

where

ψ = γ +
1

2

 2

lnβ
− 3 +

√(
3− 2

lnβ

)2

− 4

(
2− 3

lnβ

)
(32)

The adjusted autoregressive parameters are obtained by substituting (Equation (31)) into
Equation (29).

The third form of adjustment is to time shift the impulse response system. This simply
involves a change to the pure time delay parameter, b, used to delay the rainfall inputs to the
transfer function model. Reynolds et al. [51] recognised the difficulty of implementing such
simple adjustments, especially for fast responding catchments and where forecasts from many
catchments may be required [52]. He explored knowledge based procedures which employ
logical rules, developed from an analysis of synthetic and historical storm data, to automate
the adjustment of the PRTF model. The lF-THEN rules were based on the extent, position and
direction of rainfall fields together with catchment status. Having established the extent and type
of rainfall, rules employing rainfall intensity relationships were used to adjust the PRTF model.
Relationships controlling the shape factor were expressed as linear regressions on the logarithm
of average rainfall intensity whereas the time delay changed according to discrete thresholds
of rainfall intensity. Volume adjustment involved only allowing rainfall to contribute to flow
once a threshold value for the catchment antecedent precipitation index had been exceeded. The
adjustments obtained provided better forecasts than those from a simple TF model in 14 of the
23 events considered, although with significant errors in the timing of peaks and occasional
fluctuations in the forecast hydrographs. A drawback of the approach is the initial acquisition of
knowledge concerning the thresholds, linkages and relationships involved.

2.3.6 A modest distributed model: The grid model
In order to fully develop the distributed nature of radar data the Grid Model [53] arranged

therefore as to share the same grid as that employed by the weather radar. Each radar grid square
is conceptualized in the catchment as a storage mechanism which obtains water in the form of
precipitation and loses water via overflow, evaporation and drainage. The storage mechanism
used in the basic form of model is a simple store (tank or bucket) having a finite capacity Smax.
This capacity could be supposed of as an absorption capacity of the grid encompassing surface
detention, soil moisture storage, and the capture capacity of vegetation and other forms of land
use. A fundamental idea employed in the critical form of model is that absorption capacity
is controlled via the average gradient, g, of the topography in the grid square which could be
measured readily from a digital terrain model.

Specifically, for a given grid square, the following linkage function is used to relate the
maximum storage capacity, Smax, and the average gradient, , within a grid square:

S max =

[
1− ḡ

g

]
cmax (33)

for ḡ ≤ gmax. The restrictions gmax and cmax are upper limits of gradient and storage
capacity respectively and act as “regional parameters” for the basin model. A measurement of
the mean gradient in each grid square of the river basin could be gained from the DTM (or a
contour map if not available). Standards of Smax for all grid squares are determined using only
the two model parameters, gmax and cm, together with measurements of g for each square.

A grid storage loses water in three possible conducts. If the storage is fully flooded from
previous rainfall then any net accumulation of water spills over and contributes to the fast
catchment reaction. Drainage from the bottom of the store is regulated via the volume of
water in store and subsidizes to the gradual catchment reply. Thirdly, water is misplaced
via evaporation to the atmosphere. Figure 4 illustrates a characteristic grid storage and the
components of the water balance contained.

Definitely, a water balance is maintained as follows for each grid square and time interval of
duration ∆t. (Time and space subscripts are misplaced for notational simplicity.) Evaporation
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loss happens at the rate, Ea, which is associated to the potential evaporation rate, E, and the
water in store, S, across the relation

Ea =


(

1− D −D∗
Smax −D∗

)
E, D ≤ D∗

E, D > D∗
(34)

Figure 4 A typical grid storage illustrating the components of the water balance

Here, D = Smax – S define as the soil moisture deficit and D* explained the threshold deficit
below which evaporation happens at the potential rate. The value of D* known as common
across grid squares.

Drainage from the grid storage, that donates to the slow catchment response, happens at the
rate

d =

{
αSβ , S > 0
0, otherwise

(35)

where α is the drainage storage constant and the drainage exponent β is a parameter (set here to
3).

A potential infiltration rate is given by

ip =

[
1− S

Smax

]b
imaz (36)

where imax is the upper limit of infiltration rate and S is the water in storage. Then the
actual infiltration rate is given by i = min (p, ip), where p is the rainfall rate The direct runoff
generated by this infiltration excess mechanism is simply q = p-i. In practice i is set equal to p
for modelling the humid temperate basins encountered in most of areas, where saturation excess
is the dominant runoff mechanism.

Finally, the updated water storage is given by

S = max (0, S + I∆t− Ea∆t− d∆t) (37)

and the direct runoff rate contributing to the fast basin response is calculated as

q = max (0, S− Smax) + p∆t− i∆t) (38)

2.3.7 New modelling approaches
The modelling approaches considered so far have either used storage models, in lumped

or distributed form, to conceptualise the rainfall-runoff process or used simple linear transfer
function models as general time-series modelling tools [54]. This section considers three newer
approaches which can be used for general forecasting purposes: neural network models, fuzzy
rule-based models and nearest neighbour forecasting. They are reviewed briefly here with
application to rainfall-runoff modelling and flood forecasting specifically in mind.

Knowledge-based systems have been considered previously in the context of PRTF models
in Section 2.3.5. It is outside the scope of the present project to include these new approaches in
the model assessment using catchment data that forms the focus of the Part 2 report. There is
clearly an opportunity for further work in this area.

2.3.7.1 Neural Network Models
Neural Networks (NN) can be thought of as a nonlinear form of transfer function model and

are really no more than nonlinear regression models when used in a forecasting context [54].
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Unfortunately, much mystique surrounds their development and application. This is not
helped by a voluminous literature, much marketing hype and an arguably overzealous use of the
brain as an analogue. The aim here is to provide a simple but precise introduction to NNs for
forecasting purposes, to review some examples of their application for rainfall-runoff modelling
and to conclude with a critical commentary on their use for flood forecasting.

To introduce NNs it is helpful to choose one particular form that is commonly used for
forecasting applications and from which generalisations are hopefully self-evident. This form
is the so-called feed-forward NN with an hidden layer illustrated in Figure 5 for a simple
rainfall-runoff model application. The model involves three inputs - a constant (equal to l)
and lagged values of runoff, qt−1“ and rainfall pt−1 at time t-l - and one output, the model
forecast of flow qt−1 [54]. The inputs are weighted and summed as they pass to a hidden layer
of neurons (units) via connection pathways. Specifically, the input to the jth neuron is given by
the linear weighted sum

vj = Σ wij yii (39)

where wij shows the weight of the linking between the ith input, y, and the jth neuron; here
{y1, y2, y3 } = { 1, qt−1, pt−1). In the sample the hidden layer comprises two neurons which
contain activation junctions, Φh- The normal form of activation function employed is the logistic
function

Zj = ∅h(vj) =

[
1

1 + exp(−vj)

]
(40)

a function with a sigmoidal shape which contains the value of zj to the range (0,1). The output
from each neuron, together with the constant input, are weighted and summed to form the input
to the output layer. The activation function of the output layer, Φ0, is normally taken to be a
simple identity (no change). Thus the forecast runoff from the NN model is

q̂t = wc +
∑

wjzj (41)

where wCO is the weight of the direct connection linking the constant input and the output and
wjo is the weight of the connection linking the jth neuron with the output. Note that the use
of a constant unity input serves to introduce a bias or intercept term on each unit, essentially
allowing these to be estimated via their associated weights.

Figure 5 Feed-forward neural network with an hidden layer

The weights form the NN model parameters which are estimated by minimising the sum of
the squares of the one-step ahead forecast errors, Σ(q1− q1, )2 . This is normally accomplished
using the back-propagation algorithm to compute the first derivatives of the objective function
which are then used in a quasi-Newton method of optimisation. Since NNs typically involve
the estimation of many weights, the optimisation problem is far from trivial with problems of
local minima, slow convergence, lack of identifiability and overfitting. Scaling of data prior
to modelling and the choice of initial values for the weights can often prove important issues.
Once an optimal parameter set has been found the NN model may be used for forecasting, using
observed past inputs to predict one-step ahead, and substituting subsequent inputs for forecasts
in a recursive fashion to obtain forecasts at higher lead times.

Alternatively, a NN predictor may be configured with lagged inputs chosen to yield forecasts
for a specific lead time, although this approach may lead to a proliferation of models.

The example above has illustrated the use of NNs for flood forecasting for a particular NN
architecture. Choice of architecture can clearly be an important concern, and include decisions
on the number of neurons to use within a hidden layer and become more complicated when
multiple hidden layers are entertained. A good choice of input variables is clearly critical and
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demands an appreciation of the system being modelled along with NN theory and alternative
modelling and time series analysis approaches. The example uses lagged runoff and rainfall as
inputs, but clearly values of these for larger lags, along with indices of soil moisture deficit and
other factors, present a wide range of alternative options to explore. It is not a methodology
which is automatic and for which no experience is needed, as is sometimes claimed. Also,
being a black box approach, a particular NN model is generally difficult to understand and
interpret. An important advantage over simple linear transfer function models is the ability of
NNs to represent nonlinear behaviour; however, this may not prove to be important for some
applications or might be accommodated in other ways.

2.3.7.2 Fuzzy Rule-based Modelling
In this section the approaches to rainfall-runoff modelling based on fuzzy model is reviewed.

For more details please see Bardossy and Duckstein (1995). An indication of the modelling
approach will be provided through an example of its use for rainfall-runoff modelling in a flood
forecasting context given by Ciabatta et al. [54].

Interestingly, this paper provides a comparison of the approach with a neural network model.
Consider the problem of forecasting runoff three steps ahead. A model can be constructed in
terms of the runoff increments, q = Qt-Qt−1, where Q denotes the runoff at time t. If R denotes
rainfall in the interval (t-l, t) then a simple forecasting procedure for some model function, f (.),
is

q̂t+ 3 = f(q̂t+ 2, q̂t+ 1, rt) (42)

where the circumflex indicates a forecast quantity. The underlying model to this forecast is

q̂t = f(q̂t− 1, q̂t− 2, rt− 3) (43)

The forecast procedure can be formulated as a fuzzy rule-based model by considering R
and q to take on membership functions, MR and Mq, rather than crisp real values. Triangular
membership functions are assumed and that for rainfall, Rt, shown in Figure 6. This indicates
that rainfall for time t lies in the range (Rt-δR, Rt+δR) with the central value of Rt being most
likely and δR indicating the possible degree of deviation from this value. The membership
function essentially expresses the vagueness associated with the quantity to which it relates.

The model of Equation (43) can now be recast as a fuzzy model having the proposition:
If Rt−3 is MRt3, and qt−1 is Mqt1 and qt 2is Mqt 2 then qt, is Mqt.
A fuzzy model forecast can now be implemented by the following steps:
(1) The fuzzy relation, Pt, is obtained from the proposition as:

Pt = MRt−3ΛMqt−1ΛMqt−2ΛMqt−3 (44)

where Λ is the minimum operator. This is used to define the time series of fuzzy relations

{Pi, i = 1, 2, . . . , t} (45)

Figure 6 Triangular membership function for rainfall

(2) The whole fuzzy relation, t, is obtained as

Πt = P1 ∨ P2 ∨ . . . ∨ Pt (46)

where ∨ is the maximum operator. In the case that previous records exist which allow 1-10 to
be obtained then this can be used for initialisation to give the modified expression

Π∗t = Π ∨ P1 ∨ P2 ∨ . . . ∨ Pt (47)

(3) The membership function of the 1-step forecast based on Π*t is

Mq̂t+1 = Π∗
t �MRt−2 �MRt−3 �Mqt (48)
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where � is the max-min operator. Membership functions for the 2 and 3 step forecasts are
obtained in a similar way.

(4) Now apply a defuzzy procedure to obtain the real values q̄t+1, q̄t+2, q̄t+3 based on the
centre of gravity of the predicted membership functions.

(5) Finally calculate l-, 2- and 3-step forecasts of runoff from the runoff increments as
follows:

Q̄t+1 = Q̄t + q̄t+1

Q̄t+2 = Q̄t+1 + q̄t+2

Q̄t+3 = Q̄t+2 + q̄t+3

Whilst the computational detail of each step is omitted it is hoped that this outline sequence
conveys an idea of the fuzzy rule-based modelling approach in a rainfall-runoff modelling
context.

3 Discussion
Six conceptual models of the rainfall-runoff process have been chosen for more extensive

review, all of which transform rainfall and evaporation time-series into time-series of total
catchment outflow. All of these are used operationally for flood forecasting: the Probability
Distributed Moisture model (PDM), the Isolated Event Model (IEM), the ISO-function model,
the US National Weather Service Sacramento Model and the NAM model, the Grid Model,
represents a simple distributed model specifically developed for flood forecasting. All the
conceptual models are based on the combination of a soil moisture store (used indirectly by
the IEM) with one or more linear or nonlinear reservoirs, a pure time delay, and (for the IEM)
a smoothing function. The ISO-function model is the simplest and the TCM, which allows
multiple zones, is the most complex. The PDM is rather more sophisticated than any one zone
of the TCM, whilst requiring only a modest number of parameters. Two classes of model
are considered which do not attempt to represent the catchment conceptually and are often
referred to as “black box” modelling approaches: these are Transfer Function (TF) models and
Neural Network (NN) models. The Physically Realisable Transfer Function or PRTF model is
presented as a variant of a TF model with a somewhat greater conceptual interpretation. Also
considered a new classe of model based on fuzzy rule-based approach to forecasting. More
complex, physically-based models are not reviewed, being considered more appropriate for
impact assessment studies than for flood forecasting. An important feature of models used for
real-time forecasting is the ability to update the modelled flows using observed flows in such
a way as to improve the accuracy of forecast flows [54]. Ease of use of models has not been
considered explicitly within the paper.

Various utility programs are used to collate, display and analyze results from the output
files of these models. The simplicity and linear form of the Transfer Function model make
this the easiest to calibrate, although the model order and time delay to use requires some
experimentation. However, the mode of use of the Physically Realisable Transfer Function
model involving manual adjustment of the volume, shape and time response is seen as potentially
too burdensome for larger forecasting systems, even given the most well developed interactive
visualization tools to support the task. Use as a decision support tool for catchments of special
concern might provide a satisfactory compromise. Automation of the adjustment using a
knowledge based approach provides another possible option. All models have similar demands
for data with rainfall and flow data being the minimum, and normal, requirement. Flow data can
use operationally for model initialization and forecast updating and are also can use off-line
for calibration and model assessment. Explicit soil moisture accounting models require some
form of evaporation estimate over the seasons of a year. They can utilize real-time evaporation
estimates from an automatic weather station if available but a simple sine curve, representing
the variation of evaporation over the year, can suffice. The conceptual soil-moisture accounting
models require continuous inputs of rainfall data to maintain their water balance and generally
are operated routinely (automatically) once a day in order to update their state variables. This is
not a significant problem and provision can be made to accommodate for loss of rainfall data, or
its delayed receipt, through data substitution schemes. The problem is more acute for distributed
models, such as the Grid Model, and where radar data are used to maintain a distributed water
balance of a catchment. Such models may also require Digital Terrain Model data to support
their configuration and parameterization, and also for certain variants access to land use and soil
survey data. Greater use of data, particularly in this context, can of course be seen as a benefit
in making greater use of available information and opening up the possibility of forecasting for
ungauged catchments. The simpler nonlinear storage and transfer function models arereadily

Resources Environment and Information Engineering • SyncSci Publishing 195 of 199

https://www.syncsci.com/journal/REIE
https://www.syncsci.com


Volume 4 Issue 1, August 23, 2022 Safieh Javadinejad, Rebwar Dara and Forough Jafary

state initialised using no more than a few recent observations of flow and rainfall, allowing them
to quickly recover from data loss.

4 Conclusion
The examination of models attended to emphasize the similarities of the numerous “brand

name” conceptual rainfall-runoff models. They vary greatly in complexity relient on which
processes are explicitly represented or are represented in aggregate, “effective” form. It is
integrally dangerous to judge the efficacy of a model by the variety of functionality it supports
or processes it purports to represent. Thus this chapter has adopted a didactic rather than
judgmental approach to model review. With comparison the model with each other, it can
help for the appropriate choice, as it relates to catchment characteristics (size, lithology, soils,
land use, relief, etc.), storm type and available real-time data (including radar as well as rain
gauge measurements of rainfall). The important here is the appropriate model choice in relation
to the speed of response of a catchment, the forecast lead time required and the accuracy
and consistency of the forecast. Consequently, the main goal of this paper is to aid water
managers for proper design and planning of flood management, and support decisions for
appropriate flood forecasting. All of the designated six models have integral approaches for
forecast updating based on state correction, and in two cases restriction adjustment. This paper
identified new forecasting methods based on neural network, fuzzy rule- based approach which
deserve further consideration. It has not been possible to encompass these within the scope of
the present assessment of forecasting methods. These could feature in a future extension of
related research/project and benefit from the model benchmark performance statistics which
feature in future work.
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