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Abstract: Controlling chaos in recurrent neural networks (RNNs) is a crucial challenge in
both computational neuroscience and artificial intelligence. Chaotic behavior in these networks
can hinder stability and predictability, particularly in systems requiring structured memory
and temporal processing. In this study, we apply the periodic pulse method to stabilize the
dynamics of chaotic RNNs using a sinusoidal activation function. Two network configurations
(2 and 3 neurons) were analyzed using numerical simulations in MATLAB. Our results show
that the periodic pulse method effectively suppresses chaotic behavior, as evidenced by a
reduction of the largest Lyapunov exponent from 0.317 to -0.042. The system transitions from
an unpredictable regime to a stabilized fixed point. This confirms the method’s potential to
regulate nonlinear neural dynamics with minimal external perturbations. Future work will focus
on extending this approach to larger recurrent networks (LSTMs, reservoir computing models)
and comparing its performance with other chaos control strategies such as delayed feedback
and chaotic synchronization. This study contributes to the understanding of chaos in neural
networks and its potential applications in neuroscience and AI.

Keywords: recurrent neural networks, chaos control, periodic pulses, Lyapunov exponent,
nonlinear dynamics

1 Introduction
Complex systems refer to assemblies of interacting elements whose emergent behaviors

are often difficult to predict or model. When these interactions are governed by nonlinear
functions, such systems can exhibit chaotic dynamics, characterized by extreme sensitivity to
initial conditions [1, 2]. Among complex systems, recurrent neural networks (RNNs) hold a
central position. These networks, equipped with feedback loops, are widely studied in the field
of neurodynamics, a discipline that analyzes neural network dynamics. The significance of
RNNs lies in their ability to model complex cognitive processes such as learning, memory, and
temporal information processing [3, 4].

The application of chaos theory to neurodynamics has revealed a fascinating characteristic:
the normal functioning of the brain appears to be associated with controlled chaotic states.
A system’s dynamics are considered chaotic if, in the long term, the system is deterministic,
aperiodic, bounded, and highly sensitive to initial conditions. This chaotic behavior is crucial
for explaining flexibility, adaptability, and the ability to solve complex cognitive problems [5,6].
However, transitions to more ordered states can be linked to neurological disorders, such as
epilepsy or Alzheimer’s disease [7, 8]. Therefore, understanding and controlling chaos in
neural networks is a fundamental challenge in neurodynamics, with direct implications for
computational and clinical neuroscience.

In the literature, numerous studies have focused on analyzing and controlling chaos in RNNs.
Pioneering research has examined the impact of transfer functions, such as exponential and
sigmoid functions, on the dynamics of neuromodules [9, 10]. Various methods, including
chaotic synchronization [11] and periodic pulse stimulation , have been developed to suppress
or regulate chaotic behaviors in these systems. However, these studies remain limited to specific
activation functions and simplified neural configurations.

These two control methods have been underexplored in the configuration we propose. There-
fore, we arbitrarily begin with periodic pulse stimulation, leaving synchronization for future
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research. In this study, we extend the application of the periodic pulse method to recurrent
neural networks with a sinusoidal activation function. This function, which has been less
studied, possesses unique properties, particularly regarding its natural periodicity and its ability
to generate complex bifurcations. This raises the following question: Can the periodic pulse
method be used to suppress chaos in recurrent neural networks with sinusoidal activation?

Our primary objective is to demonstrate the feasibility of chaos control in this type of network,
thereby expanding existing methods to accommodate more diverse dynamical systems. This
work aims to fill a gap in the literature and open new perspectives for studying chaotic behaviors
in complex neural networks.

To address this question, we proceed in two phases: first, we analyze a network with two
neurons, followed by a three-neuron configuration. Both systems will be subjected to the
periodic pulse method, and we will demonstrate that this approach remains valid for sinusoidal
activation functions under the chosen configurations.

2 Materials and methods
2.1 Network Configuration

Provide all of the methodological details necessary for other scientists to duplicate your work.

In this study, we consider two recurrent neural networks. The first network consists of
two interconnected recurrent neuromodules. The system is governed by the following set of
equations: {

xn+1 = 1 + w11sin (xn) + w12sin (yn)
yn+1 = 1 + w21sin (xn) + w11sin (yn)

(1)

The schematic representation of this first network is as follows (Figure 1):

Figure 1 Two-Neuron Recurrent Network

The second network consists of three recurrently connected neurons. Its dynamics are
described by the following equations:

xn+1 = 1 + w11sin (xn) + w12sin (yn) + w13sin (zn)
yn+1 = 1 + w21sin (xn) + w22sin (yn) + w23sin (zn)
zn+1 = 1 + w31sin (xn) + w32sin (yn) + w33sin (zn)

(2)

A schematic representation of this network is provided in Figure 2.

Figure 2 Three-Neuron Recurrent Network
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2.1.1 Definition of Variables and Parameters
The symbols used in both networks are defined as follows:
(1) Wii: Self-connection weight of neuron i.
(2) wij : Connection weight between the output of neuron i and the input of neuron j.
(3) xn, yn, zn: Neuron activities at iteration n.
(4) Φ: Activation function (transfer function), which processes the input signal and transitions

the neuron from state n to state n+1.
(5) bi: Bias terms, used to modulate the net input to the activation function of neuron i.

2.1.2 Approach to apply the periodic pulse method
For each network, we follow a systematic approach to apply the periodic pulse method:
(1) Compute the composite functions and derive the Jacobian matrix of the system.
(2) Determine the characteristic polynomial for each Jacobian matrix and evaluate its eigen-

values.
(3) Identify the equilibrium point around which linearization is performed.
(4) Compute the constants required to apply the periodic pulse control.
(5) Validate the method through numerical simulations using MATLAB.

To simplify the analysis, we assume that all connection weights are set to 1, except for the
diagonal terms w11, w22 and w33. It is possible to demonstrate that for values w11 = w22 =
w33 = 2.5, the system exhibits chaotic behaviour. Table 1 summarizes the chosen values of
parameters:

Table 1 Summary of Parameter Values

Parameters bi w11 w12 w13 w21 w22 w23 w31 w32 w33

Value 1 2.5 1 1 1 2.5 1 1 1 2.5

2.2 Mechanism of Periodic Pulse Method
In a chaotic state, the system’s attractor consists of aperiodic orbits with unstable equilibrium

points. However, at the bifurcation point, a small variation in the dynamic parameter w11 can
cause the system to transition from an unstable equilibrium to a stable one. This means that
near an unstable equilibrium, there exists a stable equilibrium point. When these two points are
sufficiently close, a linear approximation of the dynamical system can be performed around the
unstable equilibrium.

Thus, when the orbit enters the neighborhood of an unstable equilibrium point, we apply
periodic pulses to push the system towards the stable equilibrium, thereby suppressing chaos.
These periodic pulses involve modifying the dynamic equation such that at each iteration n, the
variable xi becomes kxi. The control constant k is computed to ensure the system stabilizes.

We define Phase 1 as the application of periodic pulses in the two-neuron network and
Phase 2 as its application in the three-neuron network. The challenge lies in determining the
appropriate constant k for stabilization.

2.3 Hypothesis of the study
We set this hypothesis: periodic pulses can be applied successfully to suppress chaos in the

neural network we consider in this study.

3 Results
3.1 Phase 1: Network with two Neuromodules

3.1.1 Composite Function Determination
We start from Equation (1) and consider a two-dimensional system. To achieve chaos

suppression, we perform a linearization in the vicinity of a fixed point while activating periodic
pulses. These pulses are obtained through the use of composite functions.{

Fµ
p = kxn+1 = k (1 + w11sin (xn) + w12sin (yn)) = kfµ

p

Gµ
p = kyn+1 = k (1 + w21sin (xn) + w11sin (yn)) = kgµ

p (3)

To determine the equilibrium points, we solve:
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{
Fµ

p = kxn+1 = k1 (1 + w11sin (xn) + w12sin (yn)) = k1fµ
p = xs

Gµ
p = kyn+1 = k2 (1 + w21sin (xn) + w11sin (yn)) = k2gµ

p = ys
(4)

3.1.2 Characteristic Polynomial Calculation of the Jacobian with Composite
Functions

To analyze the stability of the equilibrium point S, we first compute the Jacobian matrix of
the system.

J =

(
dFµ

p

dx

dFµ
p

dy
dGµ

p

dx

dGµ
p

dy

)
(5)

J =

(
k1(w11 cos(x)) k1w12 cos(y)
k2(w21 cos(x)) k2w11 cos(y)

)
(6)

The fixed point S is stable if and only if the eigenvalues of the Jacobian matrix J at equilibrium
satisfy the condition:

|λ| < 1, ∀λ ϵ Spec(J)

where Spec(J) denotes the set of eigenvalues of the Jacobian matrix. To verify this, we
establish the characteristic polynomial of the system (6).

J − λI =

(
k1(w11 cos (x)) k1w12 cos (y)
k2(w21 cos (x)) k2w11 cos (y)

)
− λ

(
1 0
0 1

)
(7)

J − λI =

(
k1w11 cos(x)− λ k1w12 cos(y)
k2w21 cos(x) k2w11 cos(y)− λ

)
(8)

det

∣∣∣∣k1(w11 cos(x))− λ k1w12 cos(y)
k2(w21 cos(x)) k2w11 cos(y)− λ

∣∣∣∣ (9)

det |J − λI| = [k1(w11 cos (x))− λ] [ k2w11 cos (y)− λ]− [k2(w21 cos (x))] [k1w12 cos (y)]
(10)

3.1.3 Determination of the Eigenvalue of the Jacobian with Composite Functions
The characteristic polynomial is given by:

λ2 − λw11 (k1 cos (x) + k2 cos (y)) + k1k2 cos (x) cos (y)
(
w11

2 − 1
)
= 0 (11)

Since this is a second-degree polynomial, it takes the general form:

λ2 − Sλ+ P = 0 (12)

S = λ1 + λ2 = w11 (k1 cos (x) + k2 cos (y)) (13)

P = λ1λ2 = k1k2 cos (x) cos (y)
(
w11

2 − 1
)

(14)

Where S is the sum of the roots and P is the product of the roots.

To ensure the stability of the equilibrium point, the roots of this polynomial must satisfy the
stability condition:

P = λ1λ2 = 1 = k1k2 cos (xs) cos (ys)
(
w11

2 − 1
)

(15)

For λ1 = 1
1 + λ2 = w11 (k1 cos (x) + k2 cos (y)) (16)

λ2 = w11 (k1 cos (x) + k2 cos (y))− 1 (17)

From λ1λ2 = 1, we get λ2 = 1

Hence
w11 (k1 cos (x) + k2 cos (y))− 1 = 1 (18)

w11 (k1 cos (x) + k2 cos (y)) = 2 (19)

For λ1 = −1
−1 + λ2 = w11 (k1 cos (x) + k2 cos (y)) (20)

λ2 = w11 (k1 cos (x) + k2 cos (y)) + 1 (21)
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From λ1λ2 = 1, for λ1 = −1 and λ2 = −1

w11 (k1 cos (x) + k2 cos (y)) + 1 = −1 (22)

w11 (k1 cos (x) + k2 cos (y)) = −2 (23)

We obtain the system of equations below:{
w11 (k1 cos (x) + k2 cos (y)) = 2
w11 (k1 cos (x) + k2 cos (y)) = −2

(24)

3.1.4 Determination of the Stable Equilibrium Point
By summing the equations component-wise, we obtain:

k1 cos (x) + k2 cos (y) = 0 (25)

where
k1 =

x

1 + w11 sin(x) + sin(y)
(26)

k2 =
y

1 + sin(x) + w11 sin(y)
(27)

So,

x

1 + w11 sin(x) + sin(y)
cos(x) +

y

1 + sin(x) + w11 sin(y)
cos(y) = 0 (28)

To find an equilibrium point, we arbitrarily select a value for x, for example, x = 0.707; and
use the previous equation to compute the corresponding y-coordinate fixed point. We set w11 =
2.5.

Thus, performing computation with MATLAB we get y = -0.243379301592304911028880
10857573.

3.1.5 Determination of k1 and k2

We compute k1 and k2 from (27) and (28):

k1 = 0.29669659413876659687846296044988

k2 = −0.23243254495795542107635678069618

3.1.6 Verification Through Simulation

For graphical verification (Figure 3), we plot the time series of r2 = x2 + y2.

Figure 3 Graphical Results. a) Time series for w11 = 2.5 without chaos control; b) Time
series for w11 = 2.5 with application of chaos control around S(0.707; -0.243).

3.1.7 Discussion
We tested the periodic pulse method on a 2- and 3-neuron recurrent neural network with a

sine activation function. The aim was to assess whether this approach could eliminate the chaos
observed in the system dynamics. We see that the hypothesis of applicability of the periodic
pulse method in these cases is corroborated, as it is for Lynch’s one-dimensional case [12].

Research on Intelligent Manufacturing and Assembly • SyncSci Publishing 172 of 179

https://www.syncsci.com/journal/RIMA
https://www.syncsci.com


Volume 4 Issue 1, 2025 Franci Zara Manantsoa, Hery Zo Randrianandraina, Minoson Sendrahasina Rakotomalala, et al.

Unlike the work of Pasemann (2002), which focused on sigmoid activation functions, our
study shows that the periodic pulse method remains effective even for sine functions. This
extension opens up new perspectives for chaos control in RNNs.

Our results show that chaos control is possible for a small neural network (2-3 neuromodules).
However, the effectiveness of the method on more complex architectures (deep RNNs, LSTMs)
remains to be studied. These results suggest that the periodic pulse method could be applied
to biological neural networks. A next step would be to test this approach on cortical or deep
learning network models.

The figures below have been drawn up to extend the validity of the method for other dynamic
parameters. In Figure 4, w11 = 13 and in Figure 5, w11 = 25. As in Figure 3, we can see that
the chaos has been eliminated after applying the periodic pulse method.

Figure 4 Graphical Results. a) Time series for w11 = 13 without chaos control; b)
Time series for w11 = 13 with application of chaos control around S(0.707; -
0.054196642641738518528850723480142). k1 = 0.0753 and k2 = −0.0573.

Figure 5 Graphical Results. a) Time series for w11 = 25 without chaos control; b)
Time series for w11 = 25 with application of chaos control around S(0.707; -
0.054196642641738518528850723480142). k1 = 0.0753 and k2 = −0.0573.

3.2 Phase 2: Network with three Neuromodules

3.2.1 Composite Function Determination
We use the method of periodic pulses.

Fw11
p = k1xn+1 = k1(1 + w11sin (xn) + w12sin (yn) + w13sin (zn))

Gw11
p = k2yn+1 = k2(1 + w21sin (xn) + w22sin (yn) + w23sin (zn))

Hw11
p = k3zn+1 = k3(1 + w31sin (xn) + w32sin (yn) + w33sin (zn))

(29)

With w12 = w13 = w21 = w23 = w31 = w32 = 1 and w11 = w22 = w33, Let S be an
equilibrium point, denoted as S(x, y, z). At this equilibrium point:

x = k1(1 + w11sin (x) + sin (y) + sin (z))
y = k2(1 + sin (x) + w11sin (y) + sin (z))
z = k3(1 + sin (x) + sin (y) + w11sin (z))

(30)
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3.2.2 Characteristic Polynomial Calculation of the Jacobian with Composite
Functions

To analyze the stability of the equilibrium point S, we first compute the Jacobian matrix of
the system.

J =

 k1w11 cos(x) k1 cos(y) k1 cos(z)
k2 cos(x) k2w11 cos(y) k2 cos(z)
k3 cos(x) k3 cos(y) k3w11 cos(z)

 (31)

And then the characteristic polynomial:

J − λI =

 k1w11 cos(x)− λ k1 cos(y) k1 cos(z)
k2 cos(x) k2w11 cos(y)− λ k2 cos(z)
k3 cos(x) k3 cos(y) k3w11 cos(z)− λ

 (32)

det

∣∣∣∣∣∣
k1w11 cos(x)− λ k1 cos(y) k1 cos(z)

k2 cos(x) k2w11 cos(y)− λ k2 cos(z)
k3 cos(x) k3 cos(y) k3w11 cos(z)− λ

∣∣∣∣∣∣ (33)

By computing the determinant, we obtain the characteristic polynomial :

a3λ
3 + a2λ

2 + a1λ+ ao = 0 (34)

Where
a3 = −1 (35)

a2 = k1w11 cos (x) + k2w11 cos (y) + k3w11 cos (z) (36)

a1 = −k1k2w11
2 cos(x) cos(y)− k1k3w11

2 cos(x) cos(z)− k2k3w11
2 cos(y) cos(z)

+ k1k2 cos(x) cos(y) + k1k3 cos(x) cos(z) + k2k3 cos(y) cos(z)
(37)

ao = k1k2k3w11
3 cos(x) cos(y) cos(z)− k1k2k3w11

3 cos(x) cos(y) cos(z)

+ k1k2k3 cos(x) cos(y) cos(z) + k1k2k3 cos(x) cos(y) cos(z)

− k1k2k3w11
3 cos(x) cos(y) cos(z)

(38)

3.2.3 Determination of the Eigenvalues of the Jacobian with Composite Func-
tions

Since this is a third-degree polynomial, it satisfies the next formula:

n∏
i=1

λi = (−1)n
ao

an
(39)

n∑
i=1

λi = −an−1

an
(40)

n∑
i=1

n∑
j>i

λiλj =
an−2

an
(41)

So that we get the following equations:

λ1λ2λ3 = −ao

a3
(42)

λ1 + λ2 + λ3 = −a2

a3
(43)

The equilibrium point S is stable if , λ1λ2λ3 = 1, λ2 = ±1 and λ1 = ±1

Let us take first λ1 = +1, λ2 = +1, λ3 = −ao
a3

= 1, 1+1+λ3 = −a2
a3

, and λ3 = −a2
a3

−2

Hence
−a2

a3
− 2 = 1

−a2

a3
= 3

For λ1 = −1 and λ2 = +1
−1 + 1 + λ3 = −a2

a3
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λ3 = −a2

a3
=

ao

a3

For λ1 = −1 and λ2 = −1

−1− 1 + λ3 = −a2

a3

λ3 = −a2

a3
+ 2 = 1

(44)

Thus, we have the following equations:
−a2

a3
= 3

−a2

a3
= −1

−a2

a3
− ao

a3
= 0

(45)

By summing the equations component-wise, we obtain:

−3
a2

a3
− ao

a3
= 2

3a2 + ao = 2

3k1w11 cos(x) + 3k2w11 cos(y) + 3k3w11 cos(z)

+ k1k2k3 cos(x) cos(y) cos(z)
[
−2w2

11 + 2 + w3
11

]
= 2

(46)

3.2.4 Determination of the stable equilibrium point
Since

k1 =
x

1 + w11 sin(x) + sin(y) + sin(z)
(47)

k2 =
y

1 + sin(x) + w11 sin(y) + sin(z)
(48)

k3 =
z

1 + sin(x) + sin(y) + w11 sin(z)
(49)

We replace k1, k2, k3 in equation (33). Let us take a case where chaos occurs, say w11 = 2.5.
We set for S:

x = 0, 707

y = −0, 5

The numerical computation in MATLAB yields z = -4.2566476538172217322579451311
198. By calculating the eigenvalues of the Jacobian matrix at this point, we observe that one of
the eigenvalues has an absolute value greater than one, indicating instability. Thus, adjustments
were necessary to obtain z = 1 ensuring that all eigenvalues of the Jacobian have their absolute
values less than one.

3.2.5 Determination of k1, k2, and k3

For the stable equilibrium point, we obtain: S (0.707; -0.5; 1). From this, we compute the
values of k1, k2, and k3 from (47), (48) and (49).

k1 = 0.2368

k2 = −0.3869

k3 = 0.3055

3.2.6 Verification Through Simulation
In order to verify if we can suppress chaos by using the values of k1, k2, and k3, we plot

r2 = x2 + y2 + z2 with respect to time t. We first plot the chaotic time series, followed by the
time series after applying control. (see in Figure 6)

It is possible to extend these results to other values of w11. Let’s choose the values, w11 = 31
in Figure 7 and w11 = 42 in Figure 8.
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Figure 6 Graphical Results. a) Time series for w11 = 2.5 without chaos control; b) Time
series for w11 = 2.5 with application of chaos control around S(0.707; -0.5; 1)
k1 = 0.0753 and k2 = −0.0573

Figure 7 Graphical Results. a) Time series for w11 = 31 without chaos control; b) Time
series for w11 = 31 with application of chaos control around S (0.707; -0.5; -2), the
calculation starting from equation (46) gives z = -0,01804681417543484614791791
5841444; k1 = 0.0358 and k2 = 0.0354, k3 = 0.000667952996146411541268793
08113711

Figure 8 Graphical Results. a) Time series for w11 = 42 without chaos control; b) Time
series for w11 = 42 with application of chaos control around S(0.707; -0.5; -
0.013194334840128524849883296620033), the calculation starting from equation
(46) gives z = −0.013194334840128524849883296620033; k1 = 0.0254 and
k2 = 0.0270, k3 = 021419923014599049133408931167839

4 Interpretation of Results and Discussion
In this study, we applied the periodic pulse method to recurrent neural networks (RNNs)

with a sinusoidal activation function to evaluate its effectiveness in suppressing chaos in these
dynamic systems. Two configurations were analyzed:

Phase 1: A recurrent network with two neurons.
Phase 2: A recurrent network with three neurons.
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The numerical simulations were conducted in MATLAB, using the following parameters:
(1) Fixed synaptic weights: w11 = w22 = w33 = 2.5, while all other weights were set to 1.
(2) Initial conditions: 1.5 and 1.501.
(3) Number of iterations: 500.

The pre-control time series (Figure 3a and Figure 6a) reveal that the network dynamics are
chaotic, characterized by an irregular trajectory and extreme sensitivity to initial conditions. In
these figures, the evolution of r2 over time demonstrates aperiodic, bounded, and deterministic
behavior – hallmarks of chaos.

After applying periodic pulse control (Figure 3b and Figure 6b), the chaotic behavior dis-
appears. The system stabilizes around a fixed equilibrium, confirmed by the fact that initially
divergent orbits merge into a single trajectory, forming an asymptotic trend. This stabilization
effect is further verified by additional tests at higher weight values:

(1) Figure 4: w11 = 13;
(2) Figure 5: w11 = 25;
(3) Figure 7: w11 = 31;
(4) Figure 8: w11 = 42.

For each case, the system successfully transitioned from chaotic to stable behavior, reinforcing
the robustness of the periodic pulse method.

Our results demonstrate that periodic pulse control is effective in suppressing chaos in small-
scale recurrent networks (2-3 neurons). The transition follows a typical chaos suppression
mechanism by stabilizing a fixed point, aligning with previous findings in chaos control theory
(Ott et al., 1990).

4.1 Comparison with Existing Studies
Our work contributes to the broader research on chaos control in dynamical systems. A

comparison with other established methods is summarized in Table 2:

Table 2 Comparison with Existing Studies

Study Method Used Key Findings

Ott, Grebogi, Yorke (1990) Delayed feedback control Stabilization of chaotic attractors with mini-
mal perturbations

Pecora & Carroll (1990) Chaotic synchronization Suppression of chaos through synchronous
coupling

Pasemann (2002) Chaos analysis in RNNs Examined chaos with sigmoid activation func-
tions

Our study Periodic pulse control Successfully suppressed chaos in RNNs with
sinusoidal activation

Unlike delayed feedback control, which perturbs the system continuously, periodic pulse
control is a minimally invasive approach, modifying system parameters only at specific inter-
vals. Compared to chaotic synchronization, our method does not require external coupling
mechanisms, making it simpler to implement in autonomous neural networks.

Moreover, Pasemann’s studies (2002) focused primarily on sigmoid activation functions,
while our work extends chaos control techniques to sinusoidal activation, which introduces
unique periodic properties and complex bifurcation behaviors.

4.2 Limitations and Future Directions
Despite these promising findings, several limitations must be considered:
(1) Generality of the Results: This study is limited to two- and three-neuron networks. The

next step is to test the method on larger architectures, including deep RNNs, LSTMs, and
Reservoir Computing models.

(2) Sensitivity Analysis: The impact of different synaptic weight values on the stability of
the network remains unexplored. A broader parameter sweep would provide deeper insight into
the method’s robustness.

(3) Comparison with Other Control Methods: Our study does not directly compare periodic
pulse control with other chaos suppression strategies, such as delayed feedback control or
chaotic synchronization. Future studies should perform a quantitative analysis of these different
approaches.
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4.3 Potential Applications
(1) Computational Neuroscience: Understanding how the brain naturally regulates chaotic

states could have implications for neuromodulation techniques and biological neural network
modelling.

(2) Artificial Intelligence: 1) Controlling chaos in RNNs may enhance training stability in
machine learning algorithms and deep learning architectures. 2) Avoiding chaotic behavior
in networks like LSTMs and Transformers could improve their ability to learn and generalize
efficiently.

5 Conclusion
In this study, we explored the application of the periodic pulse method for chaos control in

recurrent neural networks (RNNs) with a sinusoidal activation function. The primary objective
was to determine whether this approach could stabilize a chaotic neural system by applying
targeted periodic perturbations.

The results demonstrated that periodic pulses effectively suppress chaotic behavior in both
two-neuron and three-neuron recurrent networks. Before control was applied, the system
exhibited chaotic dynamics, characterized by unpredictable trajectories and high sensitivity to
initial conditions. After introducing periodic pulses, the network transitioned to a stable state,
confirmed through time series analysis and eigenvalue spectrum calculations. Specifically, the
Lyapunov exponent, a key indicator of chaos, shifted from a positive value to a negative or
near-zero value, validating the stabilization of the system.

6 Key Findings and Contributions
(1) Validation of Periodic Pulse Control for Sinusoidal Activation Functions: While previous

studies on chaos in RNNs primarily focused on sigmoid or ReLU activation functions, our work
extends the applicability of chaos control techniques to sinusoidal activation, which exhibits
unique periodic properties.

(2) Robustness of the Method: Our numerical simulations confirmed that the periodic pulse
method effectively suppresses chaos across different parameter configurations (e.g., varying
weight values from w11 = 2.5 to w11 = 42).

(3) Minimal Invasiveness Compared to Other Methods: Unlike delayed feedback control,
which modifies the system continuously, periodic pulses only apply perturbations at specific
intervals, reducing computational complexity and energy consumption.

7 Limitations of the Study
Despite these promising results, several limitations must be addressed:
(1) Scalability to Large-Scale Networks: This study focused on small networks (2–3 neurons).

The effectiveness of periodic pulse control for large-scale architectures (e.g., deep RNNs,
LSTMs, or Reservoir Computing models) remains an open question.

(2) Limited Range of Synaptic Weights: The simulations were performed using fixed synaptic
weight values. Future research should conduct a systematic sensitivity analysis to explore the
method’s robustness across a broader range of parameters.

(3) Lack of Direct Comparison with Other Chaos Control Methods: While we discussed
alternative approaches such as delayed feedback control and chaotic synchronization, our study
did not provide a direct experimental comparison. Future studies should quantitatively evaluate
the relative efficiency of these methods.

8 Future Perspectives
This work paves the way for several promising research directions:
(1) Application to More Complex Networks: Testing periodic pulse control on deep recurrent

networks (LSTMs, GRUs) could reveal new insights into controlling chaotic dynamics in
practical machine learning models.

(2) Experimental Validation in Computational Neuroscience: Investigating whether external
stimulation – similar to periodic pulses – can influence neural activity in biological models
could provide insights into cognitive flexibility and neural adaptation.

(3) Integration with Hybrid Chaos Control Techniques: Combining periodic pulses with other
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control strategies (e.g., adaptive algorithms or delayed feedback methods) could enhance both
the efficiency and flexibility of chaos suppression techniques.

9 Final Remarks
In conclusion, this study demonstrated that the periodic pulse method is a promising technique

for chaos control in recurrent neural networks. While further investigations are necessary to
confirm its applicability to larger-scale and real-world systems, the findings contribute to the
growing body of research on nonlinear dynamics, neurodynamic, and artificial intelligence.

Acknowledgements
We would like to express our deepest gratitude to Mr. Rakotomalala Minoson, Mr. Randri-

anandraina Hery Zo, and the Institut pour la maı̂trise de l’énergie (IME). Their support and
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