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Abstract: Electronics manufacturing processes are complex and prone to yield loss and latent
failures due to subtle process deviations and quality escapes. This paper presents a holistic
approach to improving first-pass yield and predicting failures by integrating a Manufacturing
Intelligence for Reliability and Automated Insights (MIRAI) data platform with computer
vision-based monitoring of Standard Operating Procedure (SOP) adherence. The proposed
system combines self-serve data analytics workflows for yield and field failure analysis with
real-time process observation using deep learning vision models. Manufacturing data from
production tests, reliability screenings, and field returns are aggregated and analyzed to identify
key signals correlating with yield drops and field fallouts. Simultaneously, a PROSPECT tool
employs AI cameras at assembly stations to record operator actions and detect deviations from
standard procedures. A machine learning failure prediction model is then trained on the enriched
dataset (including vision-detected deviations) to proactively flag high-risk units in real time.

Keywords: computer vision, process observation, failure prediction, manufacturing analytics,
yield improvement

1 Introduction
Modern electronics manufacturing is characterized by intricate assembly and test processes

with thousands of interdependent steps. First-pass yield (FPY) is the percentage of units passing
all tests without rework. Maintaining a high FPY is critical for cost efficiency and product
quality [1]. Even minor deviations in how a process is executed can introduce defects that either
cause immediate test failures or latent field failures after the product is shipped. Traditional
quality control and yield analysis techniques often rely on reactive measures like identifying
defects or yield drops only after they have occurred [1]. In many factories, engineers manually
investigate yield excursions or perform periodic audits of operator compliance to SOPs (the
standard work instructions for each task). These manual approaches are time-consuming,
inconsistent, and may miss subtle issues until significant scrap or customer returns occur [2].
There is a growing need for intelligent, automated systems that can monitor production in real
time, ensure process consistency, and predict failures before they happen.

1.1 Holistic Manufacturing Intelligence and Yield Challenges
The concept of Manufacturing Intelligence for Reliability and Automated Insights (MIRAI)

refers to an integrated data-driven approach that looks at the entire manufacturing process right
from assembly stations on the factory floor to field performance in order to extract insights that
improve yield. A holistic approach is necessary because yield loss can stem from many sources:
machine settings, component variability, environmental factors, human errors in following
SOPs, etc. [3] Conventional yield analysis in high-volume electronics production involves
pouring over vast amounts of test data and process logs to find correlations with failures [4].
For example, if a particular assembly station shows a drop in yield (more units failing its test),
engineers must determine if a systemic cause exists, such as a mis calibrated tool or a change in
a component lot. Historically, such analysis has been reactive and limited by human bandwidth
and experience [5]. Intel’s manufacturing group reported that manual end-of-line yield analysis
was too slow and could not examine every unit, prompting a shift to proactive, AI-driven yield
analysis that examines 100% of data and flags issues for engineers [5]. Advanced analytics,
including machine learning, enable detection of yield patterns and root causes more quickly than
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traditional methods, allowing engineers to address problems sooner and thus prevent further
yield loss [5]. This aligns with the broader Industry 4.0 trend of employing big data and AI to
achieve adaptive, automated process control for better quality [6].

1.2 Standard Operating Procedures and Human Factors
At the same time, a significant portion of quality issues in assembly processes can arise

from human operators not perfectly following the SOPs. SOPs are detailed instructions that
standardize how each manufacturing step should be performed to ensure consistency, safety, and
quality [7]. Despite training, operators may inadvertently skip steps, use incorrect techniques,
or deviate due to fatigue or time pressure [8]. Historically, ensuring Process observation has
been done via periodic manual observation by line supervisors or quality engineers. However,
manual monitoring is inherently limited, since a supervisor might spot-check an operator for
a few minutes, providing only a snapshot of compliance. It’s been observed that such manual
audits are inconsistent and infrequent, varying by who does the checking and often failing to
catch issues that occur between audits [2]. Moreover, compiling and analyzing handwritten
compliance notes from different shifts or lines can take days, delaying any corrective actions [2].
Human monitoring of SOP compliance does not scale well to a large production floor and may
miss trends that impact yield.

Recent advances in computer vision (CV) and AI offer a promising solution: automated,
continuous monitoring of Process observation using cameras and machine learning. By training
vision models to recognize the required actions or steps in a process, manufacturers can get
an objective, 24/7 “eye” on every station [2]. Unlike a human who can only watch one station
periodically, an AI-driven vision system can concurrently monitor all stations and detect any
deviation in real time [2]. For instance, a deep learning model can be trained to detect whether
an operator picks up the correct component, uses the proper tool, and performs assembly steps
in the correct sequence [7].If a step is skipped or done out of order, the system can instantly flag
it [7]. This level of constant vigilance ensures that mistakes are caught immediately, allowing
for quick correction before a faulty unit moves further down the line [2]. A case study at a
display assembly line noted that deploying AI smart cameras for SOP monitoring allowed them
to “keep an eye on every movement on the assembly line all the time,” something previously
impossible with manual checks [2].The result was more consistent adherence to process and the
ability to identify operators or steps that needed improvement in real time. Indeed, computer
vision-based SOP compliance systems eliminate human bias and fatigue from the equation,
providing consistent and objective monitoring around the clock [8]. This not only prevents
defects due to process deviation but also creates a rich data source on how the process is actually
being executed.

1.3 Data-Driven Failure Prediction
Beyond immediate yield improvement, there is a strategic opportunity in correlating process

data (including SOP deviations) with downstream failures to predict and prevent those failures.
In electronics manufacturing, some defects are not detected until later stages of production
or even until products are in the field (customer usage) [9]. By then, the cost of the failure is
much higher which may require scrapping an assembled unit, performing costly rework, or
handling warranty returns. If we can predict which units are likely to fail final tests or in the field
based on early indicators, we can intervene proactively. Prior research and industry practices
have shown the value of linking manufacturing process data to failure outcomes: for example,
IntraStage (a manufacturing analytics provider) demonstrated that by correlating detailed test
data from production with the results of failure analysis on returned units, manufacturers could
identify patterns (signatures) that reliably indicate a unit with a latent problem [10]. Once those
“attributes of failure” are known, a predictive engine can scan all in-process and shipped units to
find others with the same risk factors and thus target them for preventive action [10]. In essence,
if certain process deviations or test parameter anomalies are found to strongly correlate with
later failures, they become features in a failure prediction model.

With sufficient historical data, a machine learning model can be trained to recognize the
combination of signals that foretell a likely failure (either at end-of-line testing or in field
use) [1]. Such a model can then run in real time during manufacturing, alerting operators or
stopping a line when a high-risk unit is identified, so that the unit can be inspected or fixed
immediately. This approach moves quality control from detection to prediction, saving time
and cost by addressing issues before they fully manifest [11]. It also reduces work-in-progress
(WIP) waste – rather than adding value to a unit that will eventually be scrapped, the process
can be halted or corrected early on.
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1.4 Research Objective
In this paper, we propose an integrated system that combines MIRAI workflows for data-

driven analysis with computer vision-based SOP adherence monitoring through Process Ob-
servation and Statistical Prediction for Enhanced Compliance and Throughput (PROSPECT)
to improve yield and enable failure prediction in electronics manufacturing. Unlike siloed
solutions that either focus on big data analytics or on vision inspection, our approach unifies
these into a closed-loop intelligence system. By doing so, we aim to achieve two main outcomes:
Improved Yield and Quality, through rapid identification of yield detractors (whether they be
machine anomalies or SOP issues) and enforcement of process discipline; and (2) Proactive
Failure Prevention, through correlation of process deviations with failure modes and real-time
prediction of failures to enable intervention. We emphasize a workflow that not only analyzes
historical data (for root cause analysis) but also actively monitors and controls current produc-
tion (for immediate corrections). The work described is generic and can be applied to many
electronics manufacturing settings, focusing on data and algorithms rather than any proprietary
equipment. We also align our approach with comparable strategies reported in literature and
industry. For example, the use of computer vision for real-time quality and compliance mon-
itoring is increasingly recognized as a transformative technology in manufacturing, with the
market for such solutions projected to reach $39 billion by 2029 [12]. Similarly, manufacturing
case studies have found that when SOP compliance meets expectations, line efficiency and yield
are maximized [13]. Building on these insights, our contribution is to design and document a
comprehensive framework that integrates these elements (data analytics, vision, and machine
learning) and to discuss its implementation details and results.

2 Methodology
2.1 MIRAI Data Intelligence Workflow

The Manufacturing Intelligence for Reliability and Automated Insights (MIRAI) work-
flow is a data engineering and analytics pipeline designed to empower engineers with self-service
insights across the manufacturing process. MIRAI aggregates production data such as test re-
sults, process parameters, component information and provides various analysis modules to
pinpoint issues affecting yield and reliability. The MIRAI workflow comprises four main
components:

2.1.1 Yield Analysis
A self-service analysis tool for identifying signals associated with station yield drops during

both ramp-up and sustaining production phases. In ramp-up (new product introduction or early
production), yields can fluctuate as the process stabilizes; in sustaining (high-volume steady
production), any sudden yield drop is a concern [14]. The MIRAI yield module continuously
monitors yield at each test station (the percentage of units passing at that station) and triggers
analysis when a significant drop or negative trend is detected. It automatically searches for
common factors among the failing units that could explain the yield loss. For example, if Station
5’s yield fell from 98% to 92%, MIRAI might analyze dozens of attributes of each unit (such
as which assembly line it came from, who the operator was, which lot of components were
used, calibration settings of the equipment, etc.) to find statistical correlations. Techniques akin
to commonality analysis are employed such as using association rule mining or contingency
table analysis to find factors that are overrepresented in failed units [15]. This helps identify
systematic causes of yield loss (as opposed to random defects). The result of a yield analysis
might reveal, for instance, that “Units that failed at Station 5 are 3 × more likely to have
come from Line 2 and used Component Batch X,” pointing engineers to investigate Line 2
or that component batch. These analytics are delivered in a self-serve dashboard, allowing
process engineers to drill down without requiring data science expertise. By quickly pinpointing
likely causes, the team can take corrective actions (machine maintenance, station recalibration,
additional operator training, etc.) to bring yield back up. This workflow reduces the time to
root cause by automating much of the heavy data analysis that engineers would otherwise do
manually.

2.1.2 Field Failure Analysis
A self-serve analysis capability focused on identifying signals in manufacturing data that

correlate with field failures (i.e. units that pass all factory tests but later fail during use by
customers, resulting in returns or repairs). Data for this analysis comes from linking field return
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records (or failure analysis reports from returned units) with the original manufacturing data
of those units. The MIRAI field analysis module takes a population of products – some that
had field failures and some that did not – and performs retrospective data mining to find what
factors in the production or test data are predictive of those failures. For instance, it may analyze
whether certain test measurements were marginal (close to spec limits) on units that eventually
failed, or if a particular factory, production date, or supplier lot is statistically associated with
higher field failure rates. This is essentially a supervised learning or statistical correlation task:
the units have a label of “field failure” or “no failure,” and the system examines all available
manufacturing attributes to see which correlate strongly with the label [16]. As with yield
analysis, commonality or classification techniques are applied, but with field failures as the
target. The outcome could be a set of risk factors – e.g., “Units that failed in the field tend
to have had longer soldering cycle times on average” or “Field failures are concentrated in
products built with PCB supplier Y in a given week.” These insights allow engineering and
reliability teams to initiate corrective actions such as design modifications, supplier changes, or
targeted recalls for suspect lots. By making field-failure analysis self-service, MIRAI enables
a faster feedback loop from customer experience back to manufacturing. This is critical in
avoiding widespread issues; as soon as a pattern is detected linking field issues to a process
variable, that information can be used to improve production or screening tests [17]. Prior
industry approaches that correlate manufacturing test data with field outcomes have shown the
value of such analysis in preventing future failures [10] that effectively turns large datasets of
past production into actionable knowledge to improve product reliability.

2.1.3 “Bring Your Own Data” Analysis
In addition to standard yield and field analyses, MIRAI supports user-requested custom

analyses, essentially allowing engineers to bring their own data for specialized investigations.
Often in manufacturing, engineers run experiments or additional stress tests (for example,
ongoing reliability tests like ORT, Highly Accelerated Life Testing (HALT), or qualification
tests on samples) and want to analyze the results in context of manufacturing data [18]. In the
MIRAI workflow, a user can provide a list of units and a binary outcome (Pass/Fail) from some
external test or criteria – for instance, a set of units that underwent an On-going Reliability Test
(ORT) where a few units failed while others passed. The DataOps team (or the data platform
automatically) will gather all relevant manufacturing data for that population of units and
perform analysis similar to the above to find signals differentiating the fail group from the pass
group. This could involve feeding the combined dataset into a classification model or running
targeted queries (like comparing means of certain measurements or doing decision tree analysis
to find splits). The result is a report to the requesting engineer with any statistically significant
factors that correlate with the failures. For example, if out of 100 units tested in ORT, 5 failed,
the analysis might find that all 5 failing units were processed on a particular SMT (surface
mount technology) line or all used a particular lot of a component, suggesting a latent issue. By
allowing ad-hoc data analysis in this manner, MIRAI becomes a flexible analytics extension for
quality engineering experiments. It essentially leverages the data pipeline to answer one-off
questions. The pass/fail labeled dataset provided by the user might come from reliability tests
(like ORT, environmental stress screening), customer returns classified by failure mode, or even
simulations [19]. MIRAI treats this like a mini “competition” between variables to explain the
outcome, employing anything from logistic regression to more advanced feature importance
ranking. Importantly, this step often requires careful data integration – ensuring that the units
in the provided list are correctly matched to their records in various manufacturing databases
(traceability, test results, repair logs, etc.). The DataOps aspect implies that data engineers
may assist in data cleaning and preparation, but the goal is eventually to make this process
streamlined so that an engineer with minimal coding can get results by simply uploading a CSV
of serial numbers with labels. This workflow dramatically accelerates root cause analysis for
issues discovered outside the standard test flow, by bringing all available production data to bear
on the problem.

2.1.4 MIRAI Sentinel (MIRAI Sentinel)
The final component is a proactive auto-analysis and alerting system that continuously scans

manufacturing data across all build stages to catch emerging issues without waiting for human
requests. While the previous components are triggered by an engineer’s query or an obvious yield
drop, MIRAI Sentinel is an always-on watchdog. It performs automated commonality analysis
on recent production data in search of anomalies or deviations from baseline. For example,
it may automatically cluster recent failures across different stations and see if they share any
common factor (e.g., all from the same shift or same supplier lot) and then alert engineers that
“5 failures have occurred across two different stations in the last day, all involving Component
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Z – this is unusual and worth investigating.” Likewise, MIRAI Sentinel can be configured to
monitor trends such as gradually declining yields, shifts in test measurement distributions, or
increasing retest rates. When certain thresholds or abnormal patterns are detected, the system
triggers an alert or generates an “Auto Commonality Report.” This proactive analysis uses a
combination of statistical process control (SPC) rules and machine learning anomaly detection.
It might leverage control charts for yield and test metrics and apply clustering algorithms to
group suspect units [20]. By spanning across build stages, it means MIRAI Sentinel can connect
the dots (for instance, noticing that a particular assembly issue in an early stage is causing fails
only at a later test stage). Alerts could be sent via email or shown on a dashboard, highlighting
the suspected common cause. The aim is to shorten the time to discovery of issues that might
otherwise only be found after a lot of units have failed. This turns yield management from a
reactive “pull” (engineers digging for causes after yield drops) into a proactive “push” model
where the system itself highlights potential problems [5]. MIRAI Sentinel therefore acts like an
automated quality engineer, continuously learning from data and assisting human engineers by
focusing their attention where it’s needed. In practice, implementing MIRAI Sentinel requires
robust data engineering: streaming data pipelines, data normalization to compare across shifts
and lines, and scalable computing to run analyses frequently (potentially on each new batch
or each day’s production data). It also requires careful tuning to avoid false alarms – ensuring
alerts are meaningful by using logic to filter out spurious correlations (as commonality analyses
can sometimes find coincidental patterns [15]). Therefore, MIRAI Sentinel adds an intelligence
layer on top of the manufacturing process that preemptively detects and communicates issues,
thus embodying the notion of holistic intelligence by looking broadly and acting in real time.

From a system architecture perspective, MIRAI is built on a centralized manufacturing data
lake that ingests data from various sources: automated test equipment outputs, production
execution systems (with information on lots, machines, and operators), as well as external
data like field returns [21]. A key enabler for MIRAI’s effectiveness is this integration of data
sources. Recent reports from industry emphasize that connecting all plants and processes via
an operational data lake to get a real-time, unified view is a foundational step for deploying
AI/ML interventions for yield improvement [22]. Our implementation follows this principle
– all relevant data about each unit (its genealogy through the factory, all test readings, and
eventually the SOP deviation data from vision systems described later) are linked via a unique
identifier (such as the unit’s serial number). This comprehensive data foundation allows the
analyses in MIRAI’s four workflows to be performed accurately and consistently. The user
interfaces for MIRAI include dashboards for engineers with interactive filters and visualizations,
and a query engine for advanced users to run custom queries or machine learning models. In
essence, MIRAI serves as the analytical “brain” of the manufacturing line, ingesting raw data
and outputting insights or alerts that drive improvement actions.

2.2 Computer Vision System for SOP Monitoring
An integral part of our approach is the use of computer vision to monitor station activities

for Process observation. This system provides the eyes on the factory floor to complement
MIRAI’s data analytics [23]. The computer vision setup consists of cameras installed at critical
operator workstations (assembly or test stations where human interaction is involved) and an AI
inference pipeline that processes the video feed from these cameras in real time. The goal is to
automatically verify whether each operator is following the prescribed steps in the SOP for that
station and to record any deviation or departure from the SOP.

2.2.1 Camera Installation and Data Capture
Cameras are positioned to get a clear view of the workspace and the operator’s actions,

without obstructing the operation. We used industrial-grade cameras with appropriate resolution
and frame rate to capture necessary details for example, identifying tools, parts, and hand
movements [24]. In some cases, a single wide-angle camera per station is sufficient; in others,
multiple angles or a depth camera might be employed if the task is complex. The system
design can accommodate both edge processing (smart cameras with onboard AI accelerators
like NVIDIA Jetson devices [2]) or a central server approach where video is streamed to a local
server running the models. In our pilot, to minimize network load, we opted for edge AI cameras
that perform on-board inference and send only summary data/events to the central database.
Each camera is time-synchronized with the production line system and tied to a specific station
ID. Through the line control system, we know which product serial number is at that station at a
given time (since each unit is scanned or otherwise identified at station entry). This integration
is crucial: it allows us to tag any detected SOP deviation with the specific unit (serial number)
and step, feeding that information into the manufacturing data records.
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2.2.2 Model Training for Action Recognition
Developing the computer vision model requires training it to recognize the key actions or

objects involved in the station’s SOP. This is formulated as an action recognition or sequence
verification problem. We collected training data by recording many instances of the station oper-
ation, including both correct procedures and some examples of incorrect actions (if available).
Depending on the use case, different AI techniques can be used:

(1) Object Detection and Pose Estimation: For tasks where the SOP involves using certain
tools or parts, object detection models (e.g., based on convolutional neural networks like YOLO
or Faster R-CNN) are trained to detect the presence and placement of those tools/parts in each
frame. Human pose estimation models can track the operator’s hands and body to see if they
reach the correct areas in the correct order. For example, if SOP says “pick up screw, use
screwdriver on location A, then B,” the system would detect the screwdriver and the motion of
hand to location A then B.

(2) Action Sequence Modeling: In more complex workflows, we use sequence models. A
common approach is to break the video into a series of discrete actions using a temporal action
segmentation model. Alternatively, treat it as a classification per time window: e.g., a deep
learning model (such as a 3D CNN or a transformer-based video model) that can classify what
action is being done in a short clip. We trained such models on annotated video: subject-matter
experts labelled a number of video clips with the action being performed (or labeled if a step
was done wrong). The model learns to discriminate correct vs incorrect actions.

(3) State Machine with Vision Triggers: In some implementations, it is useful to encode
the expected order of operations as a state machine or rule-based logic, and use the vision
algorithms to confirm each step. For instance, state 1 “tool X picked up” must occur before state
2 “tool X applied to part Y”. The vision system outputs events like “tool X detected in hand” or
“part Y present in fixture” which are fed into a simple logic engine that verifies the sequence.

For our pilot, we started with a relatively constrained task (a single station with a well-
defined set of steps) and trained a deep learning model to detect a few key events: whether
the operator performed a required check with a camera (vision inspection step) and whether a
certain component was tightened with a torque tool. The model was a custom CNN that took
image frames as input and output whether the specific action was observed. We augmented this
with sensors data when available (e.g., the torque tool provides a reading when used – which we
also log for cross-reference). All AI models were developed using open-source frameworks and
we ensured not to hard-code any proprietary features. They were validated to a high accuracy on
a test dataset of annotated videos before deployment (achieving, for example, >95% precision
and recall in detecting the presence or absence of the critical action).

2.2.3 Real-Time SOP Compliance Monitoring
Once deployed, the vision system operates continuously during production. Real-time

inference on the camera feed compares the ongoing operator actions against the SOP model.
If every expected step is observed in the correct order, the system remains silent (or just logs
compliance). If a deviation is detected – for example, a step is missed within the allotted time or
an incorrect action is performed – the system immediately raises an alert. In our implementation,
the alert is both visual (displayed on a dashboard for line supervisors) and logged electronically.
The alert includes details like: Station ID, timestamp, description of deviation (e.g., “Step
3 – connector inspection – was skipped”), and the unit’s serial number. At that moment, a
supervisor can intervene, or the system could even be configured to stop the conveyor/belt
for that unit if automatic interruption is desired (in our pilot, we opted to alert rather than
stop, to study the occurrences first). This immediate feedback mechanism prevents the unit
from silently continuing down the line with an undetected process defect. It also provides
an opportunity to correct the mistake: the operator or a rework technician can perform the
missed step or verify the product before it moves on. Such real-time alerts greatly reduce the
chance of a defective unit reaching the end of the line or, worse, the customer [2]. Moreover,
continuous monitoring generates a trove of compliance data. The system essentially produces a
timestamped event stream of all deviations (and potentially confirmations of correct steps). This
data is invaluable for analysis – for instance, to see if certain times of day or certain operators
have more deviations, or which steps are most problematic.

2.2.4 Data Logging and Integration
All detected deviations (and optionally a record of compliance events) are stored in a database,

with references to product serial numbers and step identifiers. We structured a Deviation Log that
captures: (Unit Serial, Station, Step/Action ID, Deviation Type, Timestamp, Operator ID (if
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available)). Alongside, the production system provides the information of whether the unit
eventually passed or failed subsequent tests, was repaired, and so on. By integrating this log with
the main manufacturing data (as part of MIRAI’s data lake), we can perform correlation analysis
between SOP deviations and yield or failures – this is the core of Phase 2 and Phase 3 of the
pilot, described next. It is worth noting that careful attention was paid to time synchronization
and data alignment. We used the station’s start trigger (when a unit arrives and is scanned) to
mark the beginning of an operation, and we buffered any vision-detected events during that
operation to associate with that unit’s serial. This ensures the deviation data is properly linked
to the correct unit, which is critical for accurate analysis. Privacy and worker acceptance were
also considered: the purpose of cameras is to improve the process and training, not to surveil
workers punitively. We ensured the system focused on task elements (and the footage was not
used beyond the scope of process improvement), which helped in gaining cooperation for the
pilot.

2.3 Process Observation and Statistical Prediction for Enhanced
Compliance and Throughput (PROSPECT) Workflow

With the vision system in place to capture SOP deviations, we designed a pilot study in three
phases to leverage this data for yield improvement and failure prediction.

2.3.1 Phase 1: Monitor PROSPECT and Identify Key Deviations
The first phase focused on establishing baseline SOP compliance levels and determining

whether non-compliance was contributing to yield loss at the station of interest. We selected a
particular assembly station that had experienced periodic yield fallout (lower first-pass yield) in
the past, suspecting operator errors as a possible cause. Initially, we measured the station’s yield
fallout rate (the fraction of units failing at that station) over several production runs to have a
baseline. Next, we activated the computer vision monitoring at this station to record station
activities continuously. Over a period of several weeks, every action at this station was observed
by the AI system as described earlier. During this time, we did not make major interventions;
the idea was to passively collect data on how often and what types of SOP deviations were
happening. The system generated a log of deviations, which we then analyzed. We identified key
SOP deviations by frequency and potential impact. For example, we discovered that one
particular step, scanning a barcode on a sub-component to verify its presence, was occasionally
skipped. Another deviation noted was an improper torqueing sequence: operators sometimes
tightened screws in the wrong order or missed the last screw, contrary to the SOP. We also noted
the frequency of each deviation and whether certain operators had more deviations, though
individual performance was anonymized in analysis. This phase had an iterative loop aspect:
when a critical deviation was identified, we took immediate corrective action by communicating
with the production team. For instance, upon finding the skipped barcode scans, we updated
the station’s work instructions and retrained operators to emphasize that step. We also added a
simple error-proofing measure: the station software now requires the barcode scan input before
allowing the process to continue (forcing compliance). These interventions (training and process
changes) were implemented, and the station yield was measured again to see if it improved.
Indeed, after addressing the top deviations, the station’s yield fallout dropped noticeably (we
observed an improvement from about 92% first-pass yield to 96%, for example, after enforcing
the barcode scan step). Phase 1 is thus a cycle of observe → identify → fix → observe
again, gradually reducing human error-induced falls in yield. In essence, this phase answers:
“What SOP violations happen and are they hurting yield?” It establishes a direct link between
adherence and quality, echoing the industry observation that SOP compliance correlates with
better performance [25]. By the end of Phase 1, we had a much cleaner process at the pilot
station (fewer deviations after interventions) and a list of residual deviations that were harder to
eliminate or quantify. Crucially, we had captured data that some deviations still occurred (albeit
less frequently), and those instances could be studied in Phase 2 for their impact on failures.

2.3.2 Phase 2: Track Deviations by Serial Number and Correlate with Failures
In this phase, we shifted from focusing on station yield at the point of occurrence to

the downstream effects of SOP deviations. The approach was to follow each unit through the
rest of the manufacturing process (and even field use, if data allowed) and see if those that
experienced a deviation at the station have a higher chance of failing later compared to those
with no deviations. We started by instrumenting the system to track serial numbers of units
with deviations. For every unit that passed through the monitored station, the deviation log was
checked. If any SOP deviation was recorded for that unit, we flagged that unit in a “deviation
present” category; units with no detected issue were flagged as “deviation-free.” We then
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compiled the outcomes for each unit: did it pass final testing? Did it require rework or repair? If
it failed, what was the failure mode (captured via failure analysis or troubleshooting logs)? If
available, we also tracked if the unit had any field return or early life failure after shipment. This
data was gathered over many units (on the order of thousands, to get statistically meaningful
results) during the period of the pilot. With this labeled dataset (units with deviation vs without,
and their eventual fates), we performed a deviation-failure correlation analysis. Essentially, this
is calculating the conditional probabilities and looking for statistically significant differences.
For example, we found that units which had the torque sequence deviation (missed screw
tightening) were far more likely to fail the end-of-line functional test for that product. The
failure mode in those cases was often related to that part – e.g. a loose heatsink or connector
causing a test failure. We quantified this: suppose out of 1000 units that had no deviations, 5
failed later tests (0.5% failure rate), but out of 50 units that had a certain deviation, 5 failed
(10% failure rate) – that would strongly indicate a correlation. In our study, one particular
deviation (improper torque) had a very high correlation with a specific failure mode observed
in environmental stress tests (vibration test failures), with an odds ratio suggesting those units
were ~8 times more likely to fail than baseline. On the other hand, some deviations seemed to
have little to no impact – e.g., if an operator momentarily deviated but corrected themselves
(a transient hesitation that was flagged but ultimately the step was done), it did not translate
to any measurable difference in outcomes. We also cross-correlated the data: it could be that
a combination of deviations or a deviation at one station in combination with another factor
leads to failure. However, since our pilot dealt with one station primarily, we kept the analysis
straightforward: a binary “deviation happened at station X” vs outcomes. The failure analysis
(FA) data from the repair technicians was invaluable – it allowed us to link a cause to effect
(for example, “unit failed final test due to loose connector; indeed, a deviation earlier indicated
that connector was not scanned or secured properly”). We measured the deviation-failure
correlation in terms of metrics like precision and recall as well: if we use “deviation occurred”
as a predictor of failure, how accurate is it? For critical deviations, the precision (how many
of the flagged units actually failed) might not be extremely high because many units with a
deviation still pass (perhaps the deviation was minor or caught later), but the recall (how many of
the failing units had a known deviation) was quite high. In one case, 70% of the units that failed
a certain test had experienced a particular SOP deviation upstream. This kind of insight validates
the hypothesis that PROSPECT has a direct effect on yield and reliability. It also provides a
list of deviations ranked by their impact on quality. This information feeds back to Phase 1’s
loop: deviations that show strong correlation with failures become top priority to eliminate
through process improvements or poka-yoke (mistake-proofing) mechanisms. Essentially, by
the end of Phase 2, we had created a deviation-failure repository – a collection of cases linking
specific procedural missteps to specific failures, complete with data statistics. This repository is
an asset for both engineering and training: it can be used to justify investments in automation or
training (e.g., “We must fix this step because it’s causing X% of our failures”) and to educate
operators on the importance of each SOP step (“Skipping this screw tightening leads to failures
in vibration testing, as data shows”). Moreover, this set of correlated features and outcomes lays
the groundwork for predictive modeling.

2.3.3 Phase 3: Build and Train a Failure Prediction Model
In the final phase, we leveraged the insights and data collected to develop a machine learning

model that predicts unit failures in real time based on observed SOP deviations (and potentially
other data). The concept is to enable the factory to catch a likely-failing unit as early as
possible and apply a fix or additional screening right away, thereby preventing the failure from
either propagating down the line or escaping to the field. The input features to the model
included the SOP deviation flags for each unit from the monitored station (and we can extend to
multiple stations as we scale up). For our pilot, since we instrumented one station, the primary
features were binary indicators of whether each type of deviation occurred for that unit. We also
considered adding other easily available features to improve prediction – for example, whether
the unit had any borderline test results (within spec but near limit) at that station, or how many
times the unit was retested at that station. But the simplest effective model was one that used the
presence/absence of the key deviations as features. The target label for the model was whether
the unit eventually failed at final test (or required any repair) – essentially a proxy for yield
outcome. (In future extensions, the target could be field failure, but that data was scarcer; for
the pilot we focused on predicting final test fallout, which itself is highly beneficial for yield
if addressed). We split our collected dataset (Phase 2 data) into training and validation sets,
maintaining chronological order to avoid leakage (training on earlier units, and validating on
later units, mimicking deployment). We then trained a classification model. We experimented
with a few algorithms: a simple logistic regression, a decision tree, and an ensemble like a
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random forest or gradient-boosted trees. Given the relatively small number of features and their
categorical/binary nature, even logistic regression was quite interpretable and effective – it gave
weight to each deviation type corresponding to how predictive it was. The ensemble models gave
a slight performance boost by capturing interactions (for instance, if two different deviations
together made failure even more likely). Ultimately, we chose a gradient boosted decision tree
model (similar to XGBoost) for deployment, as it handled feature interactions well and provided
good accuracy without overfitting. The model was trained to output a probability that a unit will
fail, given the observed deviations. On the validation dataset, we achieved an accuracy in the
range of ~90% for predicting failure vs pass, with a high recall for failures – meaning it caught
most of the failing units (for example, ~85% of the units that did fail were assigned high risk by
the model). We tuned the threshold of the model to favor capturing failures (even if it meant
some false positives), because the cost of a false positive (some extra inspection) is much lower
than the cost of a false negative (a bad unit slipping through). In practice, one can adjust this
threshold based on business needs (e.g., how much re-inspection capacity is available).

After training and offline validation, we moved to deployment of the failure prediction model.
We integrated the model into the station’s software such that after processing each unit (or at
the end of the line, before final test), the system would automatically evaluate: if the unit had
any SOP deviations logged, it feeds those into the model (a simple lookup and calculation) and
produces a risk score. If the risk score exceeds a predetermined threshold, the system flags that
unit for immediate attention. During deployment, this meant the unit was routed to a special
inspection station before final testing. At that station, a technician would double-check the unit
for the likely issue (for example, if the model flags “high risk due to missed screw tightening”,
the technician will specifically check all screws and perform the missed step). In many cases,
this predictive interception allowed us to fix the problem such that the unit then passed final
test, improving the first-pass yield. If the unit was flagged but nothing obvious was found,
we still ran it through all tests and kept it under observation (none of the flagged units were
sent to customers without thorough vetting). Over time, we measured the effectiveness: the
number of units that would have failed final test but were fixed due to early prediction. This is
essentially the true positive count of the model. We also tracked the false positive rate (units
flagged that would have passed anyway) to ensure it was at a manageable level. The model’s
performance was very encouraging – for instance, in a month of operation, out of the units the
model flagged, a significant portion indeed had issues that required rework (caught early instead
of later), and the overall end-of-line yield improved by a few percentage points as a result of
these pre-emptive fixes. This aligns with the goals set out: predict and fix potential failures in
real time, thereby increasing the first-pass yield and reducing waste. In broader context, the
predictive model effectively extends the reach of our quality control: instead of relying purely
on final test outcomes, it uses process deviations as predictive signals. It is a form of predictive
quality analytics that shifts us from “find and reject bad units” to “anticipate and correct bad
units” – a hallmark of advanced smart manufacturing systems [1].

It’s worth noting that as we accumulate more data (Phase 3 is ongoing in a sense), the model
can be retrained and improved. If additional stations are instrumented with vision systems, their
deviations can be added to the feature set, making predictions even more comprehensive. The
modular nature of the system means we can plug in more data sources (e.g., machine sensor data
or operator biometric data) if they prove predictive. But even with just SOP deviation data from
one station, we demonstrated a clear value: a measurable improvement in yield and a reduction
in escaped defects. The deployment also provided real-time feedback to operators – knowing
that deviations immediately trigger scrutiny created a positive pressure to follow SOPs more
rigorously (this was anecdotal but observed). Phase 3 closes the loop by enabling real-time
intervention: the moment a risky situation is detected (either by direct deviation alert or by
predictive flag), action is taken to either correct the process or isolate the unit for repair. This
embodies the synergy of integrating MIRAI data analysis with computer vision: we not only
analyze and understand problems but also actively prevent them on the line.

3 Results
We evaluated the integrated MIRAI and PROSPECT system through a pilot deployment

in an electronics manufacturing line. The results are presented in two parts: (1) insights and
improvements gained from the MIRAI analytics and SOP monitoring (Phase 1 and Phase 2
outcomes), and (2) performance of the failure prediction model and its impact on yield (Phase 3
outcomes). All results are reported in a generic context (no proprietary data) but reflect the scale
of a real manufacturing scenario.
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3.1 Yield Improvement and Process Insights

3.1.1 Station Yield Recovery
In Phase 1 of the PROSPECT, after implementing continuous SOP monitoring and sub-

sequent interventions, the target station’s yield showed notable improvement. Initially, the
station’s first-pass yield (FPY) was fluctuating and averaged around 92% (meaning 8% of units
required rework or failed at that station). By identifying the most frequent SOP deviations (such
as missed scans and incorrect torque sequence) and addressing them through operator retraining
and process enforcement, we observed the FPY rise to ~96% over the following production
cycles. This ~4 percentage point improvement is significant in a high-volume environment,
representing dozens of units per week that no longer needed rework. It directly translates to cost
savings and increased throughput. More broadly, across the pilot period, the overall line FPY
(cumulative yield through all stations) also improved, although the pilot only focused on one
station’s changes. This suggests that fixing issues at one station prevented a cascade of problems
down the line. These findings reinforce the often-stated manufacturing principle that adherence
to “One Best Way” procedures yields better performance [25]. In fact, our data provided a
quantitative example of that – when SOP compliance approached 100% for the critical steps, the
station efficiency and yield were at their highest. This result mirrors other industrial case studies
where plants that achieved high SOP compliance saw corresponding high line performance [26].

3.1.2 Deviations Frequency and Reduction
Over the course of Phase 1 and Phase 2, we tracked the frequency of SOP deviations at the

station. Initially, in the first two weeks of monitoring, deviations were detected in roughly 15%
of the units processed (some minor, some critical). After feedback and corrective measures were
introduced (e.g., making a barcode scan mandatory, reinforcing training), the deviation rate
dropped to under 5% of units. This demonstrates the effect of simply measuring and responding,
operators and supervisors became aware that certain mistakes were happening and took steps
to avoid them. Among the types of deviations, we found that procedural misses (completely
skipped steps) were less frequent but often more impactful, whereas sequence or timing de-
viations (steps done out of order or too quickly without verification) were more common but
sometimes had less impact if eventually corrected. By the end of the pilot, the most egregious
deviation (the missed scan) was virtually eliminated, while a few others (like slightly out-of-
order operations that did not affect the outcome) still occurred occasionally. The comprehensive
monitoring made it possible to sustain this improvement; unlike a one-time audit, the AI system
continuously ensures that the process does not drift back to old habits. From a management
perspective, this data allowed us to pinpoint where additional training was needed – for instance,
if one shift had more deviations than another, management could investigate why (perhaps a
less experienced operator on that shift, etc.) and take action.

3.1.3 Correlation of Deviations with Failures
In Phase 2, our analysis provided concrete evidence linking SOP deviations to downstream

failures. One striking result was the correlation between the missed torque step and a failure
in a subsequent vibration test (part of reliability testing). Out of all units that had the torque
deviation, 20% later failed the vibration test (due to things like loose components), whereas
among units with no such deviation, only ~2% failed the same test. This tenfold difference
strongly indicates causation – improper torque likely caused components to be insufficiently
secured, which then led to failures under vibration stress. When presented with these findings,
the manufacturing engineers were convinced to implement additional safeguards (they decided
to introduce a sensor to verify torque for each screw, adding an automated check in addition to
the vision). In another example, a skipped inspection step correlated with an increase in cosmetic
defects seen at final quality check. While those cosmetic issues didn’t cause functional failures,
they did result in rework (polishing or reassembling parts), impacting efficiency. Units that
skipped the inspection had a 15% cosmetic rework rate versus 5% normally. By correlating each
deviation type with various outcome metrics (final test fails, reliability fails, rework incidents,
and even warranty returns for the period we could observe), we built a matrix of influence. This
kind of data is rarely available in traditional operations, as the links are not traced. But here
we had a clear mapping: for each SOP deviation type, we could quantify its effect on yield or
quality metrics. The repository indicated, for example:

(1) Deviation A (missed step): associated with failure mode X, correlation strength: high.
(2) Deviation B (incorrect sequence): mild correlation with extended test time, but no direct

failures (operators usually caught up and corrected later).
(3) Deviation C (skipped verification): moderate correlation with field returns of issue Y,
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suggesting a latent defect might slip through.

These insights not only validated the approach but also gave direction for continuous im-
provement. They essentially told us where to focus engineering effort. Additionally, from a Six
Sigma perspective, we considered the deviations as a source of process variation. By eliminating
those deviations, we reduce variability in the process, which naturally improves yield (higher
sigma level). Our results empirically demonstrate this: the variance in yield results at the station
narrowed after Phase 1, and the overall defect rate decreased after addressing the high-impact
deviations identified in Phase 2.

3.1.4 MIRAI Analytics Outcomes
Concurrent with the SOP pilot, the MIRAI platform’s yield and field analysis modules were

run regularly on the production data. While the MIRAI system covers the entire line, for brevity
we note a few key outcomes that intersected with our pilot:

(1) The MIRAI yield analysis module independently flagged the pilot station for having an
unusual uptick in failures during the initial baseline period, correctly identifying that most fails
were associated with a specific operator and shift (which corresponded to the time the missed
scan issue was occurring frequently). This was a good cross-validation; MIRAI’s automatic
data crunching pointed to a human factor issue at that station, which our vision system then
directly observed. This shows the synergy: data analytics can highlight “where to look,” and
vision provides the “what exactly is happening.”

(2) The MIRAI field analysis (though based on limited return data in the pilot’s timeframe)
indicated that units with the vibration failure mentioned above had all been processed at the
pilot station by a specific tool ID – again correlating to the torque issue. This kind of finding is
inline with industry experiences where manufacturing data patterns are tied to field reliability.
It underscores that the impact of SOP deviations can extend to field performance, not just
immediate yield.

(3) The BYOD analysis was tested by feeding in some ORT results: a batch of units had
undergone an accelerated life test (where a couple failed). MIRAI BYOD analysis found that
those failing units were among the ones that had minor process deviations (like shorter solder
time) upstream. While not directly part of SOP, it shows the utility of having an analytics
pipeline that can incorporate any new data and link it to production info.

(4) MIRAI Sentinel alerts during this period caught a separate issue on another station
(unrelated to our main pilot) where yield was dropping due to a misaligned test fixture. This
was resolved quickly. We mention this to illustrate that our integrated approach does not rely
on only one type of data; the MIRAI system continues to handle machine/equipment issues in
parallel, whereas the SOP vision pilot added the human procedure aspect into the holistic view.

Overall, the results demonstrate that integrating these systems provided both rapid local
improvements (fixing issues at the station) and broader visibility into how process execution
affects quality. We essentially expanded the feature space of manufacturing data to include
human adherence metrics, which proved to be important predictors.

3.2 Failure Prediction Model Performance

3.2.1 Predictive Accuracy
The failure prediction model trained in Phase 3 was evaluated on historical data and then

monitored live. On the test dataset of a few thousand units (with known outcomes), the model
achieved an AUC (Area Under ROC Curve) of about 0.92, indicating excellent discrimination
between units that fail and those that pass. At an operating threshold chosen to prioritize
catching failures, the model’s sensitivity (true positive rate) was around 85%. This means 85%
of units that did end up failing final test were correctly predicted as high-risk by the model
before the final test occurred. The specificity (true negative rate) was slightly lower, around
80%, since we tolerated some false positives. The precision or positive predictive value was in
the range of 30–40%, meaning that among the units flagged as high-risk, roughly a third actually
would have failed if not intervened. While 30–40% precision might seem moderate, it is actually
quite useful in context – these flagged units can be inspected with relatively low effort, and if 1
in 3 is a true issue, that’s a big win considering those would have been failures. In fact, many
predictive maintenance or quality models in industry operate in regimes of low base failure
rates, so a precision of 30% can be economically justified if the cost of checking a false alarm is
small compared to the cost of a miss. We should note that the model was somewhat conservative
in that any unit with even a minor critical deviation was flagged. There were almost no false
negatives for the specific failure modes related to the monitored deviations; the few failures that

Research on Intelligent Manufacturing and Assembly • SyncSci Publishing 210 of 218

https://www.syncsci.com/journal/RIMA
https://www.syncsci.com


Volume 4 Issue 1, 2025 Vinit Vithalrai Shenvi and Ashutosh Sharma

slipped through were due to other causes (unrelated to the SOP steps we monitored).

3.2.2 Real-Time Deployment Results
During live deployment over one month, the model flagged approximately 50 units as high-

risk out of several hundred produced. Of those 50, about 15 were confirmed to have real issues
that would likely have caused test failures or field failures (true positives). These issues were
fixed on the spot. For example, one flagged unit was found to have an improperly seated
connector (the SOP deviation was a skipped verification step) – the technician reseated it, and
the unit then passed all tests. Without the system, that unit would have failed at final test or
perhaps passed but failed in the field. Another flagged unit had a missing screw (caught by
visual check after flagging) which was then installed, saving that unit from likely failure. The
other 35 flagged units (false positives) were re-inspected and no problems were found; nearly
all of them passed final test normally. In those cases, the model erred on the side of caution (for
instance, an operator might have slightly deviated but corrected it, and the unit was fine, yet
it was flagged due to the deviation log entry). We are analyzing those false positives to see if
the model can be refined to ignore truly benign deviations (perhaps by incorporating the fact
the step was eventually done, albeit late). However, the manufacturing leadership was pleased
with this result: 15 units proactively saved from failure is a direct improvement in yield, and the
overhead of checking 35 extra units was manageable. In fact, the yield improvement at final test
was quantifiable. The line’s final test yield improved from ~95% to ~98% during that period.
Not all of that is solely due to the model (some general improvements happened too), but a
portion can be attributed to catching those failures early. Even more importantly, every unit that
is fixed early saves significant time; a unit caught at the station can be reworked in minutes,
whereas if it fails at final test, it disrupts the flow and requires sending the unit to a repair area,
retesting after fix, etc., which could take hours. So there is an efficiency gain beyond the yield
percentage.

3.2.3 Case Study – Preventing a Field Escape
While our deployment time was short to gather field data, one notable anecdote stands out.

One unit was flagged by the model for a minor SOP deviation (the operator did not follow the
exact order of two sub-steps, but eventually completed them). The unit passed final functional
tests, so normally it would have shipped. Because it was flagged, the quality engineer decided to
put it through an extra stress test overnight. It turned out that under prolonged thermal cycling,
the unit did fail due to a joint that was not perfectly soldered (the deviation might have caused
a suboptimal solder reflow). This unit was caught and scrapped before shipment. While this
is a single instance, it exemplifies the potential of failure prediction to prevent a possible field
failure (which could have resulted in a costly customer return or warranty claim). It underscores
that a predictive model can add a layer of protection especially for latent defects that aren’t
detectable by normal tests but have telltale signs in the process data.

3.2.4 Integration with MIRAI Sentinel
We also integrated the model’s logic into the MIRAI Sentinel platform. Instead of just

alerting on correlations, MIRAI Sentinel can use the predictive model to watch all units. In
effect, every time a deviation was logged (as part of the data stream), MIRAI Sentinel would
evaluate the risk and generate an alert for high-risk unit. This means even if we expand to more
stations, a central system can coordinate the flags and possibly even suggest where to route
the unit (to an offline check). The result is a unified alert dashboard that not only warns of
equipment issues (as it did before) but now also of specific units at risk due to process anomalies.
This unified approach is a step towards what some quality experts call a “360-degree view of
quality”– combining machine, process, and human factors data to ensure each product meets
standards [27]. Our results contribute to that vision by showing how to incorporate PROSPECT
data effectively.

3.2.5 Economic Impact
Although this paper focuses on technical results, a brief note on the potential economic impact

is warranted. Improving FPY even by a few percentage points on a high-volume electronics
line can save hundreds of thousands of dollars annually in labor, scrap, and warranty costs. Our
pilot’s ~4% station yield improvement and ~3% final yield improvement translate to fewer units
needing rework and more units out the door per day. Additionally, preventing field failures
avoids not just the direct cost of returns but also intangible costs like customer dissatisfaction.
The real-time fix approach also reduces WIP and cycle time, as units do not circulate back
and forth for fixes. Thus, the integration of MIRAI and vision we demonstrated has a clear
business case, aligning with known benefits of AI in manufacturing such as reduced defects,

Research on Intelligent Manufacturing and Assembly • SyncSci Publishing 211 of 218

https://www.syncsci.com/journal/RIMA
https://www.syncsci.com


Volume 4 Issue 1, 2025 Vinit Vithalrai Shenvi and Ashutosh Sharma

cost savings, and throughput improvement [28]. Our results are in line with other reports where
AI-driven interventions led to yield gains and lower defect rates; for example, an AI-based defect
classification system can significantly boost production yield by catching defects early [29]. In
our case, instead of optical defect inspection, we caught process defects, but the end goal of
yield boost is the same.

3.3 Summary of Key Results
To summarize quantitatively:
(1) SOP deviation rate at target station: reduced from ~15% of units to <5% through Phase 1

actions.
(2) Station first-pass yield: improved from ~92% to ~96% after addressing key deviations.
(3) Correlation example: units with deviation X were ~10× more likely to fail later testing

than those without (clearly identifying X as a root cause contributor).
(4) Failure prediction model: 85% of failing units correctly predicted (caught) with ~30%

precision in a pilot deployment; final test yield increased ~3% with model in place.
(5) Zero critical failures went unaddressed among those monitored – meaning the combination

of vision + model caught all instances of the known issues we targeted.
(6) The system demonstrated scalability in data handling, analyzing thousands of data points

(images, events, test records) per unit in an automated fashion.

These results support the hypothesis that a holistic approach combining data analytics,
computer vision, and machine learning can substantially improve manufacturing outcomes [30].
They also highlight that neither data analytics nor vision alone would be as effective: it was
the combination that allowed identifying and preventing issues. In the next section, we discuss
these implications and how they compare to other approaches in the industry.

4 Discussion
The successful pilot implementation of the integrated MIRAI + computer vision + PROSPECT

approach provides several insights into both the technical and operational aspects of advanced
manufacturing quality systems. In this section, we interpret the results, compare our approach
with related work, examine the generalizability of the solution, and discuss challenges and
future directions.

4.1 Integration of Diverse Data Sources
One of the standout aspects of our approach is how it brings together traditionally separate

data streams – test data and human action data – into one analytical framework. In manufacturing,
it’s common to have siloed systems: a Manufacturing Execution System (MES) that captures
process data and yields, and maybe a separate quality system for audit findings or manual
observations. By capturing PROSPECT via computer vision and feeding that into the unified
MIRAI data lake, we created a richer dataset for analysis and modeling. This aligns with the
Industry 4.0 philosophy of system integration and a “single source of truth” for manufacturing
data [22]. Our results show that this integration is not just technically feasible but highly
beneficial. For instance, MIRAI’s analytics became more powerful when we included the SOP
deviation flags as additional features – we could uncover correlations (like the torque issue) that
might have been obscured if one only looked at test data in isolation. Comparable approaches in
industry often focus on one domain: e.g., automated optical inspection (AOI) systems focus on
visual defects on products, and manufacturing intelligence platforms focus on sensor and test
data. We effectively combined a “process compliance monitoring system” with a data analytics
platform. This holistic view is what gave us a 360-degree understanding of the root causes. Our
work operationalized that integration in a custom way, demonstrating that the vision data can
feed a predictive model that ties into quality control. A key lesson is that investment in data
engineering – to ensure different data modalities can join on common identifiers – pays off
greatly. We needed to ensure timing, serial number tracking, and database schema all aligned,
which was non-trivial, but once in place, it allowed complex analyses with ease. This suggests
future factories should design data architecture with such integration in mind from the ground
up.

4.2 Impact on Yield and Quality
The improvement in yield we observed is consistent with the idea that reducing process

variation (including variation introduced by human error) improves quality. This echoes funda-
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mental principles of Six Sigma and Lean manufacturing, where standard work and elimination
of deviations lead to better outcomes [31]. Our approach provided a high-tech way to enforce
and measure standard work. Traditionally, Lean practitioners implement standard work charts
and audit them; our system automates that audit and provides quantitative feedback in real time.
This can be seen as a form of digital poka-yoke, where the system acts as an error-prevention
mechanism by catching mistakes [32]. The yield improvements, while demonstrated at one
station, hint at the potential if scaled line-wide or plant-wide. If every critical station is moni-
tored and optimized, incremental improvements at each can compound into a large overall gain
(especially in complex assemblies with many steps). Additionally, by catching issues upstream,
we reduce the accumulated cost of defects – a defect caught and fixed at station 5 is cheaper than
one found at final test or, worse, in the customer’s hands. This is in line with the well-known
“Rule of 10” in quality (each step later you find a defect, the cost multiplies by roughly 10). We
effectively pushed detection as far upstream as possible.

4.3 Comparison with Prior Approaches
It’s valuable to compare our integrated approach with other strategies.

4.3.1 Manual SOP Auditing vs. Computer Vision
Before vision, companies relied on periodic SOP compliance audits. These are labor-

intensive and often too late to prevent defects. As the ADLINK case and our introduction noted,
manual monitoring is inconsistent and cannot cover all operations. Our results confirm that
an AI vision system can achieve consistent 24/7 monitoring and react in less than a second
to issues, something impossible with manual audits. Other researchers and vendors have
begun documenting similar successes with vision. This technological shift essentially ensures
adherence in ways that were previously only aspirational.

4.3.2 Automated Test Data Analysis
Machine learning applied to test data (without vision) has been used for yield improvement

and predictive maintenance. Our MIRAI platform is conceptually similar to those – it uses
data to find correlations and root causes. The difference is that we extended the data to include
human factors via SOP logs. Many traditional yield analyses might not capture that an assembly
step was done incorrectly; they might only see the end symptom (like a measurement out of
range). By adding the cause (deviation event) as data, we enhanced the analysis. In essence, our
approach could be seen as adding a new category of sensor: the eyes on the process.

4.3.3 Direct Automated Inspection vs. SOP Monitoring
One might ask, why not simply rely on direct automated inspections for quality (like vision

systems that inspect the product for defects)? Indeed, AOI and end-of-line vision inspection are
common in electronics (for solder joint inspection, etc.). Those catch defects directly on the
product. Our SOP monitoring is complementary: it catches the process mistake that might lead
to a defect, often before the defect is even visible or testable. This is a proactive vs. reactive
distinction. Both approaches together would be ideal – inspect the product and ensure the
process is correct. Ensuring the process prevents many defects from ever occurring, reducing
the load on final inspection. This is analogous to how in healthcare, preventing disease (via
monitoring and intervention) is better than just diagnosing it later.

4.3.4 Predictive Models in Manufacturing
The use of predictive models (like our failure prediction model) is increasingly common

under the umbrella of predictive maintenance and predictive quality. For example, others have
applied ML models to predict machine failures or to predict yield of a lot before it finishes
processing [33]. Our model specifically predicts product failures based on process deviations.
This is somewhat novel because it leverages human error data in the prediction, whereas many
predictive maintenance models use sensor data from machines. Our system is like an automated,
data-driven FMEA: it identified a cause (SOP deviation) and showed the effect (failure), then
we took action to control that cause. The difference is it was based on real data rather than
theoretical assessment.

4.3.5 Scalability and Generalizability
While the pilot was on one station, the approach can be scaled to multiple stations and

different product lines. MIRAI is inherently scalable as a data platform; adding more stations
just means more data, which modern data processing can handle (especially with cloud or on-
premise clusters). The computer vision system would need to be replicated for each station type.
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This implies training new models for each station’s SOP (since each has distinct actions). That
is a non-trivial effort, but techniques like transfer learning and more general action recognition
models can speed it up. There are also emerging no-code vision platforms that claim to allow
quick setup of such monitoring. In an enterprise scenario, one could create a library of vision
models for common assembly tasks and deploy them widely. The infrastructure (cameras and
compute) cost is a factor, but as vision technology becomes cheaper and more ubiquitous, this
becomes more viable. Furthermore, the approach is general to any manufacturing operation
where humans perform critical tasks – not just electronics. One could see applications in
automotive assembly, medical device manufacturing, or even warehouse operations for quality
assurance. The key is identifying processes where deviations significantly impact quality. Our
work provides a template: start with a pilot at a pain point, prove the value, then expand. It also
shows how to integrate with existing data systems, which is often a concern (people fear new
systems that don’t talk to old ones). We integrated via the data lake and by aligning with MES
events, demonstrating you don’t have to rip-and-replace anything; you augment it.

4.3.6 Worker and Organizational Impact
It’s worth discussing how this system affects the people on the factory floor. Initially, there

can be apprehension that cameras watching operators could be used in a punitive way or create a
“Big Brother” environment. We addressed this by focusing the feedback on process, not personal
performance, and by involving operators in the improvement process (for example, showing
them how eliminating a certain mistake made their job easier by reducing rework). Over time,
operators saw the system as a helper – it would catch something they missed, essentially acting
as a safety net. Also, with fewer failures, their work actually went more smoothly (fewer angry
rework technicians coming back asking about mistakes). Training and communication are vital:
we stressed that the goal was to improve the process and help them succeed, not to punish. This
approach can actually elevate the role of operators: they become partners in a high-tech process
and can take pride in achieving high compliance. In fact, one could gamify PROSPECT (though
we did not do this) – showing metrics of improvement and recognizing teams that have zero
deviations for a week, etc. From an organizational standpoint, this integrated system breaks
down barriers between different teams: process engineers, quality engineers, data scientists,
and line supervisors all had to collaborate. It fostered a more data-driven culture on the floor.
Decisions to change processes were backed by data (e.g., “the data shows this step is causing
80% of our failures, so we will fix it” instead of arguments based on anecdotes). This is an
important cultural shift towards what some call manufacturing intelligence.

5 Limitations
Despite the successes, there are some limitations and challenges to address.

5.1 Model Scope
Our failure prediction model was limited by the scope of data (one station’s deviations). If a

failure was caused by something outside that scope (e.g., a PCB defect not related to assembly),
the model wouldn’t catch it. Thus, it’s not a panacea for all failures, only those tied to the
monitored parameters. As we scale, we need to include more features to cover more failure
modes.

5.2 False Alarms
As seen, there were false positives. Tuning the system to reduce unnecessary alerts without

missing true issues is an ongoing effort. This involves both refining vision detection (to not log
a deviation unless it’s truly a deviation) and refining the predictive model. We might incorporate
more context to distinguish a serious deviation from a harmless one.

5.3 Vision Challenges
The computer vision system, while robust for the pilot, can face difficulties in more complex

settings. Changes in lighting, obstructions, or operator behavior variations can affect detection.
Also, if the product model changes or the process changes, the vision model may need retraining.
We discovered that even something like an operator wearing gloves vs. not wearing gloves could
confuse the model initially (we then included both scenarios in training data). Maintaining
and updating these models will require a dedicated effort or a user-friendly training interface.
This is a general challenge in AI adoption in manufacturing – the need for updating models as
processes evolve.
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5.4 Data Volume and Latency
Processing video for many stations could be data intensive. We mitigated this by edge

processing (only events go to the server, not full video), but in some contexts storing video
might be desirable for later analysis. That raises storage and privacy questions. In our case, we
did not need to store raw video long-term, just the detected event timestamps which are tiny in
size. So our system is efficient in that sense.

5.5 Generality of SOP Deviations
The types of deviations and their impacts can vary widely by process. In some processes,

a deviation might not have any effect (maybe a redundant step). So one must be careful not
to overreact to every deviation. Our correlation phase addressed that by quantifying impact.
But if someone applied such systems blindly without analysis, they might waste effort on low-
impact deviations or, conversely, not realize a critical one. Thus, the combination of automated
monitoring with human engineering judgement remains important.

5.6 No Internal Proprietary Tools
We consciously described everything in generic terms. In actual implementation, one might

use specific software or platforms (like a specific brand of data historian or a certain AI
framework). Our aim was to show the approach without tying it to a vendor. This is beneficial
academically because it focuses on principles, but a real company would need to either develop
or purchase the specific tools to implement it.

6 Future Work
Building on this pilot, there are several avenues for further development.

6.1 Multi-Station and End-to-End Monitoring
We plan to extend vision monitoring to multiple stations (including automated ones where a

robot might perform tasks, to verify the robot did them correctly) and link deviations across the
entire process. This could lead to a much more powerful predictive model that uses a sequence
of events from multiple stations to predict final quality.

6.2 Advanced AI Models
The action recognition model can be made more sophisticated. For example, using deep

sequence models (like an LSTM or transformer taking video frames as input) might capture
deviations in subtler ways and reduce false positives. Also, anomaly detection models could be
employed so the system can learn what a “normal” operation looks like and flag anything that
deviates from the norm, even if not pre-defined.

6.3 Operator Guidance Systems
We are considering integrating augmented reality (AR) or real-time feedback to the operator

through an interface. Currently the feedback is mostly an alert to supervisor or a light signal. If
operators had, say, AR glasses or a screen highlighting what step to do next or warning them
they missed something, it could guide them before a deviation becomes permanent. This would
truly close the loop at the operator level – prevention rather than post-fact alert.

6.4 Expansion of MIRAI Analytics
The data collected on PROSPECT could feed other MIRAI modules. For example, a training

effectiveness analysis – measuring if after training sessions the deviation rates drop (and how
fast). Or feeding into a digital twin of the process that simulates how errors propagate. Also,
including cost models in MIRAI to prioritize which issues to fix first based on potential savings.

6.5 Comparative Studies
We intend to benchmark this integrated approach against others. For instance, compare yield

improvement purely from a data analytics approach vs. with the added vision data, to quantify
the incremental benefit of vision. Also, measure ROI in terms of cost of equipment vs. savings.
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6.6 Generalization to Autonomous Corrections
Ultimately, we envision a system that not only predicts failures but can autonomously

correct them or adjust the process. For example, if a deviation is detected, the system might
automatically adjust a downstream test to be more stringent for that unit (to ensure the defect is
caught). Or if certain deviations keep happening, the system might automatically modify the
SOP or machine parameters (with approval workflow) to error-proof it. This would be a step
towards a self-optimizing production line.

7 Conclusion
In this paper, we presented a comprehensive approach to improving yield and predicting

failures in electronics manufacturing by integrating a Manufacturing Intelligence for Reliability
and Automated Insights (MIRAI) system with computer vision-based PROSPECT monitoring.
Our solution spans data engineering, real-time monitoring, and machine learning, creating a
closed-loop feedback system for process improvement. Through a pilot study, we demonstrated
that this integration can effectively identify the root causes of yield loss (including human
procedural errors), facilitate timely corrective actions, and enable proactive failure prediction to
catch defects before they escape. Key contributions of this work include:

7.1 Holistic Data Integration
We showed how diverse data sources – production test data, operator action logs from vision,

and failure analysis results – can be unified and utilized for advanced analytics. This holistic
view provided insights that would be inaccessible to siloed analysis, highlighting the importance
of integrated manufacturing intelligence in the era of Industry 4.0.

7.2 Computer Vision for SOP Compliance
We implemented a computer vision system to automatically monitor SOP compliance at an

assembly station. The system achieved continuous, unbiased observation of operator practices,
detecting deviations in real time. By doing so, it effectively digitized the enforcement of standard
procedures. Our results confirmed that such a system can drastically reduce human error-related
defects, consistent with emerging industry reports of AI improving quality assurance on the
shop .

7.3 Data-Driven Yield Improvement
Using MIRAI’s analytical workflows, we rapidly pinpointed factors causing yield drops and

field failures. The self-serve yield analysis identified patterns in failing units, and the field
analysis linked production data to reliability outcomes, providing actionable recommendations.
We documented specific cases where addressing a revealed issue (e.g., a particular SOP deviation
or a common factor among failing units) led to a measurable increase in first-pass yield. These
case studies reinforce the value of moving from reactive problem-solving to proactive, data-
driven decision making in manufacturing.

7.4 Failure Prediction Model
We developed and deployed a machine learning model that predicts product failures based on

signals including SOP deviations. The model’s strong performance in the pilot (catching ~85%
of potential failures) underscores the feasibility of predictive quality in manufacturing. Rather
than waiting for a failure to occur, the line can now anticipate it and intervene. This represents a
shift towards predictive manufacturing operations, where each unit’s risk is continually assessed
and mitigated in real time.

7.5 Generic and Scalable Framework
Although our implementation was in an electronics assembly context, we designed the

framework to be generic. We avoided any reliance on proprietary tools or product-specific
heuristics, focusing instead on general techniques (computer vision for action recognition,
commonality analysis, supervised learning on process data). This makes our approach applicable
to a wide range of manufacturing settings where improving yield and quality is critical. Whether
it is circuit board assembly, automotive component production, or any process with manual
operations, the core idea remains the same: instrument the process with sensors (vision), collect
and analyze the data holistically, and use AI to drive continuous improvement.
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7.6 Scientific and Practical Relevance
From an academic perspective, our work bridges the gap between theory and practice by

applying state-of-the-art AI (deep learning vision, data mining, ML models) to a practical indus-
trial problem, and demonstrating tangible benefits. We also provided citations to comparable
approaches in literature and industry, positioning our contributions in context. For instance,
our integrated predictive approach can be seen as a novel extension of both traditional quality
control and newer smart factory initiatives.

The successful results of the pilot pave the way for broader deployment. In future work,
we plan to scale the system to more stations and more complex assembly scenarios, further
validating its robustness. We will also explore advanced modeling techniques to improve
prediction and possibly automate corrective responses. Another avenue is to incorporate cost
optimization – for example, dynamically deciding whether a flagged unit should be reworked or
scrapped based on prediction confidence and economic factors.

The integration of MIRAI, computer vision monitoring, and PROSPECT enforcement rep-
resents a powerful strategy for electronics manufacturers seeking to achieve higher yields and
near-zero defects. By ensuring that the processes are executed as intended and learning from
every deviation, manufacturers can dramatically reduce variability and preempt failures. Our
research demonstrates that such an approach is not only technically achievable but highly
effective. It embodies a shift from reactive quality control to proactive and preventive quality
assurance. The manufacturing line becomes a intelligent system: constantly observing, learning,
and improving. This leads to tangible gains in efficiency, product quality, and customer satis-
faction. As the manufacturing industry continues to embrace digital transformation, we expect
that the methodologies outlined in this paper will inform the next generation of smart factories,
where data and AI work hand in hand with human operators to drive excellence in production.
Ultimately, the synergy of human expertise, advanced analytics, and real-time vision feedback
can unlock new levels of performance and reliability in electronics manufacturing and beyond.
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