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Abstract: Accurate prediction of pacemaker battery life is critical to timely generator replace-
ment and patient safety. We evaluated three regression approaches: multilayer perceptron Neural
Networks (NN), Random Forests (RF), and Linear Regression (LR), using 42 real-world inter-
rogation reports spanning single, dual, and triple-chamber Medtronic devices. Key electrical
parameters (battery voltage/current, lead impedance, capture thresholds, pacing percentages,
etc.) were modelled. Performance was quantified with mean absolute error (MAE), mean
squared error (MSE), and coefficient of determination (R?). NNs achieved the highest accuracy
(R? ~ 1.0; MAE < 0.1 months), RF provided robust results (R? 2 0.85), whereas LR exhib-
ited limited predictive fidelity (R2 < 0.41). “Monte-Carlo simulations (n = 1000)” and 95%
prediction intervals characterized predictive uncertainty; residual and Q-Q analyses verified
statistical assumptions. Our findings indicate that a data-driven NN framework can reliably
forecast remaining battery longevity, enabling proactive replacement scheduling and reducing
unexpected generator depletion. The methodology is compatible with different manufacturers
and suitable to integration within remote device follow-up systems to enhance longitudinal
cardiac care.

Keywords: battery life prediction, machine learning models, neural networks, random forests
regression, linear regression, Monte Carlo simulations

1 Introduction

Arrhythmia or irregular heartbeats are major contribution to cardiovascular diseases, a
group which continues to feature prominently both when it comes to morbidity and mortality
globally [1]. Pacemakers are extraordinarily successful tool for handling such irregularities
as they effectively restore and preserve normal heart rhythms [2]. For millions of patients
worldwide, these small, implanted devices greatly enhance their quality of life by delivering
electrical impulses that control the heart’s rhythm [3]. Since their inception in the 1950s,
pacemakers have evolved significantly, enabling adaptive pacing, continuous monitoring, and
personalized therapies [4, 5].

The modalities of modern pacemakers are categorized to almost types based on the chambers
they pace and the way they work. There are single-chamber pacemakers (stimulates atrium or
ventricle) and dual-chamber pacemakers (stimulates both chambers in a coordinated manner.
Newer models, like biventricular pacemakers, can be used in heart failure patients that will
pace into both ventricles and improve efficiency of the heart. These advancements have made
pacemakers an indispensable device in the treatment and management of several cardiovascular
conditions, ranging from bradycardia to complex arrhythmias [6].

1.1 Single-chamber Pacemaker

The single-chamber pacemaker is a type of pacemaker which has a single chamber, monitors
the heart’s rhythm and sends electrical impulses when it detects an abnormal or slow heartbeat.
Single-chamber pacemakers are effective at pacing the heart at the proper rate, but they can’t
manage more sophisticated arrhythmias that impact several heart chambers. For bradycardia,
where the heart beats too slowly, patients are often recommended this device and for the patients
requiring pacing in only one chamber of the heart usually the right ventricle [7]. (Figure 1)

1.2 Dual-Chamber Pacemaker

Both right atrium and right ventricle are stimulated in a dual-chamber pacemaker which
supports more sophisticated pacing. This pacemaker is most suited for patients with atrioven-
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Figure 1 Diagram of a single-chamber pacemaker [8]

tricular (AV) block or other pathologies that occur downstream of communication between
atria and ventricles. By pacing both chambers, the dual-chamber pacemaker promotes correct
timing contrast between atrial and ventricular contractions, improving overall efficiency of the
heart and preventing pathology such as atrial fibrillation or congestive heart failure. Compared
to single-chamber devices, this kind of pacemaker provides better synchronization between
the heart’s chambers, leading to more natural cardiac rhythms and better clinical outcomes [9].
(Figure 2)

Figure 2 Diagram of a dual-chamber pacemaker [10]

1.3 Triple-Chamber Pacemaker

Also known as a cardiac resynchronization treatment (CRT) device, a triple-chamber pace-
maker is the most sophisticated of all pacemaker types. It is used to help patients who have very
poor heart function or other conditions that result in poor blood circulation into the heart. This
was very different from the traditional pacemaker with two different chambers. Resynchroniza-
tion of the electrical activity of the heart improves the pump function of the heart which in turn
improves the heart failure symptoms, and improves the quality of life of the patient. CRT plays
an important role in left ventricle dysfunction when other modalities fail [11]. (Figure 3)

.

Figure 3 Diagram of a triple-chamber pacemaker [12]

Lead impedance, pacing thresholds, device programming, and the particular cardiac condition
being treated are some of the variables that affect these pacemaker’s longevity and performance
[13]. The requirement for precise battery life and device performance monitoring increases as
pacemakers get more complicated, moving from single-chamber to dual-chamber and triple-
chamber devices. Optimizing patient care and device maintenance requires an understanding
of how these various pacemaker types work as well as the variables that affect how long their
batteries operate.

1.4 Battery technology in Medtronic Pacemakers

Pacemaker battery longevity is influenced by a combination of device type, pacing behavior,
and individual patient factors. In general, single-chamber pacemakers tend to have longer battery
life due to lower energy demands, while dual- and triple-chamber devices consume more energy
as they are required to pace multiple cardiac chambers and maintain synchronized contractions.
The majority of modern pacemakers use lithium-based batteries, with lithium-iodine (Li-I2)
cells being a common choice across manufacturers due to their high energy density, long-term
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stability, and biocompatibility. These batteries form a solid electrolyte, minimizing leakage
risks and making them ideal for long-term implantation. Battery life can range from 10-15
years in single-chamber devices, 8—12 years in dual-chamber, and 5-10 years in triple-chamber
pacemakers, although actual lifespan varies based on lead impedance, capture thresholds, pacing
percentage, and patient activity levels. Manufacturers often implement energy management
systems to optimize power usage and extend device longevity. For example, Medtronic, a
leading pacemaker manufacturer, utilizes lithium-iodine batteries and incorporates advanced
energy-saving algorithms in its devices. While Medtronic devices were used in this study, the
modeling approach and findings are designed to be applicable across all pacemaker platforms
that use similar battery and pacing technologies [14—18].

1.5 Importance of Battery Life Prediction

Ensuring pacemaker functionality and longevity depends on effective battery management.
That means we need to watch battery usage carefully. Over a long time, each pacemaker battery
gradually loses power, we change them on time to avoid bad functioning of its device. Data
about how much power the battery has left is very essential for both patient care and planning
replacement time as early failure could cause big trouble [19].

This research is focused on using machine learning models for pacemaker, especially for
forecasting battery life and device performance. These algorithms can forecast the battery’s
lifespan and foresee possible failures by examining data from pacemaker interrogation reports,
giving clinicians important information. These prediction models find trends in pacemaker
behavior, including pacing thresholds, lead impedance, and battery condition, by using data
mining techniques, neural networks, and other machine learning algorithms. The application
of these models in clinical settings has enormous potential to increase pacemaker monitoring
accuracy and improve patient outcomes in general [20].

The varieties of pacemakers, their battery life issues, and the use of machine learning models
to enhance pacemaker management are the main topics of this research for the development of
cardiovascular devices. The study lays the groundwork for comprehending the intricacies of
pacemaker function, the function of predictive models, and the necessity of ongoing pacemaker
technology improvement by giving a broad review of these subjects.

1.6 Data Mining

Data mining, a potent technology that combines methods from statistics, machine learning,
and artificial intelligence, is used to identify important patterns in large and complex data sets,
especially in sectors like healthcare, finance, and biomedical engineering [21]. Biomedical
engineering greatly depends on the analysis of complex medical data, such as diagnostic imaging,
medical records, and device reports, to improve patient care and device management [22].
Predicting pacemaker battery life is one significant use, which is essential for guaranteeing
patient safety and device dependability [23]. Battery voltage, lead impedance, and pacing
thresholds are among the data included in pacemaker interrogation reports yet, conventional
techniques frequently fail to recognize their intricate relationships [24]. Neural networks,
random forests, and linear regression are examples of machine learning models that reveal
hidden patterns [18,21]. Building such predictive models is the main goal of this research in
order to assist medical professionals in improving patient outcomes, cutting down on pointless
treatments, and making better decisions.

1.7 Machine Learning Models for Pacemaker Battery Life Predic-
tion

Machine learning approaches like neural networks, random forests, and linear regression
provide strong instruments for examining intricate datasets and identifying patterns that con-
ventional approaches can miss in the context of pacemaker battery life prediction. These types
are all well-suited to handle the complex nature of pacemaker battery performance since they
each offer unique benefits. This work aims to improve the accuracy of battery life estimates and
dependability by applying these models to pacemaker interrogation reports, giving doctors a
more reliable and data-driven approach to device care.

1.7.1 Neural Networks (NN)

A class of machine learning models called neural networks draws inspiration from the
composition and operations of the human brain. These models are perfect for predicting
pacemaker battery life because of their exceptional ability to handle big, complex datasets
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and non-linear connections. Interconnected nodes, or neurons, arranged in input, hidden, and
output layers make up a neural network. Neural networks are capable of capturing intricate
relationships between many parameters, including lead impedance, pacing settings, and device
usage, in the context of pacemaker data. They are especially useful for producing individualized
predictions and raising the precision of battery life estimations because of their capacity to
adjust to hidden patterns and simulate complex relationships between factors [25].

1.7.2 Random Forest (RF)

An ensemble learning method called Random Forest builds several decision trees by choosing
subsets of the data and features at random. Random forests can generate predictions based
on the majority vote of all the trees in the ensemble because of this diversity. The ability of
random forests to withstand overfitting is one of their main advantages, which makes them ideal
for managing the diverse and noisy nature of pacemaker data. The most important elements
influencing battery lifespan, such as lead impedance and pacing demand, can be found using
random forests in the context of battery life prediction. Additionally, random forests offer
a feature relevance metric that can help physicians prioritize the most important aspects of
pacemaker device management [26].

1.7.3 Linear Regression (LR)

A popular statistical model that makes the assumption that there is a linear relationship
between the input features and the target variable is called linear regression. When it comes
to pacemaker battery life prediction, linear regression provides an easy-to-understand method
for figuring out how specific elements, such battery voltage or pacing threshold, affect battery
depletion. Linear regression offers a helpful starting point for locating linear dependencies in the
data, but being less adaptable than more sophisticated models like neural networks. It is a useful
tool for preliminary study and for comprehending the overall impact of certain parameters on
pacemaker battery performance because of its simplicity and transparency [27].

This research seeks to create a thorough understanding of pacemaker battery life prediction
by utilizing the strengths of these three different models: random forest’s resilience in managing
a variety of data, neural network’s ability to adapt to complex, non-linear relationships, and
linear regression’s ease of use and interpretability. By combining these models, it is possible to
analyze pacemaker interrogation data in a comprehensive way, increase the precision of battery
life estimates, and ultimately improve patient care and device management.

1.8 Monte Carlo Simulation in Predictive Modeling

Monte Carlo simulation has become a potent method for evaluating prediction uncertainty
and variability in order to further improve the dependability of predictive models. A computing
method called Monte Carlo simulation models the probability distribution of outcomes in
systems with inherent uncertainty by repeatedly sampling at random. By adding small changes to
input data, like pacing thresholds, lead impedance, and battery voltage, Monte Carlo simulation
enables researchers to model a variety of potential situations in the context of pacemaker battery
life prediction [28]. Together with confidence intervals that measure the degree of uncertainty
in the forecasts, this method offers a probabilistic estimate of battery life.

Because real-world data frequently contains noise and variability, Monte Carlo simulation
is very useful in healthcare contexts. Clinicians can make better decisions regarding device
maintenance and replacement by using Monte Carlo methods to establish the range of probable
battery life forecasts by simulating thousands of different events [29]. For instance, a tight Monte
Carlo simulation confidence interval denotes high confidence in the anticipated battery life,
whereas a broader range denotes increased uncertainty and calls for closer device monitoring
[30].

The robustness of machine learning methods, such as neural networks, random forests, and
linear regression, in forecasting pacemaker battery life is assessed in this study using Monte
Carlo simulation. Through the use of Monte Carlo techniques, this study seeks to improve the
accuracy of forecasts for clinical decision-making and offer a more thorough understanding of
the variables affecting battery longevity.

1.9 Analytical Tools for Model Evaluation

This study used a number of analytical approaches to evaluate the effectiveness and depend-
ability of predictive models. In order to verify that the prediction errors adhere to a normal
distribution, a crucial premise in regression modeling: normal probability plots, or Q-Q plots,
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were employed to assess the residual’s normality. Patterns in prediction mistakes were found
by analyzing residual plots, which may indicate biases or systematic departures in the models.
Confidence intervals, which provide a range within which the actual battery life is anticipated
to fall with a given likelihood (e.g., 95%), were also computed to quantify the uncertainty in
forecasts. These resources were utilized in conjunction with Monte Carlo simulations to evaluate
the model’s resilience and offer a thorough comprehension of their capacity for prediction [31].

In addition to these tools, Mean Absolute Error (MAE), Mean Squared Error (MSE), and
R-squared (R?) are important metrics used to assess how well the machine learning models
perform.

1.9.1 Mean Absolute Error (MAE)

The average absolute difference between the expected and actual values is measured by MAE.
Since it shows the average difference between predictions and actual values, it offers a clear
explanation of the model’s error size. Lower MAE values indicate better model performance, as
they reflect smaller prediction errors [32,33].

1.9.2 Mean Squared Error (MSE)

The average of the squared discrepancies between expected and actual data is determined by
MSE. MSE is sensitive to outliers since it penalizes greater errors more severely by squaring
the errors. Because it represents reduced total prediction errors, a lower MSE denotes a more
accurate model [34].

1.9.3 R-squared (R?)

The coefficient of determination, which we often just refer to as R Squared, measures how
much variation in dependent variable can be explained by the independent variables. Its value
ranges from zero to one; zero means we can predict nothing, and one means the model precisely
explains all variation in data. A better match between the model and the data is shown by higher
R? values [34].

These indicators are crucial for evaluating how well prediction models, like the ones employed
in this work to estimate pacemaker battery life perform. We may assess the models’ accuracy,
precision, and dependability and make sure they are appropriate for clinical decision-making by
examining MAE, MSE, and RZ.

1.10 Research objective

The goal of this study is to develop and evaluate predictive models for estimating the
remaining battery life of pacemakers using real-world interrogation data. This work focuses on
applying machine learning algorithms including Neural Networks, Random Forests, and Linear
Regression to forecast battery life based on interrogation data from a range of pacemaker types
(single-, dual-, and triple-chamber). Rather than emphasizing a specific manufacturer, this study
explores a generalizable framework applicable across devices, reflecting the shared challenges
in battery life prediction across the industry. The sub-goals of the research include:

(1) Identifying key parameters from interrogation reports that influence battery depletion,
such as pacing thresholds, lead impedance, and voltage trends.

(2) Training and validating multiple machine learning models on these parameters to assess
prediction accuracy using performance metrics such as MAE, MSE, and R?.

(3) Quantifying model uncertainty through Monte Carlo simulations and confidence interval
analysis, ensuring robustness under real-world variability.

(4) Evaluating clinical usability of the models by analyzing prediction distributions and
determining whether predictions can support timely and cost-effective device replacement.

2 Materials and Methods

This section outlines the methodology employed to predict pacemaker battery life using ad-
vanced data mining techniques and Python. The study involves analyzing data from interrogated
pacemakers of three types: single-chamber, dual-chamber, and triple-chamber pacemakers.
Machine learning models were trained to predict the remaining battery life based on extracted
features. Data preprocessing, feature selection, model training, evaluation, and validation
processes are described in detail.

2.1 Materials

The primary material used for this study includes pacemaker interrogation reports obtained
from our laboratory. The pacemakers used in the study were obtained from the anatomical gift
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program, meaning posthumously, therefore, no ethical approval was waived. All pacemakers
were in vivo for a period of time, and not tested in any tank.

The data set contains interrogation reports from different types of Medtronic pacemakers
(models listed in Appendix A), and we categorize these into three groups: single-chamber,
dual-chamber and triple-chamber. We have a total of 42 reports, with 14 of them stemming
from single-chamber pacemakers, 21 from dual-chamber and 7 from triple-chamber pacemakers.
The remaining battery life was extracted directly from the device interrogation reports. These
values represent internal device estimates, not independently verified ground truth or stress-test
data. As such, the model predicts the remaining battery life on the basis of trained data sets
(80%) and compares to the manufacturer-calculated values for the tested values (20%). The key
components of the materials used in this study include:

(1) Pacemaker Data: Interrogation reports from Medtronic pacemakers, containing variables
such as battery voltage, battery impedance, lead impedance, battery current, pacing percentage,
capture threshold, and pulse width.

(2) Software Tools: Python for data preprocessing, model development, statistical analysis,
additional data handling and machine learning model implementation.

(3) Computational Resources: A high-performance workstation with at least 16GB RAM
executing Monte Carlo simulations and training machine learning models.

2.2 Data Collection and Preprocessing

2.2.1 Dataset

The dataset comprises interrogation reports of Medtronic pacemaker. The data were catego-
rized into three groups based on the pacemaker type:

(1) Single-chamber pacemakers: 14 interrogation reports;

(2) Dual-chamber pacemakers: 21 interrogation reports;

(3) Triple-chamber pacemakers: 7 interrogation reports.

Each category has distinct features relevant to its chamber configuration. While we ac-
knowledge that the triple-chamber pacemaker group contains only 7 samples, we elected to
keep it separate from the dual-chamber group due to its distinct functional profile and unique
feature set (e.g., additional lead impedance values, resynchronization pacing parameters).
Triple-chamber devices have substantially higher energy consumption patterns and distinct
programming logic compared to dual-chamber pacemakers. Integrating the two would risk
blending functionally distinct behaviors, compromising the interpretability and clinical utility
of the models.

2.2.2 Data Preprocessing and Handling Missing Values

Before applying machine learning models, the data underwent preprocessing steps to ensure
its quality and integrity:

(1) Data Preprocessing: Identifying and handling missing values using imputation techniques
(mean/mode replacement and predictive imputation).

(2) Data Normalization: Standardizing numerical features using min-max scaling for better
model convergence.

(3) Outlier Detection: Identifying and removing extreme values.

(4) Feature Encoding: Converting categorical variables (if any) into numerical form.

2.2.3 Feature Engineering

Relevant features were selected based on their impact on pacemaker battery life prediction.
Each pacemaker type had different feature sets due to variations in lead configurations and
sensor readings. For instance, in the case of triple-chamber pacemakers, the selected features
included:

(1) Lead impedance values;

(2) Capture thresholds;

(3) Programmed amplitudes and pulse widths;

(4) Measured P/R waves;

(5) Programmed sensitivity values;

(7) Lower and upper sensor rate;

(8) Pacing percentages (sensed and paced);

(9) Patient activity and time in AT/AF per day.

Features for dual-chamber pacemakers:
(1) Lead impedance;
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(2) Battery Voltage;

(3) Capture Threshold;

(4) Programmed Amplitude;

(5) Pulse Width;

(6) Measured P/R wave;

(7) Programmed sensitivity;

(8) Lower sensing Rate;

(9) Pacing Percentage (Sensed and Paced);
(10) Patient activity hr/day;

(11) Time in AT/AF hr/day.

Features for single-chamber pacemakers:
(1) Battery Current;

(2) Lead Current;

(3) Battery impedance;

(4) Battery Voltage;

(5) Capture Threshold;

(6) Programmed Amplitude;

(7) Pulse Width;

(8) Pacing Percentage (Sensed and Paced).

2.2.4 Data Scaling

To ensure uniformity in the feature space, standardization was applied using “StandardScaler”,
transforming the data into a standardized format.

2.3 Machine learning Models

Three regression models were employed to predict pacemaker battery life:
(1) Neural Network (MLPRegressor);

(2) Random Forest Regressor;

(3) Linear Regression.

Each model was trained separately for the three pacemaker types using an 80/20 train-test
split to ensure performance generalizability.

2.3.1 Neural Network Model

A “Multi-Layer Perceptron (MLP) Regressor” was implemented with three hidden layers
(100, 50, and 25 neurons). The ReLU activation function was used, and training was performed
using the Adam optimizer. The model was trained for 2000 iterations with a learning rate of
0.001. To decide the best design for our Neural Network, we tested different setups using a
method called grid search along with cross-validation, which helps us find what works best
while avoiding overfitting. After trying different options, we chose a model with three hidden
layers that have 100, 50, and 25 neurons. This “pyramid” shape where each layer has fewer
neurons than the one before helps the model learn important patterns step by step while reducing
the chances of learning noise from the data. We picked this structure because it gave the best
results in terms of accuracy and how well the model matched the real data during testing.

The number of iterations (2000) was chosen based on convergence behavior observed during
training. We found that the model typically converged well before 2000 iterations, with minimal
improvement beyond that point. Alternative configurations (e.g., 2 layers, different neuron
counts, 1000 or 3000 iterations) were evaluated but led to either poorer predictive performance
or signs of overfitting.

2.3.2 Random Forest Model

The “Random Forest Regressor” was trained with 150 decision trees. This ensemble method
improved accuracy by reducing overfitting and capturing nonlinear relationships in the data.
We tested different tree counts (50, 100, 200), and found that 150 trees offered stable, accurate
predictions without unnecessary computation. Fewer trees led to less reliable results, while
more trees added training time with little benefit. This setup proved most effective for predicting
pacemaker battery life across all device types.

2.3.3 Linear Regression Model

A “Linear Regression” model was used as a baseline to evaluate the predictive power of the
dataset under the assumption of linear relationships.
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2.4 Model Evaluation

Each trained model was evaluated using the following metrics:
(1) Mean Absolute Error (MAE);

(2) Mean Squared Error (MSE);

(3) R-Squared Score (R?).

Visualization techniques such as residual plots, and normal probability plots, Monte Carlo
plots were employed to analyze model performance.

2.5 Monte Carlo Simulation

A “Monte Carlo Simulation” was performed to assess model robustness. Predictions were
generated with slight variations in input data introducing random noise into selected features,
simulating real-world uncertainty. Each model underwent 1000 iterations, and the distribution
of predicted battery life values was analyzed using:

(1) Histogram plots;

(2) Confidence intervals (95%);

(3) Cumulative Distribution Function (CDF) plots.

Hence, this section outlines the methodology used to predict pacemaker battery life for
different pacemaker types. Data preprocessing, feature selection, model training, and evaluation
methods were described, along with the use of Monte Carlo simulations for reliability analysis.

3 Results

This section presents the results obtained from the predictive models developed for estimating
the remaining battery life of single-chamber, dual-chamber, and three-chamber pacemakers. The
analysis includes Normal Probability Plots (Q-Q plots) to assess normality, Residual Analysis to
evaluate model fit, Monte Carlo Simulation results for uncertainty estimation, and Model
Performance Evaluation to compare prediction accuracy. The results for each pacemaker type
are presented sequentially.

3.1 Analysis of Each model in different types of Pacemakers

3.1.1 Normal Probability plot

These plots are normal probability plots (Q-Q plots) for the predictions of three different
models: Neural Network, Random Forest, and Linear Regression. The Q-Q plot compares
the ordered predictions of each model to a theoretical normal distribution, with the red line
representing the expected normal distribution. (Figure 4, 5 and 6)
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Figure 5 Normal Probability plot (NN, RF, LR) (dual-chamber pacemaker)
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Figure 6 Normal Probability plot (NN, RF, LR) (Triple-chamber pacemaker)
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Each plot represents how closely the predictions of a model follow a normal distribution. If
the points lie on the red line, then the data closely follows a Gaussian (normal) distribution [35].
Deviations from this line indicate non-normality or heteroscedasticity.

(1) X-axis (Theoretical Quantiles): These are the expected quantiles assuming a normal

distribution.

(2) Y-axis (Ordered Values): These are the sorted residuals (prediction errors) from the model.
(3) Red Line: The ideal reference line: if the residuals are normally distributed, the points
will lie along this line. Deviations from the red line indicate departures from normality, such as
skewness or heavy tails.

Table 1 summarizes the key observations from quantile-quantile (Q-Q) analyses, highlighting
the strengths and limitations of each model in terms of statistical assumptions and predictive

consistency.

Table 1 Normal Probability plot comparison for different pacemaker types and machine learning models

Pacemaker Type/Model

Neural Network

Random Forest

Linear Regression

Single Chamber

Central residuals ~ normal; tails show sig-
nificant deviation. Right skew indicates
high variances at high values [36]. Het-
eroscedasticity present due to extreme
prediction errors [37].

Central residuals nearly normal; up-
per tail shows positive skew. RF over-
fits extremes. Stepwise nature of trees
leads to non-uniform variance in resid-
uals [38].

Residuals closely follow normal distri-
bution. Minor tail deviations. Assump-
tions of homoscedasticity and normality
hold [39,40]. Best statistical reliability.

Dual Chamber

Residuals mostly normal centrally; upper
tail has outliers. Positive skew observed.
Indicates sensitivity to large values and
possible overfitting.

Similar to NN, but fewer extreme out-
liers. Central alignment better. Upper
tail deviation reflects variance instabil-
ity at high values.

Strongest alignment with normality
across all quantiles. Very low residual
variance. Linear model generalizes well
but may underfit complex patterns.

Triple Chamber

Moderate normality. Long right tail;
slight lower curvature. Positive skew.
Flexibility leads to extrapolation and
variance at high predictions.

Central quantiles align well; tails de-
viate forming “S-shape.” Leptokurtic
distribution (heavy tails). Aggregation
smooths central predictions but tails
still deviate.

Excellent fit to red line. Minor tail devia-
tions. Supports reliable inference. May
lack flexibility in modeling nonlineari-
ties in triple chamber signals.

Research on Intelligent Manufacturing and Assembly e SyncSci Publishing

3.1.2 Actual vs. Predicted Analysis

In the below actual Vs predicted battery life plots, the X-axis represents the actual battery

life (in months), while the Y-axis represents the predicted battery life by the model. These plots
help visualize model accuracy, bias, and variance by comparing the closeness of predictions
to the ideal 45-degree line (where predicted = actual). Patterns such as systematic under- or
overestimation, spread around the diagonal, and slope deviations offer insights into each model’s
generalization capability and robustness across the full range of observed battery life values.

((Figure 7, 8 and 9))

Figure 9 Actual vs predicted Analysis (NN, RF, LR) (Triple-chamber pacemaker)
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Table 2 summarizes the key findings from these plots for each model-device type combina-

tion.

Table 2 Actual vs. Predicted plot comparison for different pacemaker types and machine learning models

Pacemaker Type/Model

Neural Network

Random Forest

Linear Regression

Single Chamber

Predictions are highly concentrated
along the identity line (y = x), indicating
high model fidelity, indicating excellent
accuracy. No systematic bias, slope ~
1.0, minimal error.

Accurate in mid-range, but overesti-
mates at higher values. Spread in-
creases at high battery life values, pos-
sibly due to averaging or data sparsity.

Widest spread, systematically underesti-
mates higher-range target values. Best-fit
slope < 1.0, suggests underfitting and in-
ability to capture full data variability.

Dual Chamber

Predictions exhibit near-unity slope
alignment (§ ~ y), confirming model
accuracy. Nearly no deviation, very high
R2. TIndicates excellent accuracy, but
may suggest overfitting or data leakage.

Tends to underpredict high values.
Performs well in 0-50 months range.
Shows prediction compression at
higher values.

Predicted values exhibit high dispersion,
deviating substantially from actual tar-
gets. Underpredicts high and system-
atically overestimates lower-bound out-
comes. Some predictions are negative,
showing poor fit and underfitting.

Triple Chamber

Fit closely approximates the line of
equality, with minimal prediction error
across the domain. Outstanding accuracy
across full range (0—175 months), high
R%~ 1.0.

Underpredicts values above ~100
months. Performs well in low-to-mid
range. Suffers from tree averaging ef-
fect, leading to compression.

Marked deviation from the identity func-
tion; high bias and low correlation. Pre-
dictions cluster around mid-range, show-
ing underfitting and failure to model com-
plex relationships. Low R2 and high er-
ror.

Research on Intelligent Manufacturing and Assembly e SyncSci Publishing

3.1.3 Residual Analysis

To assess model robustness and the validity of regression assumptions, residuals were plotted

against predicted battery life values for each pacemaker type. These plots help identify patterns
such as heteroscedasticity, nonlinearity, or bias, which may not be captured through overall
error metrics alone. A well-behaved residual plot should show residuals randomly scattered
around zero, indicating minimal bias and consistent variance. Conversely, structured patterns
(e.g., U-shapes or trends) indicate underfitting, model misspecification, or failure to capture

nonlinear relationships.

Residuals were calculated as the difference between the actual and predicted battery life
values, defined as: Residual = {Actual Value} — {Predicted Value}.

In residual plot, the X-axis represents the predicted battery life, while the Y-axis shows the
residuals (difference between actual and predicted values). ((Figure 10, 11 and 12))

f Linear Regression

Residual Pt of Random Forest

Figure 12 Residual plot (NN, RF, LR) (Triple-chamber pacemaker)

Table 3 summarizes the residual distribution characteristics for each model across single,
dual, and triple-chamber pacemakers.
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Table 3 Residual plot comparison for different pacemaker types and machine learning models

Pacemaker Type/Model

Neural Network

Random Forest

Linear Regression

Single Chamber

Residuals uniformly scattered around
zero; no discernible pattern; low
bias and variance; assumption of ho-
moscedasticity satisfied.

Residuals mostly around zero, but in-
creasing variance with higher predicted
values indicates heteroscedasticity; pos-
sible overfitting in mid-range and poor
performance at extremes.

Clear U-shaped pattern; indicates fail-
ure to model nonlinearities; strong het-
eroscedasticity and underfitting; violates
assumptions of linearity and independent
errors.

Dual Chamber

Residuals tightly clustered around
zero (-0.1 to 0.15); minor fan shape at
low end; low bias and variance; good
fit with minor asymmetry in early pre-
dictions.

Residuals increase with predicted bat-
tery life; upward trend and outliers; het-
eroscedasticity evident; underprediction
at higher values; may require tuning or
feature expansion.

Wide residual range (-35 to +40); U-
shaped pattern indicates poor fit; under-
predicts at extremes and overpredicts
mid-values; significant nonlinearity and
underfitting; violates key assumptions.

Triple Chamber

Residuals tightly clustered around
zero (-0.3 to 0.2); randomly dis-
tributed; homoscedastic; very low er-
ror and strong model performance;
likely scaled residuals.

Clear positive linear trend; residuals not
random: underpredicts low and overpre-
dicts high; systematic bias suggests un-
derfitting or missing features; violates
regression assumptions.

Wide residual spread (-60 to +100); no
consistent pattern but large errors across
all ranges; heteroscedasticity and under-
fitting evident; fails to model nonlinear-
ity and lacks precision.

3.1.4 Monte Carlo Histogram

Monte Carlo simulations assess the variability in predictions by repeatedly sampling from
the model’s distribution. These histograms display the distribution of predicted battery life (in
months) for three models: Neural Network, Random Forest, and Linear Regression [41]. The
x-axis represents the predicted battery life, while the y-axis represents frequency (how often a
particular prediction occurs). Each plot includes a kernel density estimate (KDE) curve and a
red dashed line representing the mean prediction. ((Figure 13, 14 and 15))

ario Simwlation Results for Randsen Forest Monte Carlo Simtation Results for Neural Network Monte Carlo Simulation Results for Linear Ragression

Figure 13 Monte Carlo Histogram (NN, RF, LR) (single-chamber pacemaker)

Monte Carlo Simulation Results for Neurs! Network imuiatior st Monte Carlo simuis

Figure 14 Monte Carlo Histogram (NN, RF, LR) (dual-chamber pacemaker)

on Results for

Figure 15 Monte Carlo Histogram (NN,

RF, LR) (Triple-chamber pacemaker)

Table 4 analyzes the distribution of predicted battery life values generated by each model,
offering insight into model stabilit, bias, variance, and how well predictions conform to expected
statistical behavior. It builds on the performance evaluation by focusing on the shape and
spread of predictions rather than just their correctness.

3.1.5 Cumulative Distribution Function (CDF)

These plots represent the Cumulative Distribution Functions (CDFs) of the predicted battery
life for the Neural Network, Random Forest, and Linear Regression models. The x-axis
represents predicted battery life values, and the y-axis represents the cumulative probability.
Each CDF plot shows how the predicted values accumulate over the range of predicted battery
life, providing insights into the distribution shape, skewness, and concentration of predictions.
((Figure 16, 17 and 18))

Research on Intelligent Manufacturing and Assembly e SyncSci Publishing 229 of 238


https://www.syncsci.com/journal/RIMA
https://www.syncsci.com

Volume 4 Issue 2, 2025

Samikshya Neupane and Tarun Goswami

Table 4 Monte Carlo Histogram comparison for different pacemaker types and machine learning models

Pacemaker Type/Model

Neural Network

Random Forest

Linear Regression

Single Chamber

Right-skewed distribution with most
predictions in the 0-10-month range
and some extreme predictions up to 40
months. High variance, skewness >1,
kurtosis >3 indicate poor generalization.
[42].

Also, right-skewed but less ex-
treme. Predictions mostly within 0—
15 months, some up to 30+. Lower
variance, smoother KDE curve. More
consistent and conservative than NN.

Symmetric, normal-like distribution cen-
tered around “10 months. Very few out-
liers. Low variance and kurtosis. High
bias and risk of underfitting, but outputs
are stable and predictable.

Dual Chamber

Highly right-skewed. Predictions mostly
0-20 months, with some extreme values
beyond 100. Mean heavily influenced
by outliers. Very high variance possibly
dure to large train-test performance gap.
Median or trimmed mean more suitable.

Right-skewed but more controlled.
Most predictions between 10-40
months. Fewer outliers (up to “80
months). Averaging reduces outlier
impact. Moderate variance and more
robustness.

Bell-shaped, symmetric distribution. Pre-
dictions centered around the mean. Ad-
heres to linear assumptions, consistent
and reliable, though may underfit com-
plex patterns.

Triple Chamber

Wide, right-skewed, and multi-modal
distribution with values up to ~170
months. High variance, and presence of
outliers. Poor generalization and robust-
ness.

Narrower distribution than NN. Pre-
dictions mostly 20—120 months with
clusters around 40, 60, and 80. Multi-
modal but smoother. Captures nonlin-
earity with better control.

Smooth, symmetric, normal-like distribu-
tion from 20-100 months. Mean ~ 60
months. Well-behaved predictions adher-
ing to statistical assumptions. Consistent
but may miss nonlinear complexities.
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Figure 18 Cumulative Distribution Function (NN, RF, LR) (Triple chamber pacemaker)

Table 5 presents a Cumulative Distribution Function (CDF) analysis of the predicted battery
life values for each model and pacemaker type offering insight into prediction concentra-
tion, spread, central tendency, and outlier sensitivity.

3.1.6 Confidence Interval 95%

Confidence intervals provide an estimate of the range within which predictions are expected
to fall 95% of the time. A 95% confidence interval was chosen because it’s a common and
trusted standard in both medical research and prediction models. It provides a good balance: it
is reliable enough to give confidence in the results, but not so strict that the estimates become
too broad to be useful.

When predicting how long a pacemaker battery will last, using a 95% confidence interval
means we’re pretty sure the true value falls within the range we give 95 times out of 100. That’s
important when planning for battery replacements, where safety is a top concern. Choosing
99% would be even more cautious, but it would also make the range wider and less precise. On
the other hand, 90% would give a narrower range but less certainty. So, 95% is a smart middle
ground that fits well with how medical devices are usually analyzed and decisions are made.

The X-axis denotes the sample index, representing individual test data points, while the Y-
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Table 5 Cumulative Distribution Function plot comparison for different pacemaker types and machine learning models

Pacemaker Type/Model

Neural Network

Random Forest

Linear Regression

Single Chamber

CDF grows quickly, “75% predictions <
25 months; mean =~ 10 months. Moder-
ate skew with controlled spread and low
standard deviation. Suggests a relatively
stable model with lower outlier sensitiv-

ity.

Most balanced CDF, mean ~ 10
months at 50th percentile. Linear
rise suggests normal-like distribution.
Low skew, low variance. High statis-
tical soundness and consistent predic-
tions.

Right-skewed CDF. "80% of predictions
< 14 months. Mean ~ 10 months.
Wide spread and high variance. Long
tail suggests sensitivity to outliers and
low precision.

Dual Chamber

Smooth CDF from 0 to 110+ months.
Mean ~ 25 months. Slight right skew,
moderate variance. Good nonlinear fit
with compressed extreme values. Predic-
tive spread is controlled.

Evenly rising CDF from 0 to <80
months. Mean =~ 20 months at the
center. Symmetrical, tight distribution.
Low variance. Predictable and reli-
able.

CDF from -20 to 60+ months. Mean ~
20 months. Moderate right skew with
some extreme predictions. High spread,
potential bias, and inconsistency in pre-
dictions.

Triple Chamber

Gradual rise from ~10 to 160+ months.
Mean ~ 65 months but skewed right.
Wide dispersion reflects uncertainty and
large predictive range. Sensitive to high
outliers.

Range: 20-120 months. Steeper CDF
slope around 60-70 months. Mean
=~ median. Narrow predictive band.
Symmetrical, low variance. High con-
fidence model.

S-shaped CDF from 0 to 100 months.
Mean ~ 60 months at 50th percentile.
Moderately spread. More centered than
other types but still limited in nonlinear
capacity.
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axis indicates the predicted battery life in months. The blue line represents the mean prediction,
and the shaded region corresponds to the 95% confidence interval. ((Figure 19, 20 and 21))

Confidence Interval (NN, RF, LR) (dual-chamber pacemaker)

Confidence Iterval for Random Forest

Confidence interval (95%) (NN, RF, LR) (single-chamber pacemaker)

Figure 21 Confidence Interval (95%) (NN, RF, LR) (Triple-chamber pacemaker)

Table 6 summarizes CI behavior across models, highlighting how each algorithm responds to
uncertainty in the data, especially under varying degrees of complexity and non-linearity.

3.1.7 Model Evaluation

The performance of three machine learning models: Neural Network, Random Forest, and
Linear Regression was evaluated for predicting battery life across single, dual, and triple-
chamber pacemakers. Key evaluation metrics include MAE, MSE, and R?, as summarized in

Table 7.

The Neural Network model shows near-perfect performance (MAE: 0.03, MSE: 0.00, R?:
1.00), indicating excellent prediction accuracy but show minimal bias yet wider variance at
extremes, reflecting sensitivity to sparse long duration data. The Random Forest model performs
well (MAE: 2.87, MSE: 13.38, R?: 0.86), though it underestimates high battery life values due
to its tree-based structure. In contrast, the Linear Regression model performs poorly (MAE:
6.93, MSE: 74.56, R%: 0.20), failing to capture the data’s complexity and exhibiting high bias
and underfitting. (Table 8)
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Table 6 Confidence Interval (95%) plot comparison for different pacemaker types and machine learning models

Neural Network

Random Forest

Linear Regression

Single Chamber

The CI plot exhibits significant vari-
ability, with notably wide intervals at
indices 10, 25, and 45. This reflects
high model uncertainty and instabil-
ity in predictions. Potential causes
include insufficient regularization, or
inadequate uncertainty modeling. Un-
certainty arises from epistemic (lim-
ited data) and aleatoric (due to incon-
sistencies in interrogation report mea-
surements) factors [43].

The CI plot shows adaptive uncer-
tainty, expanding in high-variance re-
gions. The prediction line fluctuates
more than in linear models, reflecting
better pattern recognition. However,
sharp peaks and dips imply sensitivity
to noise. While the model captures
complex relationships, its flexibility
also introduces localized overconfi-
dence. Ensemble learning reduces but
doesn’t eliminate variance.

CI plot shows narrow but high-confidence
intervals, even when predictions fluctuate
significantly. The model fails to capture
nonlinearities, leading to underfitting. Nar-
row intervals indicate overconfidence de-
spite inaccurate predictions. The mean pre-
diction line lacks smoothness, reinforcing
the model’s inability to generalize. Confi-
dence intervals remain narrow due to the
model’s analytical estimation under classi-
cal assumptions (linearity, homoscedastic-

ity).

Dual Chamber

CI plot shows extremely wide inter-
vals at samples 20 and 25, indicat-
ing low prediction confidence. High
variance is due to sensitivity to input
data variations, and limited training
samples. Neural networks lack built-
in uncertainty estimation, relying on
approximations like MC dropout or
bootstrapping. The wide CIs suggest
that the model struggles to generalize
across test samples.

CI plot is more stable than NN, with
moderate and controlled uncertainty.
Wider intervals appear at specific sam-
ples but without extreme spikes. En-
semble averaging helps reduce predic-
tion variance. The CI width reflects
tree disagreement per sample.

CI plot shows the narrowest and most sta-
ble intervals. Even near sample extremes,
confidence intervals remain tightly bound.
This high-confidence behavior results from
linear regression’s analytical variance esti-
mation under assumptions of residual nor-
mality and homoscedasticity. While the
model may underfit nonlinear trends, it re-
mains consistent and statistically robust in
confidence interval calculation.

Triple Chamber

CI plot shows very high variance and
erratic predictions (ranging from near
0 to 170 months). CI bands are of-
ten hidden due to overlap with the
prediction line. This reflects poor un-
certainty estimation and extreme vari-
ability. Likely causes include small
dataset size, and high epistemic and
aleatoric uncertainty. Neural networks
lack inherent mechanisms for reliable
CI estimation.

CI plot shows moderate variability
in CI widths. Predictions are more
consistent (20-120 months) than NN.
Some indices (10, 25, 40) show wider
intervals, indicating localized uncer-
tainty. The model performs ensemble
averaging to mitigate variance. Ran-
dom Forest handles outliers better and
is more reliable than NN in estimating
uncertainty.

CI plot shows narrow, consistent CIs across
all samples (20-90 months). Predictions
are smoother and more stable than the other
models. High-confidence intervals arise
from satisfying classical regression assump-
tions. While it may not model complex pat-
terns effectively, the linear regression pro-
vides trustworthy and analytically sound
ClIs, making it the most statistically consis-
tent in terms of interval reliability.

Table 7 Model Evaluation (single-chamber Pacemaker)

Model MAE MSE R?

Neural Network 0.03 0.00 1.00
Random Forest 2.87 13.38 0.86
Linear Regression 6.93 74.56 0.20

Table 8 Model Evaluation (dual-chamber Pacemaker)
Model MAE MSE R?
Neural Network 0.03 0.00 1.00
Random Forest 5.54 64.77 0.86
Linear Regression 12.99 281.49 0.41

The Neural Network model shows excellent accuracy (MAE: 0.03, MSE: 0.00, R?: 1.00),
but its near-perfect fit suggests possible model complexity issues. The Random Forest model
performs well (MAE: 5.54, MSE: 64.77, R?: 0.86), though it systematically underestimates
higher battery life values due to its tendency to flatten extremes. The Linear Regression
model performs poorly (MAE: 12.99, MSE: 281.49, R?: 0.41), indicating it cannot capture the
nonlinear patterns in battery life, resulting in high bias and underfitting. (Table 9)

Table 9 Model Evaluation (Triple-chamber Pacemaker)

Model MAE MSE R?
Neural Network 0.02 0.00 1.00
Random Forest 12.18 221.58 0.85
Linear Regression 25.99 1085.43 0.27
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The Neural Network model shows near-perfect accuracy (MAE: 0.02, MSE: 0.00, RZ: 1.00),
suggesting excellent pattern capture but raising concerns about high variance in predicting the
extreme values. The Random Forest model demonstrated robust predictive capability (MAE:
12.18, MSE: 221.58, R?: 0.85), though it struggles with extreme values, leading to moderate
errors. Linear Regression exhibited limited predictive fidelity (MAE: 25.99, MSE: 1085.43, R%:
0.27), failing to capture nonlinear patterns and producing highly inaccurate predictions.

3.2 Model Equation

Based on the results, the following equations were derived to represent the relationship
between the input features and the predicted remaining battery life for each model:

3.2.1 Neural Network Model

A Multi-Layer Perceptron (MLP) does not provide an explicit equation like a linear regression
model [44], but it follows this general structure:

g=f(Ws-f(Wa- f (W1 X+b1)+b2)+bs) )

Where:
(1) X is the input feature vector.
(2) W1, Wa, W3 are weight matrices for each layer (100 — 50 — 25).
(3) b1, ba, bs are biases for each layer.
(4) f (-) £ (-) is the ReL.U activation function applied to each hidden layer.
(5) The output (y") is a single continuous value representing Remaining Life (months).

3.2.2 Random Forest Model

A Random Forest consists of multiple decision trees where each tree predicts a value, and
the final output is the average of all tree predictions.

1 T
y:f; £ (x) @

Where:
(1) g = predicted value for “Remaining Life= % Zthl (months).
(2) T = number of trees in the forest (150 in this case).
(3) ft(x) = prediction of the t*" tree for the input features x.
(4) x = vector of input features (e.g., Lead impedance, Capture Threshold, etc.)

Random Forest does not have a single closed-form equation, as it is a collection of multiple
tree-based models [45,46].

3.2.3 Linear Regression Model

:,; =bg +bix1 +boxot-erin +bnTn 3)
Where:
(1) g = predicted value for “Remaining Life (months).
(2) bo = intercept.
(3) by, by, eeeeee b, =regression coefficients (learned from training).
(4) X1,Xg, -+eeee Xr, = the input feature (e.g., Lead impedance, Capture Threshold, etc.)
(5) n = number of features.

4 Discussion

This study comprehensively evaluated three machine learning models: Neural Network
(NN), Random Forest (RF), and Linear Regression (LR) for their ability to predict pacemaker
battery life across single, dual, and triple-chamber devices using interrogation report features.
The comparison incorporated statistical metrics (MAE, MSE, R?) and interpretive visualizations
including Actual vs. Predicted plots, Residual plots, Normal Probability (Q-Q) plots, Monte
Carlo simulations, and Confidence Intervals (CIs).

4.1 Model Performance Across Pacemaker Types

Across all pacemaker types, the Neural Network (NN) model consistently achieved near-
perfect R? scores (“1.00) (Table 1 to 3), with minimal MAE and MSE, particularly in single-
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chamber (MAE = 0.03) and dual-chamber (MAE = 0.03) predictions. These results are visually
supported by the tight clustering along the diagonal in the Actual vs. Predicted plots (Figure 7-9),
especially in the triple-chamber case (Figure 9), where NN achieved near-flawless alignment
even in the upper tail of battery life predictions.

However, this remarkable accuracy comes with less reliability in extrapolation for battery
lifespans beyond the training distribution, particularly evident in the Residual plots (Figure 10-
12) and Monte Carlo Histograms (Figure 13-15). In the triple-chamber dataset, NN’s residuals,
while centralized, show higher variance and heavier right tails. The Monte Carlo simulations re-
flect this with broad, multi-modal distributions (Figure 15), and the 95% Confidence Interval
plots (Figure 19-21) expose erratic intervals, particularly in samples beyond 100 months, which
suggests diminished robustness at extrapolative edges.

In contrast, the Random Forest (RF) model maintained high accuracy with greater stability,
achieving R% ~ 0.85 across all device types. Although not as precise as NN, RF predictions
displayed better variance control, as seen in smoother KDE curves (Figure 13-15) and narrower
ClIs in complex triple-chamber predictions (Figure 21). However, RF consistently systematically
under-estimated battery life at the higher end, a trend observable in the flattening of predictions
above 100 months (Figure 8-9), and confirmed by the positive skew in residuals and the “S-
shaped” tail patterns in Q-Q plots (Figure 4-6).

Linear Regression (LR) underperformed across all pacemaker types. It displayed low R?
values (0.20-0.41), high MAE, and significant residual spread. In the Actual vs. Predicted plots
(Figure 7-9), LR predictions cluster around the mean, failing to capture variability. Its Residual
plots reveal U-shaped patterns and heteroscedasticity, especially in dual and triple chambers
(Figure 11-21), indicating violations of model assumptions. Nonetheless, LR produced the
narrowest and most stable CIs (Figure 21), a reflection of its statistical simplicity, though at the
cost of accuracy and clinical utility.

4.2 Residual Behavior and Distributional Patterns

The Normal Probability plots (Figure 4-6) reinforced model behaviors. While NN and RF
deviated in tails, LR residuals aligned most closely with the theoretical normal, supporting its
statistical validity but not predictive value. In triple-chamber pacemakers, NN and RF residuals
displayed heavier tails, indicating challenges in modeling extreme values likely due to low
sample size (n=7) and complex energy consumption patterns.

The Monte Carlo histograms and CDFs (Figure 13-18) further illuminated model characteris-
tics. NN distributions were right-skewed with high kurtosis, especially in the triple-chamber
set, implying overconfidence with occasional large deviations. RF distributions were smoother,
with multi-modal behavior in complex cases, reflecting robust generalization with cautious
prediction. LR distributions, in contrast, were symmetrical but narrow, reflecting a failure to
capture nonlinear dynamics, as seen in the CDF’s gradual slope and clustering around mean
predictions.

4.3 Interpretation of Confidence Intervals and Predictive

Confidence intervals (Figure 19-21) revealed critical differences in uncertainty estimation. NN
models, particularly in the triple-chamber set, showed wide and erratic intervals, which aligned
with the high residual variance and Monte Carlo spread: signaling poor generalization at
data extremes. RF models, in comparison, presented adaptive and moderate-width intervals,
suggesting more stable uncertainty estimation across all pacemaker types. LR’s intervals,
while tight, often misrepresented true uncertainty, especially in underfitted scenarios, as it failed
to reflect complex input—output variability.

4.4 Pacemaker Type-Specific Observations

Single-Chamber Pacemakers: All models performed best on this set, owing to lower feature
complexity and more stable energy profiles. NN achieved perfect predictions (Figure 7), with
minimal residuals and compact CIs. RF slightly systematically under-estimated high-end values,
while LR consistently showed systematic bias and underfitting.

Dual-Chamber Pacemakers: NN retained top performance but showed sensitivity to noise,
with slightly wider confidence intervals. RF managed better residual dispersion control than in
single-chamber cases, though it suffered from underestimating long-duration batteries. LR’s
predictions were scattered, with negative values in some cases (Figure 8), making it unsuitable
for clinical use.
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Triple-Chamber Pacemakers: This was the most challenging group. NN handled complex-
ity best, yet variability increased, with wide residuals, non-normality, and broad CIs (Figure 21).
RF emerged as a more reliable alternative, balancing accuracy and generalization. LR failed
entirely to capture nonlinear load behavior and had the highest error rates (MAE = 25.99, MSE
=1085.43).

4.5 Summary Table of Comparative Model Performance

Table 10 summarizes these findings, highlighting the strengths and limitations of each model
in relation to pacemaker complexity.

Table 10 Comparative Model Performance Summary

Model Pacemaker Type R2 Residual Behavior CI Stability Overfitting Risk

NN Single 1.00 Tight, slight skew Wide High

RF Single 0.86 Slight variance Moderate Moderate

LR Single 0.20 U-shaped Narrow Low

NN Dual 1.00 Tight, minor bias Erratic Moderate-High
RF Dual 0.86 Increasing error Controlled Moderate

LR Dual 0.41 Wide, biased Stable Low

NN Triple 1.00 High variance Unstable High

RF Triple 0.85 Smooth, skewed Adaptive Moderate

LR Triple 0.27 Noisy, underfit Consistent Low

4.6 Limitations of Each Model
4.6.1 Neural Network

Limitation: While NNs achieved near-perfect predictive performance (R? ~ 1.00), they
exhibited signs of overfitting, particularly evident in extreme cases with higher variance and wide
confidence intervals. The model’s sensitivity to outliers and possible instability in extrapolation
also pose concerns.

Uncertainty: Monte Carlo histograms and confidence intervals revealed that NNs produce
predictions with greater variance in some cases, indicating lower reliability for data points
outside the training distribution.

Interpretability: Due to their complex structure, NNs are often seen as “black box” models,
making it challenging to trace how specific input features influence the output.

4.6.2 Random Forest

Limitation: RF models tended to underestimate extreme battery life values. Their tendency
to flatten predictions particularly at the high and low ends of the spectrum limits their ability to
generalize in extreme cases.

Residual Trends: The residual plots showed heteroscedasticity and a consistent underesti-
mation for longer battery life values, highlighting limited sensitivity to nonlinearities beyond
the central data range.

Prediction Smoothness: Due to the piecewise nature of decision trees, RFs may produce
discontinuous predictions, which can be problematic for clinical interpretations requiring smooth
estimations.

4.6.3 Linear Regression

Limitation: LR consistently underperformed, especially in capturing the complex and
nonlinear interactions inherent in pacemaker battery dynamics. This resulted in low R? values
(0.20-0.41), substantial residual dispersions, and poor alignment in prediction plots.

Assumptions Violated: The model’s assumption of linearity was not valid for this applica-
tion. Residual plots revealed U-shaped patterns and heteroscedasticity, indicating poor fit and
significant underfitting.

Predictive Utility: While highly interpretable and stable, LR lacked the flexibility to accom-
modate the diversity of input patterns across different pacemaker types.

4.7 Conditions for Neural Network Model Success

The Neural Network Model worked very well, but only under certain conditions:
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Lots of Good Data: It needed detailed and high-quality information like lead impedance,
pacing thresholds, and patient activity to understand the complex behavior of pacemaker
batteries.

Clean and Well-Prepared Data: The data had to be carefully prepared. That means filling
in missing values, scaling numbers properly, and making sure everything was in the right format.
Neural networks are very sensitive to messy or unprocessed data.

Enough Data That Covers All Cases: The model performed best when it was trained on a
wide variety of battery life examples not just average cases, but also low and high extremes. If
the training data didn’t include these, the model became less accurate and more uncertain.

Methods to Control Overfitting: Neural networks can sometimes memorize the training
data too well, which hurts their performance on new data. To avoid this, techniques like Monte
Carlo simulations and model averaging were helpful. These methods also gave a better idea of
how confident the model was in its predictions.

4.8 Clinical Importance

Our model’s predictions are very close to what Medtronic already estimates for pacemaker
battery life, and this has several important benefits in real-life healthcare:

Proves It Works Independently: It shows that we can accurately estimate battery life using
our own machine learning model, without relying on the device maker’s internal tools. This
adds an extra layer of confidence by confirming their results from the outside.

Helps Compare Different Brands: This model can be used as a fair, vendor-neutral way to
compare battery life predictions across pacemakers from different companies. That makes it
easier for doctors to make informed choices, no matter which brand they’re using.

Supports Remote Monitoring: The model can also help spot unusual battery drain early,
especially in patients being monitored remotely. This is helpful because early warning signs can
be missed without regular in-person checks.

5 Conclusion and Future work

This study presents a data-driven framework for predicting pacemaker battery life using
machine learning models trained on interrogation report data. By applying Neural Networks,
Random Forests, and Linear Regression to a structured set of electrical and functional device
parameters, we demonstrate that nonlinear models, particularly Neural Networks, consistently
outperform simpler approaches in forecasting remaining battery life across single-, dual-, and
triple-chamber devices.

The findings confirm that model accuracy improves with increasing complexity, provided
the input features are representative of real-world pacing behavior and battery load. Monte
Carlo simulations and confidence interval analyses further reinforce the robustness and potential
clinical utility of the proposed models. Importantly, while this study utilized data from a
single manufacturer, the modelling techniques are applicable to any pacemaker system utilizing
lithium-based batteries with similar interrogation parameters.

Looking ahead, future work should focus on:

(1) External validation with multi-manufacturer datasets to test generalizability across device
platforms.

(2) Real-time model integration with remote monitoring systems to support dynamic predic-
tion updates.

(3) Inclusion of patient-specific variables (e.g., age, comorbidities, activity level) to enhance
personalization.

(4) Development of clinical decision-support tools that translate predicted battery life into
actionable scheduling recommendations.

By refining these predictive tools and validating them in broader contexts, we move closer to
enabling proactive pacemaker management, reducing unnecessary replacements, and ultimately
improving patient outcomes and healthcare efficiency.
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