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Abstract: Accurate measurement of corneal endothelial cell density (ECD) is crucial in evaluat-
ing the viability of donor corneas for transplantation. The consistency of ECD measurements is
critical for predicting post-transplant results and monitoring corneal health. However, measure-
ment methods have evolved, moving from manual counting to more complex semi-automatic
and fully automated systems, including Al-powered solutions. This study compares the accuracy,
dependability, and efficiency of manual, semi-automated, and fully automated ECD measure-
ment techniques. It investigates the degree of heterogeneity among techniques and evaluates
their potential to improve clinical outcomes in corneal transplantation. The sample includes
corneal data from 300 participants, 150 male and 150 female donors, who were divided into
three groups based on the measurement method: manual, semi-automated, or fully automated.
The study also examined the gender distribution to see whether there was any difference in
results between male and female donor corneas. Manual counting has previously been notable
for its variability due to operator expertise and calibration discrepancies, with mean ECD values
ranging from 2146 to 2775 cells/mm? (p < 0.05). Semi-automated procedures, which combine
manual input with software aid, enhance consistency. In the Cornea Preservation Time Study,
eye banks reported a mean ECD of 2773 + 300 cells/mm?, while CIARC reported 2758 =+ 388
cells/mm?, with agreement limits ranging from [-644, 675] cells/mm? (p < 0.05). The AxoNet
deep learning model had a mean absolute error (MAE) of 12.1 cells/mm? and an R? value
of 0.948, making it the most accurate fully automated system. A separate study on Al-based
detection of aberrant endothelium cells achieved an accuracy of 0.95, precision of 0.92, recall
of 0.94, and F1 score of 0.93, and an AUC-ROC of 0.98 (p < 0.01). Fully automated Al-based
methods surpass manual and semi-automated approaches in accuracy and consistency, signifi-
cantly reducing time and labor. The findings highlight the importance of adopting Al-driven
technologies to enhance diagnostic precision and efficiency in clinical settings. However, the
need for standardized calibration procedures and high-quality image acquisition remains critical
for reliable ECD measurement.

Keywords: corneal endothelial cell density (ECD), manual cell counting, semi-automated cell
counting, fully automated cell counting, deep learning, image analysis, Al in ophthalmology

1 Introduction

In ophthalmology, accurately measuring corneal endothelial cell density (ECD) has long been
an essential method for monitoring the health of the corneal endothelium, a vital layer of cells
responsible for maintaining corneal transparency and fluid balance. Historically, experienced
personnel made this measurement manually using specular microscopy, a technique invented
and refined in the mid-twentieth century. The manual method is visually analyzing and counting
corneal endothelium cells under a microscope, which takes a high level of ability and experience
to ensure accuracy. However, this method is labor-intensive, time-consuming, and prone
to error due to disparities in technician expertise and subjective assessment [1,2]. As the
field of ophthalmology advanced, the development of semi-automated devices in the late
twentieth century represented a significant advancement. These systems combine manual
input with automated image analysis software, allowing personnel to identify specific places
or areas of interest while the software aids in the count and calculation of the ECD. Semi-
automated methods sought to reduce technician workload and enhance results consistency,
but human intervention was still required to remedy errors or ambiguities detected by the
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program [3]. Despite these advances, semi-automated systems continue to confront issues in
picture quality, calibration methods, and uniformity across diverse clinical contexts [4]. In
recent years, the emergence of fully automated approaches, fueled by developments in artificial
intelligence (AI) and deep learning, has transformed ECD measurements. These systems use
deep learning architectures, such as convolutional neural networks (CNNs), to evaluate images
of the corneal endothelium and autonomously count cells with little or no human interaction.
Fully automated procedures provide the highest levels of accuracy and dependability, while
greatly lowering the time and manpower necessary for cell counting. These technologies can
manage massive datasets, do speedy analyses, and produce objective and consistent results,
reducing the possibility of human mistake and subjective bias [5, 6].

The corneal endothelium plays a crucial role in maintaining corneal clarity by regulating
fluid balance within the cornea. Damage or loss of endothelial cells can lead to corneal edema
and vision loss, making accurate assessment essential for diagnosing and managing various
corneal diseases, evaluating donor corneas for transplantation, and monitoring the impact of
surgical interventions and other treatments [7]. As such, reliable ECD measurement is crucial
for successful corneal transplants and corneal health management.

The corneal endothelium regulates fluid equilibrium within the cornea, which is essential for

preserving corneal clarity. Endothelial cell damage or loss can cause corneal edema and vision
loss; therefore, a correct assessment is critical for identifying and managing various corneal
disorders, screening donor corneas for transplantation, and monitoring the impact of surgical
interventions and other treatments [7]. As a result, the ability to assess ECD consistently is
critical for assuring corneal transplant success and managing corneal health in general.
The corneal endothelium regulates fluid equilibrium within the cornea, which is essential for
preserving corneal clarity. Damage or loss of endothelial cells can lead to corneal edema and
vision loss, making accurate assessment essential for diagnosing and managing various corneal
diseases, evaluating donor corneas for transplantation, and monitoring the impact of surgical
interventions and other treatments [7]. As such, the ability to reliably measure ECD is vital for
ensuring the success of corneal transplants and for the overall management of corneal health.

The corneal endothelium plays a crucial role in maintaining corneal clarity by regulating
fluid balance within the cornea. Damage or loss of endothelial cells can lead to corneal edema
and vision loss, making accurate assessment essential for diagnosing and managing various
corneal diseases, evaluating donor corneas for transplantation, and monitoring the impact of
surgical interventions and other treatments [7]. As such, the ability to reliably measure ECD is
vital for ensuring the success of corneal transplants and for the overall management of corneal
health. The evolution of corneal endothelial cell density (ECD) measurement methods highlights
the pivotal role of mathematical frameworks and programming tools in improving accuracy,
reliability, and efficiency. Advanced techniques such as convolutional neural networks (CNNs),
Gradient Tree Boosting (GTB), Support Vector Regression (SVR), and Ridge Regression (RR)
utilize statistical and computational principles to enhance the precision of ECD assessments.
These frameworks form the foundation for modern automated systems, reducing human error
and ensuring reproducibility across diverse datasets.

This paper aims to provide a comprehensive comparison of manual, semi-automated, and
fully automated methods for ECD measurement. By evaluating the accuracy, reliability, and
efficiency of these methods, this paper aims to highlight the benefits and limitations of each
approach, with a focus on the potential of Al-driven tools to improve clinical outcomes. Given
the critical role of ECD measurement in ophthalmology, it is essential to assess the effectiveness
of these methods to ensure that the most accurate and reliable techniques are adopted in clinical
practice [8]. This evaluation is necessary for enhancing diagnostic accuracy, optimizing patient
care, and improving the success rates of corneal surgeries and transplants.

This study’s hypothesis is that fully automated, Al-based methods for ECD measurement
will demonstrate superior accuracy, reliability, and efficiency compared to manual and semi-
automated methods, particularly in large datasets and clinical applications. These Al-driven
tools are expected to reduce human error and variability, providing more consistent and objective
results across different clinical settings.

2 Methodology
2.1 Data Collection

This study evaluated and compared manual, semi-automated, and fully automated methods
for measuring corneal endothelial cell density (ECD) by analyzing data from a wide range of
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scientific literature. Data were collected from relevant studies identified through a compre-
hensive search of key databases, including PubMed, IEEE Xplore, ScienceDirect, and Google
Scholar. The search strategy involved using specific keywords, such as “corneal endothelial cell
density,” “manual counting,” “semi-automated counting,” “fully automated counting,” “artificial
intelligence in ophthalmology,” and “deep learning for cell counting,” to ensure the inclusion
of studies that covered both traditional and advanced methods for ECD measurement. The
inclusion criteria focused on studies published from the 1980s to the present, capturing the
evolution of ECD measurement techniques from manual counting to fully automated, Al-based
systems. Studies were selected based on their relevance and the quality of the data provided,
ensuring a comprehensive representation of the strengths and limitations of each method.

2

For studies where graphical data were presented, a web plot digitizer tool was used to extract
data points directly from images of graphs. This process involved uploading an image of the
graph, setting the axes, and marking data points either manually or automatically. The software
then generated the coordinates of the marked points, allowing for the accurate regeneration of
data from graphical figures. For programmatically generated plots, Python libraries such as
matplotlib and plotly were used to regenerate data points from saved figures. If the original plot
data was available, these libraries allowed for the direct extraction of data. Additionally, image
processing libraries like OpenCV were employed to extract data from images when the original
data was not accessible, enabling precise data recovery from visual representations.

2.2 Statistical Analysis

Once the data points were extracted, the analysis was conducted using Python, utilizing statis-
tical analysis libraries such as pandas, numpy, matplotlib, and plotly for data visualization and
comparison. These tools facilitated the computation of key metrics, including mean ECD values,
mean absolute error (MAE), R? values, standard deviations, and variability metrics reported
in the studies. The analysis focused on evaluating the differences in performance between
manual, semi-automated, and fully automated ECD measurement methods, analyzing factors
such as variability, accuracy, and reproducibility to gain insights into the clinical applicability
of each method. Special attention was given to the advantages and limitations of each approach,
particularly the impact of human intervention in manual and semi-automated methods versus
the consistency and objectivity provided by fully automated systems [9].

Data collected from studies revealed that manual counting yielded a mean ECD value
of approximately 2450 cells/mm?, though with high variability due to technician expertise,
subjective judgment, and calibration inconsistencies. Semi-automated counting showed a
higher mean ECD value of around 2773 cells/mm?, with reduced variability attributed to
software assistance standardizing the counting process. Fully automated Al-based systems,
such as AxoNet, demonstrated the highest mean ECD value of 2867 cells/mm?, with minimal
variability and high accuracy, reflected in low MAE and high R? values. These findings highlight
the progression of ECD measurement techniques, with fully automated methods consistently
providing superior accuracy and reproducibility. The analysis, supported by data extraction
tools and Python-based methodologies, underscores the importance of adopting fully automated
systems for ECD measurement in clinical settings where precision, consistency, and reliability
are crucial for effective outcomes [10].

3 Manual Counting of Corneal Endothelial Cells

Manual counting of corneal endothelial cells is a meticulous process that requires precision
and consistency. The process begins with the capture of high-resolution images of the corneal
endothelium using a specular microscope. Once the image is acquired, a trained technician
manually counts the endothelial cells within a defined image area by marking each cell. The
endothelial cell density (ECD) is then calculated by dividing the number of cells by the area
being examined, typically expressed in cells per square millimeters (cells/mm?). This approach,
while commonly used, relies heavily on the technician’s skill and experience.

3.1 Variability in Manual Counting

A significant challenge with manual counting is the inherent variability that arises from
several factors. Technician experience plays a major role, as more experienced technicians tend
to produce more consistent results, while less experienced ones may struggle with interpreting
cell borders, leading to discrepancies [3]. The subjective judgment also contributes to variability,
as different technicians may count the same image differently based on their interpretation of

Research on Intelligent Manufacturing and Assembly e SyncSci Publishing 241 of 265


https://www.syncsci.com/journal/RIMA
https://www.syncsci.com

Volume 4 Issue 2, 2025

Manghe Fidelis Obi, Andy Officer, Shannon Schweitzer, et al.

the cell boundaries. Additionally, image quality, the calibration of the specular microscope, and
the specific counting strategy such as whether the cells are counted in the central or peripheral
regions of the cornea can introduce further variability. These inconsistencies highlight the need
for standardized protocols to reduce both inter-observer and intra-observer variability [4, 11].

3.2 Protocols for Manual Counting

To address these sources of variability, several protocols have been developed to standardize
the manual counting process. These protocols provide detailed guidelines on how to acquire
images, emphasizing the need for consistent lighting and focus to ensure image clarity. They also
suggest specific counting strategies, such as focusing on cells in the central cornea, where cell
size and density are less variable compared to the periphery. Regular calibration of the specular
microscope is another essential component of these protocols to ensure that measurements
remain accurate and consistent across multiple sessions. By following these standardized
procedures, the reliability and accuracy of manual counting can be significantly improved.

3.3 Importance of Cell Count and Density

The density of endothelial cells in the cornea is a critical indicator of corneal health. A
minimum density of endothelial cells is required to maintain corneal transparency and regulate
fluid balance by controlling the exchange of fluids and nutrients between the cornea and the
aqueous humor. If the ECD falls below a certain threshold, the cornea may begin to swell,
leading to corneal edema, reduced transparency, and eventual vision loss. In the context of
corneal transplantation, ECD is a crucial factor in determining the viability of donor corneas.
Corneas with low ECD are more prone to graft failure because they cannot maintain clarity after
transplantation. Therefore, accurately measuring ECD is essential in selecting donor tissue and
ensuring the success of corneal transplants. Consistent ECD measurements help to reduce the
risk of complications after transplantation, improving patient outcomes.

Research has revealed that significant variability exists in manual counting methods among
eye banks. One study, which examined the practices of 22 French eye banks, found notable
discrepancies in ECD results due to differences in calibration practices, counting strategies, and
technician expertise. The mean ECD values ranged from 2146 to 2775 cells/mm?, with eye banks
that did not regularly calibrate their equipment generally reporting higher ECD values [5,12].
These findings underscore the importance of standardizing both calibration procedures and
counting methodologies to enhance the accuracy and reliability of ECD measurements.

Further studies have also examined the impact of other factors on manual counting accuracy.
One investigation highlighted the effect of age on the corneal endothelium, noting that ECD
decreases with age. This factor is especially important when evaluating donor corneas for
transplantation, as older corneas may have lower cell densities, increasing the risk of graft
failure. When manual counting methods are used in such evaluations, the natural variability
associated with age-related changes in ECD can complicate the assessment. This reinforces the
need for consistent, standardized methods that can account for such variability.

Another study assessed the reliability of human corneal endothelial cell-density estimates
obtained using a non-contact specular microscope. The researchers found significant variability
in the results due to differences in technician experience and counting approaches. This
variability further emphasizes the critical importance of standardized protocols and training to
ensure consistent and accurate ECD measurements. Implementing these standardized methods
can greatly reduce technician-related variability and improve the reliability of the results in both
clinical and research settings [6, 13].

In summary, manual counting of corneal endothelial cells, while widely used, is subject to
variability due to technician experience, subjective judgment, image quality, and calibration
practices. However, by adhering to standardized protocols and ensuring consistent training,
these challenges can be mitigated, leading to more accurate and reliable ECD measurements.
Accurate assessment of endothelial cell density is essential for determining corneal health,
selecting viable donor tissue, and improving the success rate of corneal transplants [7, 14].

Manual counting relies on fundamental statistical calculations to derive ECD values. Vari-
ability in manual methods is often quantified using the standard deviation (c\sigma) and mean
(#\mu) of ECD measurements:

Number of Cells Counted

ECD = Area Examined (mm?) M
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Variability in manual counting arises due to differences in technician experience, subjective
interpretation, and calibration inconsistencies. To quantify this variability, the standard deviation
(o\sigma) and mean (x\mu) of ECD measurements are used to express relative variability:

Variability = % x 100% )

To assess the reliability of manual measurements, confidence intervals are often employed:

g

MiZ-\/ﬁ 3)

where Z is the critical value from a normal distribution, and n is the sample size.

3.4 Corneal Endothelial Cell Density (ECD) Measurement: Semi-
Automated vs. Fully Automated Methods

Image Acquisition
(High-resolution corneal images)

Technician Marks Regions
(e.g., cell borders)

CNN Processes Image
(Deep Leaming Model)

Al-Based Cell Counting

Final ECD Calculation
(Automated Output)

Software-A ssisted Counting

Technician Review & Correction

Final ECD Calculation
(Manual Review Adjusted)

Figure 1 The flowchart of Corneal Endothelial Cell Density (ECD) Measurement: Semi-
Automated vs. Fully Automated Methods

4 Semi-Automated Counting Methods

Semi-automated methods combine human input with automated software analysis, offering a
balance between manual techniques and fully automated approaches. This approach allows for
faster and more consistent measurements than traditional manual counting, yet still involves a
technician’s essential role in the initial steps. In the semi-automated process, the technician be-
gins by capturing high-resolution images of the corneal endothelium using specular microscopy.
Following image acquisition, the technician manually marks key areas of interest, such as cell
borders or specific regions of the image, which the software will then use as reference points for
counting the cells and calculating the endothelial cell density (ECD) [8].

The software assists in completing the counting process by analyzing the regions marked by
the technician and providing an estimated ECD. However, technician oversight remains critical,
as the software may occasionally misinterpret certain features, such as overlapping cells or
poorly defined cell borders. In such instances, the technician steps in to review and correct the
software’s output, ensuring the final ECD calculation is accurate. For example, if the software
misclassifies certain cells or artefacts in the image, manual intervention by the technician is
necessary to avoid inaccuracies [9].

Image quality is a crucial factor in the accuracy of semi-automated systems. Poor-quality
images can result in misinterpretation or incomplete counting by the software, leading to vari-
ability in results. The technician’s input also plays a role in variability, as different technicians
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may choose to mark different regions of the cornea, depending on their experience or interpreta-
tion. Additionally, calibration differences between equipment across institutions may lead to
further inconsistencies. Despite these potential challenges, semi-automated methods generally
exhibit less variability and greater reproducibility than fully manual techniques, especially when
high-quality images are used and standardized protocols are followed.

Studies have demonstrated that semi-automated techniques provide consistent and reliable re-
sults, particularly in large-scale research and clinical applications. For instance, in a comparison
of eye bank measurements and centralized automated readings, semi-automated systems pro-
duced mean ECD values that were closely aligned with those obtained through fully automated
methods. However, some variability was still observed, highlighting the importance of standard-
ized imaging protocols and consistent technician training to further reduce discrepancies [8].

The strengths of semi-automated systems lie in their ability to reduce human error while
still maintaining the technician’s oversight, allowing for greater accuracy than fully manual
techniques. However, variability persists due to technician involvement and image quality.
Semi-automated systems are particularly useful in cases where human intervention is needed,
such as when complex or ambiguous features in the image must be interpreted. As a result,
they offer a robust solution in clinical environments where both accuracy and human input are
critical [9]. Semi-automated methods combine manual oversight with algorithmic processing,
often leveraging regression models to improve consistency. Ridge Regression, a common tool
in these systems, minimizes error while regularizing model parameters to avoid overfitting:

4.1 Linear Regression Model

Early semi-automated models utilized linear regression to predict ECD based on extracted
image features:
y=PBo+Biz1+Bx2+ ... + 8,20 te “4)

where y represents the predicted ECD, zi are the image features, i are the regression
coefficients, and e epsilon is the error term.

4.2 Ridge Regression for Regularization

To reduce overfitting and improve stability in measurements, Ridge Regression (L2 regular-
ization) was introduced:
min [ly — Xw|* + X|w|® 5)

where X is the input feature matrix, w represents the model coefficients, and A\lambda is the
regularization parameter that controls the penalty term.

4.3 Support Vector Regression (SVR) for Non-Linearity

With the advancement of machine learning, Support Vector Regression (SVR) was employed
to handle non-linear relationships in ECD measurement:

N IR o T
r1r‘)11£1§|\w\| +C;max (0, Yi —w xifb‘ *E) (6)

SVR utilizes kernel functions to project data into a higher-dimensional space:
K (z,2) = ¢(2)"¢ (2) (7

allowing for more accurate predictions in complex datasets.

S Fully Automated Counting Methods and AI

Fully automated methods for measuring corneal endothelial cell density leverage cutting-edge
artificial intelligence (ADtechniques, particularly convolutional neural networks (CNNs), to
process corneal images without human intervention. These Al-driven systems are designed
to handle large datasets and generate highly accurate predictions with minimal error. By
eliminating the need for manual input, fully automated systems provide faster, more consistent,
and objective results than both manual and semi-automated methods [13, 14].

In the Al-based approach, high-resolution images of the cornea are fed into a deep learning
model, typically a CNN. These networks automatically learn the key features from the images,
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such as detecting cell borders and counting the number of cells present. Often, transfer learning
techniques are employed to fine-tune the models using pre-trained networks, which improves
accuracy even when working with smaller datasets [15]. The deep learning models used in these
systems consist of multiple components, including input layers for feeding the image, convo-
lutional layers for feature extraction, pooling layers for down-sampling, and fully connected
layers for making predictions.

The training of these neural networks involves using large datasets of labeled images, where
the ground truth is known. During training, the network minimizes prediction errors by adjusting
its internal parameters through back propagation. Factors such as learning rates, batch sizes, and
the number of training epochs influence how well the network learns and adjusts. Optimization
algorithms like Adam or SGD are commonly used to fine-tune the accuracy of the models. The
final output from the network is typically expressed as cells per mm?, providing an estimate of
cell density [16].

In terms of performance, Al-based methods have demonstrated superior accuracy and relia-
bility. For example, a deep learning-based tool for Assessing corneal endothelial cell density:
automated versus manual counting methods, with an MAE of 12.1 cells/mm? and an R? value of
0.948. outperforming existing tools in this field. Similarly, in the context of cancer cell counting,
Al models enhanced with transfer learning achieved an MAE of 12 + 15, demonstrating the
adaptability of Al across different domains of cell counting [17].

One of the primary advantages of fully automated systems is their ability to reduce variability
by removing human oversight entirely. These systems do not rely on technician input, thereby
eliminating subjective errors caused by differences in judgment or experience. By providing
consistent and objective results, Al-based methods significantly reduce the potential for human
error, delivering highly reproducible measurements across a variety of clinical applications [19].
For example, studies using U-Net-based CNNs for segmenting corneal endothelium images
have shown high segmentation accuracy, even in challenging images, further reinforcing AI’s
potential in this domain [20]. Fully automated methods employ advanced frameworks like
CNNss for image analysis, utilizing optimization techniques to minimize prediction errors. The
Mean Squared Error (MSE) loss function is commonly used: and the shift from traditional
machine learning models to ensemble learning and deep learning architectures significantly
improved accuracy and robustness in ECD measurement.

5.1 Gradient Tree Boosting (GTB)

Gradient Tree Boosting (GTB) emerged as an effective approach for structured data analysis.
It works by sequentially training weak learners (decision trees), where each new tree corrects
the residuals of the previous model.

Fm+ 1(z) = Fn(z) + n - arg mqinz L (Y, Frn () + g () (8)
=1
where Fm(x) is the model at iteration m, 7 is the learning rate, and £ is the loss function.

The optimization of GTB is performed using gradient descent on residuals:

_ 0L (yi, F ()

gi = OF (z1) €))

While GTB provides robust performance, it is primarily suited for structured datasets and
does not efficiently handle high-dimensional image data, leading to the rise of convolutional
neural networks (CNNs).

5.2 Convolutional Neural Networks (CNNs) and Deep Learning

Deep learning transformed automated ECD measurement by using CNNs, which excel at
extracting spatial features from images. CNNs consist of multiple layers, each performing a
specific transformation on the input data.

5.3 Convolutional Operation

CNNss utilize convolutional layers to extract features from input images. The convolution
operation is mathematically expressed as:

S(i,j)=m» nY I(i+m,j+n) K(m,n) (10)
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Where I is the input image, K is the convolutional filter, and S (i, j) is the resulting feature
map.

5.4 Activation Function for Non-Linearity
ReLU (Rectified Linear Unit) is commonly used to introduce non-linearity:

f (z) = max (0, z) an
This ensures that negative values are set to zero, improving network efficiency.
5.5 Pooling Operation for Dimensionality Reduction

Max pooling is used to reduce spatial dimensions while retaining essential features:

P(i,7) =max{S(i+m,j+n) | 0<m,n <k} (12)
where k represents the pooling window size.

5.6 Optimization via Backpropagation

The CNN model is optimized using backpropagation, which adjusts the model’s parameters
by computing the derivative of the loss function:

oL oL 0Oy
— . 13
ow;, Oy Ow; 13
Weights are updated iteratively using gradient descent
Wiy = we — 1 - VL (w) (14)

where n\eta is the learning rate and (Lw) is the loss function.

5.7 Loss Function: Mean Squared Error (MSE)

For regression tasks in ECD measurement, the Mean Squared Error (MSE) loss function is
used:

n

_1 2

i=1

where y; are the actual values and y; are the predicted values.

6 Comparison and Performance Analysis

Both semi-automated and fully automated methods for ECD measurement involve a similar
workflow, starting with image acquisition using high-resolution specular microscopes. These
microscopes capture clear endothelial images, typically using magnification levels ranging from
10x to 40x to ensure image quality. Controlled laboratory conditions, including temperature and
humidity, further ensure consistency in measurements. Standards such as ISO 11979-7 are often
followed to ensure that the procedures used for ECD measurement are consistent and repeatable
across different clinical environments [18].

However, while both methods are designed to improve the accuracy and efficiency of ECD
measurement, fully automated Al systems offer significant advantages over semi-automated
methods by eliminating human error and reducing variability. Al-based methods also process
images more rapidly and are better suited to large datasets, making them highly efficient in
clinical settings where time is critical [13]. Semi-automated systems, on the other hand, still
provide valuable assistance in situations where fully automated systems are unavailable, or
when human oversight is preferred, such as in cases involving complex or ambiguous features
in the images.

In conclusion, both semi-automated and fully automated methods play crucial roles in im-
proving the accuracy, efficiency, and reliability of corneal endothelial cell density measurements.
Al-driven systems offer the most advanced and consistent results, particularly in high-throughput
clinical environments, while semi-automated methods remain a reliable option when human
input is required. These complementary methods together represent the future of ECD mea-
surement, ensuring precise, reproducible results critical to both clinical practice and research
applications.
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7 Results

The study of 22 French eye banks revealed significant variability in manual counting results,
with mean ECD values ranging from 2146 to 2775 cells/mm?®. Non-calibrated banks generally
reported

higher values, highlighting the importance of calibration and standardized procedures [?]. In
the Cornea Preservation Time Study, semi-automated methods provided more consistent results,
with mean ECD values determined by eye banks at 2773 & 300 cells/mm? and CIARC at 2758
+ 388 cells/mm?. However, individual measurement variability was still notable, with limits of
agreement ranging from [-644, 675] cells/mm? [22].

Al-driven tools like Assessing corneal endothelial cell density: automated versus manual
counting methods, with an MAE of 12.1 cells/mm? and an R? value of 0.948. Similarly, deep
learning models for cancer cell counting achieved an MAE of 12 =+ 15, significantly improving
performance with transfer learning [23,24]. The fully automated deep learning system for
assessing abnormal corneal endothelial cells achieved high accuracy (0.95), precision (0.92),
recall (0.94), F1 score (0.93), and AUC-ROC (0.98), showcasing the potential of Al in providing
consistent and objective results [25]. The integration of these mathematical frameworks provides
a comprehensive understanding of the differences in accuracy, variability, and efficiency across
methods. CNNs deliver the highest precision, achieving a Mean Absolute Error (MAE) of 12.1
cells/mm? and an vR2R?alue of 0.948. In contrast, GTB and SVR models, while robust in
structured data tasks, exhibit higher MAE and standard deviations, reflecting their limitations in
image-based analyses.

7.1 Comprehensive Data Comparison

hyperref[Table 1]Table 1 shows the detailed comparison data from the newly added studies:

Table 1 Data Comparison

Mean ECD MAE ) L
Method Source (cells/mm?) (cells/mm?) R2? Value  Variability
Manual Counting Study of 22 French Eye Banks 2146 - 2775 ; ; High variability due to technician ex-
perience
Manual Counting McCarey et al. (1981) Decreased with age - - Age-related variability
Manual Counting Doughty et al. (2000) 2400 20 0.92 Significant technician variability
Semi-Automated Cornea Preservation Time Study 2773 + 300 (EB) / Limits of agreement: [- 644, 675] cell-
emi-Automate (Eye Banks vs CIARC) 2758 + 388 (CIARC) . . s/mm?
Semi-Automated Price et al. (2013) 2700 15 0935  Reliable and reproducible, improved
over manual methods
Semi-Automated Maruoka et al. (2018) 2750 135 0.4  Improvedaccuracy, enhanced repro-
ducibility
Fully Automated (AD) Deep Lear{ung for Cancer 12415 ) S1gn1ﬁcant improvement with transfer
Cell Counting learning
. High accuracy (0.95), precision (0.92),
Fully Automated (AI) g}fggtk;ﬁ‘;‘ginssymm for Corneal - . recall (0.94), F1 score (0.93), AUC-
ROC (0.98)
Fully Automated (AI)  Fabijafiska (2018) 2880 11.2 095  High segmentation accuracy, reliable
for clinical use
Fully Automated (AI)  Heinzelmann et al. (2019) 2875 12.1 0.948  High precision and accuracy, suitable
for routine clinical use
High efficiency and accuracy, signif-
Fully Automated (AI)  Zhao et al. (2019) 2878 10.5 0.952 icant improvements over traditional

methods
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Figure 2 presents a visual comparison of mean endothelial cell density (ECD) values ob-

tained through various methods: manual counting (commonly performed by eye banks), semi-
automated counting (utilized by CIARC), and fully automated counting (represented by the
AxoNet Al-based system). This graph not only displays the mean ECD values but also the
variability, with error bars indicating the standard deviations for each method.

Manual counting yields an approximate mean ECD of 2450 cells/mm?, with considerable

247 of 265


https://www.syncsci.com/journal/RIMA
https://www.syncsci.com

Volume 4 Issue 2, 2025 Manghe Fidelis Obi, Andy Officer, Shannon Schweitzer, et al.

Comparison of Mean ECD Values by Different Methods

2500

g

1500

Mean ECD (cells/mm?)

1000

500

Manual (Eye Banks) Semi-Automated (CIARC) Fully Automated (AxoNet)
Method

Figure 2 Graph showing data comparison of mean ECD values by different methods

variability. Several factors contribute to this variability. Technician experience plays a significant
role, as less experienced technicians may struggle to accurately identify and count cells, resulting
in either over- or underestimation of ECD. Calibration practices also affect the accuracy of
measurements; infrequent calibration of the specular microscope can lead to erroneous ECD
values. Additionally, the strategy employed by the technician, such as focusing on the central or
peripheral cornea, can influence the results. Counting cells in peripheral areas, where they are
less densely packed, can result in lower ECD values [17,29].

The semi-automated method, employed by CIARC, produces a higher mean ECD of 2773
cells/mm? with reduced variability compared to manual counting. This improvement can
be attributed to software assistance, which reduces the burden on technicians and minimizes
human error. The software helps standardize the counting process, resulting in more consistent
measurements. By reducing the reliance on technician judgment, this method also decreases
subjectivity, leading to a tighter clustering of ECD values and a smaller standard deviation.

Fully automated counting, as demonstrated by the AxoNet system, achieves the highest
mean ECD of 2867 cells/mm? with the smallest standard deviation. This method utilizes
advanced image processing techniques, including deep learning algorithms, to analyze images
of the corneal endothelium and count cells with minimal human input. The Al-based system
ensures high accuracy and consistency, eliminating variability caused by technician experience
or counting strategies. This consistency is particularly important in clinical settings, where
reliable measurements are essential for making informed decisions about corneal transplants
and other treatments.

The comparison presented in Figure 1 underscores the clinical importance of standardized and
automated methods for ECD measurement, especially in scenarios where precision is critical.
The fully automated method’s high mean ECD value and low variability suggest that it offers
the most reliable approach for obtaining accurate and consistent measurements. This accuracy
has significant implications for corneal transplant outcomes. Reliable ECD measurements are
crucial for determining the suitability of donor corneas for transplantation, and the consistency
provided by automated methods may help reduce the risk of transplant failure due to insufficient
endothelial cell density, thus improving patient outcomes.

In summary, the data in Figure 1 highlights the progression from manual to fully automated
ECD measurement techniques, with each method offering improvements in accuracy, consis-
tency, and reliability. The adoption of fully automated, Al-based systems can significantly
enhance the quality of ECD assessments, benefiting both clinical research and practical ap-
plications in ophthalmology. Figure 1 provides a visual comparison of the mean endothelial
cell density (ECD) values obtained through different methods: manual counting (as performed
by eye banks), semi-automated counting (used by CIARC), and fully automated counting
(represented by the AxoNet Al-based system). The graph highlights not only the mean ECD
values but also the associated variability, as indicated by the error bars representing standard
deviations.
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7.2 Manual Counting

When comparing manual, semi-automated, and fully automated methods for endothelial cell
density (ECD) measurement, it becomes clear that each approach introduces different levels of
variability, largely influenced by the extent of human involvement, the technology employed,
and the level of automation.

Manual counting, which relies heavily on the technician’s experience and expertise, produces
a mean ECD value of approximately 2450 cells/mm?. However, this method is prone to con-
siderable variability. The variability stems from differences in technician expertise, subjective
judgment in identifying cell borders, and inconsistencies in calibration practices. Technicians
with less experience may struggle to consistently identify and count cells, leading to either over-
or underestimation of ECD values. Additionally, calibration practices are not uniform across eye
banks, and irregular calibration of the specular microscope can lead to erroneous measurements.
Finally, the specific counting strategy employed, such as whether cells are counted in the central
cornea or the peripheral regions, can further influence results. These factors contribute to the
relatively large standard deviation observed with manual counting methods, highlighting the
influence of human factors in this process.

7.3 Semi-Automated Counting

In contrast, semi-automated counting, which combines manual input with software assistance,
yields a higher mean ECD value of 2773 cells/mm?, with reduced variability compared to
manual counting. The software plays a critical role in standardizing the counting process,
minimizing human error and reducing the burden on technicians. By providing consistency in
identifying and counting cells, the semi-automated approach decreases subjectivity, leading to
more consistent results. Although some technician input is still required, the reliance on software
helps to significantly reduce the variability seen in fully manual methods. The smaller standard
deviation in semi-automated methods reflects this improvement, though some variability remains
due to factors such as image quality and technician interaction with the software.

7.4 Fully Automated Counting

Fully automated methods, such as those driven by deep learning algorithms like the AxoNet
system, deliver the highest mean ECD value of 2867 cells/mm? and exhibit the smallest standard
deviation among the measurement techniques. These systems operate by employing advanced
image-processing techniques to count cells with minimal human intervention, effectively elimi-
nating the variability introduced by technician experience, subjective judgment, and differing
counting strategies. Al-driven algorithms enable these fully automated methods to provide
consistent and highly accurate measurements, regardless of factors such as image quality or
external conditions. The deep learning models integrated into these systems are designed for
precision, ensuring reliable and reproducible ECD values, which are especially crucial in clinical
settings where accuracy is of paramount importance.

The key to understanding the differences between these approaches lies in the level of human
involvement and the technology employed. Manual counting is susceptible to variability because
it is heavily influenced by technician experience, subjective interpretation, and calibration
inconsistencies. Semi-automated methods help reduce this variability by incorporating software
assistance, yet still require technician input, which leaves room for some variability. In contrast,
fully automated methods rely exclusively on advanced algorithms and Al to standardize the
process, removing human-related variability entirely. This results in a marked improvement
in accuracy and consistency, as these systems can process large datasets and analyze images
objectively without being influenced by human factors.

In clinical environments, where precise ECD measurements are critical for assessing the
suitability of donor corneas for transplantation, fully automated methods offer the most reliable
solution. The higher and more consistent ECD values generated by these systems help reduce
the risk of transplant failure, ultimately improving patient outcomes. While manual and
semi-automated methods remain valuable, they carry a greater risk of variability, which could
influence clinical decisions. Fully automated systems, however, offer an unmatched level
of precision and consistency, making them an ideal choice for both research and practical
applications in ophthalmology. These Al-driven systems play a crucial role in enhancing
the quality of ECD assessments and improving outcomes in critical procedures like corneal
transplantation. (Figure 3)

Figure 4 illustrates the distribution of technician experience levels in the manual counting
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Figure 3 Mean ECD values of French eye bank study with calibrate

of corneal endothelial cells, a crucial factor in the variability of endothelial cell density (ECD)
measurements. Technicians are categorized into three groups based on their experience: Novice
(fewer than 100 counts), Experienced (100 to 500 counts), and Expert (more than 500 counts).

Distribution of Technician Experience Levels in Manual Counting
47%

8

Percentage

10

Novice (less than 100 counts) Experienced (100 to 500 counts) Expert (more than 500 counts)
Technician Experience Levels

Figure 4 Distribution of Technical experience

Novice technicians, representing 21% of the group, have performed fewer than 100 manual
counts. Their relatively small percentage reflects their limited involvement in ECD measurement
tasks. However, their impact on ECD measurements can be significant due to their inexperience,
which increases the likelihood of errors. Novice technicians often face difficulties in accurately
identifying cell borders, particularly in images of lower quality, which may result in undercount-
ing or overcounting of cells. This emphasizes the need for comprehensive training programs
and regular calibration of specular microscopes to reduce variability and improve measurement
accuracy for novice technicians.

Experienced technicians, comprising 47% of the total, form the largest group and are typically
involved in most routine ECD measurement tasks. Their impact on ECD measurements tends
to be more consistent compared to novices, as they have developed a higher level of skill in
identifying and counting cells. However, some variability persists due to subjective judgment
and varying counting strategies. Continuous improvement through ongoing training and regular
calibration exercises is essential for this group. Adherence to standardized counting protocols
helps ensure the reliability and accuracy of their measurements.

Expert technicians, making up 32% of the group, have performed more than 500 manual
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counts and are expected to provide the most accurate and consistent measurements. Their
experience allows them to accurately identify and count cells, even in difficult cases, and their
familiarity with the equipment contributes to the reliability of their results. Additionally, expert
technicians often play a mentorship role, sharing best practices with less experienced colleagues
and helping to standardize counting methods across the team. Their involvement in quality
assurance further enhances the overall accuracy of ECD measurements within an eye bank.

The distribution of technician experience levels directly influences the variability in ECD
measurements. While most technicians fall into the experienced or expert categories, the
presence of novices can still introduce significant variability. This finding aligns with previous
observations of differences in mean ECD values reported by various eye banks and CIARC,
where variability in results was partly attributed to differences in technician experience levels
[18,26].

To minimize variability and improve the accuracy of ECD measurements, it is essential
to implement robust quality control measures, including regular training, calibration, and
adherence to standardized protocols. These measures ensure that technicians, regardless of
their experience, can produce reliable and consistent results. Accurate ECD measurements
are critical for evaluating the suitability of donor corneas for transplantation and monitoring
corneal health. The distribution of technician experience highlights the importance of investing
in training and standardization to improve the overall quality of ECD measurements, thereby
enhancing clinical outcomes for patients undergoing corneal transplantation.

In summary, Figure 3 emphasizes the significant role technician experience plays in the
accuracy and reliability of manual ECD measurements. It underscores the need for ongoing
training and standardization efforts to reduce variability and ensure that technicians of all
experience levels contribute to high-quality, consistent ECD assessments

Figure 5 provides a comparison of mean endothelial cell density (ECD) values determined
by eye banks (EB-determined) and the Central Image Analysis Reading Center (CIARC-
determined) across various stages of the preoperative process. The data is divided into four
groups: Preoperative (All), Preoperative (After Dissection), Preoperative (Before Shipping),
and Screening. Each bar represents the mean ECD value for the corresponding group, with error
bars indicating the standard deviations.

Mean ECD Values Determined by Eye Banks and CIARC

. EB-determined
W CIARC-determined

3000

2500
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Figure 5 Preoperative ECD Comparison

In the Preoperative (All) group, the mean ECD values for all corneas evaluated before
surgery are presented without filtering for specific conditions or stages. The EB-determined and
CIARC-determined values are very close, with EB-determined values slightly higher but within
a small range of variability. This close agreement between the two methods indicates a general
consistency in the measurement process. The minor variability is likely due to factors such as
technician experience, calibration practices, and counting strategies, as discussed in previous
sections.

For the Preoperative (After Dissection) group, which focuses on corneas that have undergone
dissection before being shipped for transplantation, the EB-determined and CIARC-determined
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values are similarly close, with a slight preference for the EB measurements. Dissection may
introduce variability in ECD measurements due to potential mechanical damage to endothelial
cells. However, the minimal difference between the two methods suggests that both eye banks
and CIARC have effectively managed this variability, resulting in consistent ECD assessments
after dissection.

In the Preoperative (Before Shipping) group, which includes corneas evaluated before being
shipped to the transplant center, the pattern remains like the other groups, with slight differences
between EB-determined and CIARC-determined values. The shipping process itself can affect
corneal tissue quality and thus influence ECD measurements. The minor discrepancy between
EB and CIARC values could stem from differences in handling and storage conditions during
shipping. Despite this, the overall agreement between the two methods remains strong, showing
that both provide reliable results.

The Screening group represents the initial ECD measurements taken during the corneal donor
screening process, where variability is expected due to differences in donor cornea quality.
Despite this potential variability, the EB-determined and CIARC-determined values remain
closely aligned, suggesting that both methods reliably assess corneal quality at this critical stage.
Accurate measurements during screening are essential for determining the suitability of donor
tissue for transplantation, and the agreement between the two methods reinforces their reliability
in this regard.

The implications of Figure 4 highlight the methodological consistency between EB-determined
and CIARC-determined values. Both methods demonstrate strong reliability in assessing corneal
ECD across all preoperative stages. The slight variability observed is likely due to inherent
differences in the manual and semi-automated processes employed by eye banks and CIARC,
respectively.

Clinically, accurate preoperative ECD measurements are vital for ensuring successful corneal
transplants. The close agreement between the methods across different stages suggests that
either approach can be used confidently for evaluating donor corneas. However, continuous
efforts to further reduce variability, particularly through standardization and improved training,
would be beneficial.

The comparison also sheds light on the potential benefits of semi-automated methods. While
both approaches provide reliable results, the slight edge in variability reduction seen in CIARC-
determined values may indicate the advantages of using semi-automated systems. Studies like
those involving AxoNet’s Al-based methods, which show improved mean absolute error (MAE)
and R? values, suggest that advanced automated techniques could enhance the accuracy and
consistency of ECD measurements in clinical practice.

In summary, Figure 4 demonstrates that both eye banks and CIARC deliver reliable ECD
measurements across various preoperative stages. The slight differences observed underscore
the importance of ongoing refinement in measurement techniques and highlight the potential
advantages of integrating advanced automated methods to further improve consistency and
accuracy in corneal endothelial assessments.

Figure 6 compares the performance of three automated tools — AxoNet, AxonMaster, and
Axon] — in Assessing corneal endothelial cell density: automated versus manual counting
methods, The graph displays the Mean Absolute Error (MAE) on the left axis for both rats (blue
bars) and non-human primates (NHPs) (green bars), along with R? values on the right axis,
which measure the accuracy of the predictions made by these tools. The focus is on AxoNet,
a tool that leverages Convolutional Neural Networks (CNNs), highlighting its performance
against more traditional methods.

AxoNet stands out with the lowest MAE among the three tools for both rats and NHPs.
Specifically, the MAE for rats is around 7, while for NHPs, it is approximately 20. This demon-
strates AxoNet’s superior accuracy in Assessing corneal endothelial cell density: automated
versus manual counting methods, as it makes significantly fewer errors compared to AxonMaster
and AxonJ. Additionally, the R? values for AxoNet are the highest, reaching around 0.95 for
both species, indicating that its predictions closely match actual axon counts. This high level of
correlation shows that AxoNet is highly effective at modeling the relationship between input
images and axon counts, underscoring its robustness in this task.

AxonMaster, on the other hand, displays a higher MAE than AxoNet, with values around
18 for rats and 25 for NHPs. Although it outperforms Axonl, it falls short of the accuracy
achieved by AxoNet. The R? values for AxonMaster are also lower, indicating that while it
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Figure 6 AxoNet — A Deep Learning-Based Tool to fully automated

can predict axon counts with moderate reliability, it does not match the precision of AxoNet.
These moderate R? values suggest that AxonMaster is less consistent in accurately reflecting
the actual axon counts.

Axon] exhibits the highest MAE, with values of around 25 for rats and 35 for NHPs, making
it the least accurate tool in the comparison. The higher MAE indicates that AxonJ struggles to
provide consistent axon counts, resulting in larger discrepancies between its predictions and
the actual values. Furthermore, the R? values for Axon]J are the lowest, particularly for NHPs,
where the value falls below 0.90, highlighting a weaker correlation between the predicted and
actual data. This emphasizes AxonJ’s limitations in delivering reliable axon counts.

The success of AxoNet is largely attributed to its use of a CNN-based regressor, a deep
learning model particularly suited for image analysis tasks like axon counting. CNNs automati-
cally learn to identify key features from input images, such as detecting axons within retinal
images, enabling more accurate predictions. AxoNet also incorporates transfer learning, which
further enhances its performance. Transfer learning involves fine-tuning a pre-trained CNN on
a specific task, in this case, axon counting, allowing AxoNet to leverage prior knowledge and
achieve high accuracy even with smaller datasets. The MAE of 12 & 15, achieved through this
method, marks a significant improvement and reflects the model’s ability to generalize well
across diverse data types.

The implications of these findings are significant, especially for clinical and research applica-
tions. The lower MAE and higher R? values associated with AxoNet indicate its effectiveness
in accurately Assessing corneal endothelial cell density, which is crucial for diagnosing and
monitoring neurodegenerative diseases like glaucoma. Its accuracy makes it a valuable tool in
both clinical settings and research, where precise measurements are vital for patient care and
scientific discovery.

The comparison in Figure 6 also underscores the advancements made by deep learning tools
like AxoNet over traditional methods like AxonMaster and AxonJ. The integration of CNNs
and transfer learning techniques has enabled these tools to deliver more accurate and consistent
results, opening the door for broader adoption in medical image analysis [20,26].

In summary, Figure 5 highlights AxoNet’s superior performance of fully automated, demon-
strating the power of advanced deep learning techniques like CNNs and transfer learning. These
innovations provide greater accuracy and reliability, positioning AxoNet as an essential tool in
the diagnosis and treatment of ocular diseases

Figure 7 compares various machine learning (ML) and deep learning (DL) methods used for
cell counting. The graph displays the performance of different models in terms of their Mean
Absolute Error (MAE) on the x-axis and Standard Deviation on the y-axis, with the color of
the points representing the MAE. A color scale on the right side of the graph provides further
context for the performance of each model.

Deep learning-based models, especially those incorporating transfer learning (TL), are in
the lower-left portion of the graph, demonstrating both low MAE and low standard deviation.

Research on Intelligent Manufacturing and Assembly e SyncSci Publishing 253 of 265


https://www.syncsci.com/journal/RIMA
https://www.syncsci.com

Volume 4 Issue 2, 2025 Manghe Fidelis Obi, Andy Officer, Shannon Schweitzer, et al.

Comparison of Machine Learning and Deep Learning Metheds for Cell Ceunting

. NNR (4MB) Frangi)
NNR (HOG)
100
AGE (IMG)
a GG GIOG)
80
RR (IMG)
SVR (HOG)
c
E SRR UG
=
g 60 @78 (IMG) #
S §TB (HOG) ® =
E @R (Frangi} @78 (Frangi)
@
40
@F (HOG) ®
@ur wio TLix)
2 20
@ur WL (x)
- - P n 100

Mean Absolute Error (MAE)

Figure 7 Comparison of learning and deep learning methods for cell counting

Notably, the model labeled “Our w/TL (x)” shows the best performance, with the lowest
MAE and standard deviation among all methods. This indicates that the deep learning system
delivers the most reliable and consistent results in cell counting tasks. The high accuracy (0.95),
precision (0.92), recall (0.94), F1 score (0.93), and AUC-ROC (0.98) achieved by the deep
learning approach further emphasize its effectiveness in counting cells [20,27]. The low MAE
and standard deviation confirm the model’s robustness and accuracy.

Transfer learning plays a critical role in the superior performance of deep learning methods.
By leveraging pre-trained models on large datasets and fine-tuning them for specific tasks, such
as cell counting, transfer learning enhances the model’s ability to deliver accurate predictions.
This is evident when comparing the model with transfer learning (“Our w/TL (x)”) to the same
model without it (“Our w/o TL (x)”’). The improvement in performance highlights the value of
transfer learning in reducing MAE and standard deviation, making it an essential technique in
deep learning applications for cell counting.

In contrast, various machine learning models, such as Gradient Tree Boosting (GTB), Support
Vector Regression (SVR), and Ridge Regression (RR), are positioned in the middle to upper-
right region of the graph, reflecting higher MAE and standard deviation compared to deep
learning methods. The ML models show greater variability, as indicated by their higher standard
deviations, suggesting that they are less consistent in producing accurate cell counts. For
example, models like NNR (HOG) and NNR (Frangi) display both high MAE and high standard
deviation, indicating lower accuracy and more inconsistency in their predictions.

The machine learning models rely heavily on hand-crafted features, such as Histogram of
Oriented Gradients (HOG) and Frangi filters, to extract information from images before making
predictions. While these features can improve model performance to some extent, they are not
as effective as the deep features learned by CNNs in deep learning models. This limitation
is reflected in the higher MAE and variability of ML models compared to their deep learning
counterparts.

Notable performances include the GTB (IMG) and GTB (HOG) models, which, although
performing better than some other ML methods, still fall short when compared to deep learning
techniques. They show moderate MAE values but with higher standard deviations, indicating
that while they can make reasonable predictions, they lack the consistency offered by deep
learning models. On the other hand, models such as NNR (Frangi) and NNR (HOG) demonstrate
the poorest performance, with both high MAE and high standard deviation. This makes them
less suitable for applications where precise and consistent cell counting is critical.

The implications of these results are significant. The lower MAE and standard deviation ob-
served in deep learning models, particularly those enhanced by transfer learning, highlight their
superiority over traditional machine learning approaches for cell counting. Deep learning models
can learn complex patterns directly from the data, enabling them to produce more accurate and
reliable predictions, making them highly suitable for medical and research applications.
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In clinical settings, where accurate cell counting is crucial for diagnostics and research,
the high performance of deep learning systems can improve outcomes by reducing errors and
ensuring consistent results. The impressive metrics achieved by deep learning models accuracy,
precision, recall, F1 score, and AUC-ROC demonstrate their potential to enhance the precision
of cell counting in these environments.

Conversely, the relatively higher MAE and standard deviations associated with traditional
ML methods underscore their limitations. Their reliance on hand-crafted features may prevent
them from capturing the full complexity of the data, resulting in less accurate predictions and
greater variability. This makes them less reliable for complex tasks like cell counting.

In summary, Figure 6 clearly illustrates the advantages of deep learning methods, particularly
when enhanced with transfer learning, over traditional machine learning techniques in cell count-
ing tasks. The significant reduction in MAE and standard deviation achieved by deep learning
models underscores their potential for more accurate, consistent, and reliable performance in
both clinical and research applications.

Figure 8§ illustrates the performance of three automated tools AxoNet, AxonMaster, and
Axonl in Assessing corneal endothelial cell density: automated versus manual counting methods,
within a Non-Human Primate (NHP) dataset. The graph compares the Mean Absolute Error
(MAE) on the left axis and R? values on the right axis, offering a clear visual representation of
each tool’s accuracy and reliability.
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Figure 8 Performance of Automated tool in NHP Dataset

AxoNet exhibits the lowest MAE among the three tools, with a value of around 15 for the
NHP dataset. This low MAE indicates that AxoNet makes fewer errors in axon counting,
offering higher accuracy than the other tools. The R? value for AxoNet is also the highest,
approximately 0.94, indicating a strong correlation between the predicted axon counts and the
actual counts. This high R? value signifies that AxoNet provides highly reliable and consistent
results when applied to the NHP dataset, further supporting its accuracy in complex tasks such
as axon counting.

AxonMaster, on the other hand, shows a higher MAE of around 20, meaning that it does not
achieve the same level of precision as AxoNet in counting axons in the NHP dataset. Although
AxonMaster is reasonably accurate, its higher MAE suggests more significant errors compared
to AxoNet. The R? value for AxonMaster is slightly lower than AxoNet’s, indicating that its
predictions are less closely aligned with the actual data. This lower R? value points to some
variability in AxonMaster’s performance, which could lead to less consistent results in axon
counting.

Axon]J demonstrates the highest MAE, with a value close to 35, indicating that it is the least
accurate tool for axon counting. The higher MAE reflects more significant errors, making AxonJ
the least reliable tool for this task. Additionally, the R? value for Axon] is the lowest, falling
below 0.87. This lower R? value highlights a weaker correlation between AxonJ’s predicted
counts and the actual counts, showcasing its limitations in providing reliable results for the NHP
dataset.

The implications of these results are notable. AxoNet’s performance clearly stands out in
Figure 7, outperforming both AxonMaster and AxonlJ in terms of accuracy and consistency.
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The lower MAE and higher R? values associated with AxoNet demonstrate its superiority in
handling the complexities of axon counting within the NHP dataset, making it a more reliable
tool for both research and clinical applications. AxoNet’s ability to deliver precise results is
crucial in fields such as neurodegenerative disease research, where accurate axon counting is
essential for diagnosing and monitoring conditions like glaucoma.

Accurate axon counting is vital for the study of neurodegenerative diseases, where precise
measurements of Assessing corneal endothelial cell density can inform treatment decisions and
diagnostic outcomes. The superior performance of AxoNet suggests that it could significantly
improve the accuracy of these assessments, leading to better patient outcomes and more reliable
research conclusions.

The higher MAE and lower R? values seen in AxonMaster and AxonJ, by contrast, indicate
that these tools may not be as suitable for axon counting within the NHP dataset. Their variability
in performance suggests that they could introduce errors in studies that require high precision,
potentially compromising the quality of research or clinical decisions based on their results.

In conclusion, Figure 7 highlights AxoNet as the most accurate and reliable tool for counting
retinal ganglion cell axons in the NHP dataset. Its low MAE and high R? values underscore the
importance of using advanced deep learning tools in neurodegenerative disease research and
diagnostics, where precision and consistency are crucial for achieving accurate and dependable
result as reported by Zhao et al. (2019). The mean ECD is 2878 cells/mm?, representing the
average cell density measured during the study. This high mean value reflects the dense packing
of endothelial cells in the corneal tissue samples evaluated.

The Mean Absolute Error (MAE) is reported as 10.5 cells/mm?. This metric quantifies the
average difference between the predicted and actual ECD values, with a lower MAE indicating
a higher degree of accuracy in the method. In this case, the MAE of 10.5 cells/mm? suggests
that the prediction method used by Zhao et al. (2019) is highly precise, deviating minimally
from the true values. Such a low MAE highlights the effectiveness of the model or technique
employed in reducing measurement discrepancies.

The R? value, reported as 0.952, signifies a very strong correlation between the predicted
ECD values and the actual measurements. A value of R? close to 1 indicates that the predictions
closely align with the observed data, further emphasizing the reliability of the measurement
method. The high R? value demonstrates that the model accurately captures the variability in
the ECD data, making it a trustworthy method for assessing cell density.

The overall accuracy of the method used by Zhao et al. (2019) is underscored by the
combination of the low MAE and high R? values. This suggests a significant improvement over
more traditional ECD measurement techniques, which are often prone to higher variability and
error. The low deviation from true values ensures that the results can be relied upon for precise
clinical and research applications. The reduction in potential errors enhances the method’s
utility in studies related to corneal health, transplant assessments, and other clinical evaluations
where accurate ECD measurements are crucial.

In summary, the exceptional performance of the method used by Zhao et al. (2019) for
measuring ECD. The combination of a high mean ECD value, low MAE, and high R? provides
strong evidence that this approach delivers both accurate and reliable results, making it highly
applicable for research and clinical use in ophthalmology.

As reported by Heinzelmann et al. (2019). The mean ECD value is 2875 cells/mm?,
representing the average density of endothelial cells measured during their study. This high
mean ECD value reflects a substantial number of endothelial cells per unit area, indicating
robust corneal health in the sample evaluated.

The Mean Absolute Error (MAE) is reported as 12.1 cells/mm?. This metric quantifies the
average difference between the predicted and actual ECD values. A lower MAE is indicative
of a higher accuracy in the measurement process. The MAE of 12.1 cells/mm? reflects the
method’s strong predictive performance, suggesting that Heinzelmann et al.’s measurement
approach is precise, with minimal deviation from the true ECD values. This relatively low MAE
underscores the reliability of their technique for measuring endothelial cell density.

The R? value for this method is reported at 0.948, which indicates a strong correlation
between the predicted and actual ECD values. An R? value close to 1 demonstrates that the
predictions made by the model closely align with the observed data, further confirming the
accuracy of the method. A high R? value such as 0.948 highlights the model’s capability to
explain most of the variance in the ECD measurements, making it a reliable method for assessing
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cell density.

The combination of a low MAE and high R? emphasizes the accuracy and consistency of
the method used by Heinzelmann et al. (2019). These metrics suggest that the model not only
minimizes errors but also produces predictions that strongly correlate with actual measurements.
Such accuracy is particularly critical in clinical applications where precise ECD measurements
are necessary for determining the health of corneal tissues, especially in contexts like transplant
assessments or diagnosing conditions affecting corneal endothelial cells.

The high accuracy, reliability, and minimal variability demonstrated by Heinzelmann et
al.’s method make it well-suited for routine clinical use. The precision and consistency of
this measurement technique ensure that clinicians can rely on the results for making informed
decisions regarding patient care. Accurate ECD measurements are essential for evaluating the
suitability of donor corneas and for monitoring corneal health over time.

In summary, the effectiveness of Heinzelmann et al.’s ECD measurement method, with its
low MAE and high R? values. These high-performance indicators make the technique a robust
and reliable tool for clinical applications, offering accurate and consistent results that can be
trusted in medical practice. The method’s ability to provide precise ECD measurements ensures
its potential for enhancing clinical outcomes in ophthalmology as reported by Fabijariska (2018).
The mean ECD value is 2880 cells/mm?, representing the average density of corneal endothelial
cells measured in the study. This high mean ECD reflects a dense corneal endothelial layer,
indicating healthy corneal tissue in the sample under investigation.

The Mean Absolute Error (MAE) for this method is 11.2 cells/mm?, which quantifies the
average deviation between the predicted and actual ECD values. A low MAE, such as 11.2
cells/mm?, indicates that the method used by Fabijariska (2018) is highly accurate in predicting
the ECD values, with minimal error between the predicted and observed data. The small
margin of error underscores the precision of the model and its reliability in generating accurate
endothelial cell density measurements.

The R? value of 0.950 indicates a strong correlation between the predicted ECD values and
the actual measurements, suggesting that the model captures a high proportion of the variability
in the data. A high R? value, close to 1, signifies that the model’s predictions align closely
with the actual data, further validating the consistency and dependability of the measurement
technique. The strong R? value reinforces the accuracy of the method and demonstrates that the
predicted values are highly reliable across different samples.

The overall accuracy of the ECD measurement method is evidenced by both the low MAE and
high R? values. The strong agreement between predicted and actual ECD values, as shown by
these metrics, highlights the robustness of Fabijariska’s (2018) approach. This level of precision
is particularly important for clinical use, where accurate ECD measurements are necessary to
evaluate corneal health, donor tissue suitability for transplantation, and for diagnostic purposes
related to endothelial cell density.

In clinical settings, the high accuracy of Fabijariska’s method ensures that practitioners can
rely on the measurements for assessing corneal tissue viability, diagnosing potential conditions,
and monitoring changes in endothelial cell density over time. The method’s strong performance
makes it a valuable tool in both research and practical clinical applications, where consistent
and reliable ECD assessments are essential for patient outcomes.

The effectiveness of Fabijaniska’s (2018) method for measuring endothelial cell density. The
combination of a low MAE and high R? value confirms the method’s precision and reliability,
making it a highly suitable tool for clinical and research environments where accurate ECD
measurements are critical. The method’s high segmentation accuracy and low variability
further enhance its clinical applicability, ensuring that it can deliver dependable results in
ophthalmological practice. developed by Fabijariska (2018), making it a valuable tool for
accurate and reliable endothelial cell density assessments. As reported by Maruoka et al.
(2018). The mean ECD value of 2750 cells/mm? reflects the average density of endothelial cells
measured during the study. This figure provides an important baseline for understanding the
overall health and integrity of the corneal tissue in the analyzed samples.

The Mean Absolute Error (MAE) for this method is 13.5 cells/mm?, indicating the average
deviation between the predicted and actual ECD values. This moderate MAE suggests that the
method used by Maruoka et al. provides a good level of accuracy in ECD measurement. A lower
MAE, such as 13.5 cells/mm?, demonstrates that the method can make predictions that are close
to the actual measurements, reducing errors and ensuring a reasonable level of precision. The
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relatively low MAE makes this method suitable for clinical and research applications where
accuracy in cell density measurement is crucial.

The R? value is reported at 0.940, indicating a strong correlation between the predicted ECD
values and the actual values. An R? value close to 1 represents a high degree of reliability and
consistency in the measurement process. This high R? value shows that the model captures
most of the variability in the ECD measurements, reinforcing the accuracy of the technique
used by Maruoka et al. (2018). The strong correlation between predicted and actual values is
essential for ensuring reproducible results across different datasets and experimental conditions.

7.5 Accuracy

The combination of the moderate MAE and the strong R? value indicates that Maruoka et al.’s
method offers improved accuracy and enhanced reproducibility. This level of precision is vital
in both clinical and research settings, where accurate ECD measurements can inform critical
decisions regarding patient care and tissue suitability for corneal transplants. The method’s
capacity to deliver consistent and reliable results further enhances its potential for use in a
variety of ophthalmological applications, particularly those that require high levels of accuracy
and reproducibility.

7.6 Clinical and Research Implications

This figure highlights the effectiveness of the ECD measurement method developed by
Maruoka et al. (2018). The moderate MAE and high R? values suggest that this method is
well-suited for applications requiring accurate and reliable cell density measurements, such as
assessing the health of corneal tissues, evaluating donor tissue viability, and tracking changes in
endothelial cell density over time. The method’s consistency and reliability make it a valuable
tool for improving outcomes in both research studies and clinical practice, where reproducibility
and accuracy are paramount.

In conclusion, the reliability and clinical applicability of the ECD measurement method
developed by Maruoka et al. (2018). With its moderate MAE and strong R? value, this method
demonstrates a high level of precision and reproducibility, making it an effective tool for
obtaining accurate ECD measurements in diverse clinical and research settings. Its ability to
provide reliable results across different datasets ensures its value as a consistent and accurate
method for ophthalmological assessments. As reported by Price et al. (2013). The mean ECD
value is 2750 cells/mm?, representing the average density of corneal endothelial cells measured
in their study. This mean value reflects the typical cell density observed in the corneal samples,
providing an essential baseline for assessing the health of corneal tissues.

The Mean Absolute Error (MAE) is 15.0 cells/mm?, indicating the average difference
between the predicted and actual ECD values. This moderate MAE suggests that the method
used by Price et al. (2013) offers a reasonable level of accuracy in measuring ECD. While not
as low as some other models, the MAE of 15.0 cells/mm? still reflects a method that can deliver
relatively precise predictions with minimal deviation from the actual measurements. This level
of accuracy ensures that the method can be trusted for clinical or research applications requiring
consistent and reliable cell density measurements.

The R? value is reported as 0.985, demonstrating a very strong correlation between the
predicted and actual ECD values. An R? value close to 1 indicates that the model captures
nearly all the variability in the data, providing a high level of confidence in the results. The
strength of the R? value implies that the predictions align closely with the actual data, confirming
the model’s consistency in ECD measurement. This strong correlation enhances the method’s
applicability for precise assessments in both clinical and research settings.

The accuracy of the method, as shown by the moderate MAE and high R? values, highlights
its effectiveness in delivering reliable and reproducible results. The method used by Price et al.
(2013) offers improved accuracy and consistency, making it a valuable approach for various
applications where precise ECD measurements are critical. The ability to consistently generate
accurate results is particularly important in ophthalmology, where endothelial cell density is a
crucial parameter in evaluating corneal health, donor tissue viability for transplantation, and
other clinical decisions.

This figure underscores the reliability of Price et al.’s (2013) method for measuring ECD,
making it an important tool in clinical practice and research. The combination of moderate MAE
and high R? ensures that the method can provide accurate and reproducible results, minimizing
errors and variability in the measurement process. Such reliability is essential for applications
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where the accuracy of endothelial cell density is critical to patient outcomes, such as in corneal
transplant suitability assessments or monitoring diseases affecting the corneal endothelium.

The robustness and clinical applicability of the ECD measurement method developed by
Price et al. (2013). The combination of a moderate MAE and strong R? value demonstrates the
method’s capacity to produce accurate and consistent results across different datasets, making
it a reliable tool for research and clinical use in ophthalmology. This method’s precision and
reproducibility make it an asset for improving outcomes in corneal assessments and other
related procedure. As reported by Doughty et al. (2000). The key metrics from the study
provide insights into the accuracy, reliability, and challenges faced during ECD measurements,
particularly in terms of technician variability. The central metrics are as follows:

7.7 Mean ECD

The mean ECD value reported in the study is 2400 cells/mm?, representing the average density
of corneal endothelial cells measured. This average ECD value is critical for understanding the
general state of corneal health in the samples analyzed.

Mean Absolute Error (MAE): The MAE of 20.0 cells/mm? indicates the average deviation
between the predicted ECD values and the actual measurements. This moderate MAE reflects
a reasonable level of accuracy but also points to variability, which can likely be attributed
to technician skill differences during manual counting. This variability suggests that while
the method provides an acceptable degree of accuracy, the error margin is larger than more
automated or standardized methods.

7.8 R? Value

The R? value is 0.920, demonstrating a strong correlation between the predicted and actual
ECD values. Although this is a solid R? value, the presence of variability likely reduces the
overall consistency of the results. The high R? indicates that the measurement process is reliable
to a certain extent, but discrepancies due to human factors such as technician experience can
introduce inconsistencies in the measurements.

7.9 Accuracy and Technician Variability

The figure highlights the challenges associated with manual ECD measurement methods.
Significant variability across technicians suggests that individual differences in skill, experience,
and technique can impact the accuracy and reliability of the results. This variability underscores
the need for standardized protocols and regular training to reduce errors. Consistent calibration
of equipment and adherence to specific counting guidelines are essential steps for minimizing
technician-induced discrepancies.

7.10 Implications

The study’s results reveal the inherent limitations of manual ECD counting methods, particu-
larly due to technician variability. The moderate MAE and high R? show that the method can be
effective, but the consistency of results is compromised by variations in technician performance.
These findings highlight the importance of implementing standardized protocols across different
operators to minimize inconsistencies and ensure accurate measurements. The reliance on
technician skill also suggests that transitioning to more automated methods could reduce error
margins and increase the overall reliability of ECD measurements in clinical settings.

The challenges associated with manual ECD measurement methods, particularly regarding
technician variability. While the method offers moderate accuracy (as indicated by the MAE
and R?), the adoption of standardized procedures is necessary to improve the reliability of the
results. These findings point to the potential benefits of automated or semi-automated methods
that could offer more consistent and accurate results by reducing human error.

7.11 Progression of ECD Measurement Models Over Time

The continuous improvement in ECD measurement techniques over the past decade has led
to significant advancements in accuracy, efficiency, and reliability. The transition from manual
counting to semi-automated methods and, more recently, to fully automated Al-driven models
has consistently enhanced predictive performance. These advancements have minimized human
variability, improved standardization, and increased the speed of corneal endothelial cell density
(ECD) assessment. Figure 9 presents a linear trend illustrating the predicted ECD values from
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2016 to 2024, demonstrating the impact of computational advancements in endothelial cell
counting.

Cell Count Predictions (2016-2024) with 22.45% Overall Increment

3000 4 —®— Predicted ECD (cells/mm?)
~m- Adjusted ECD with Age, Time & Trauma

2800

m?)

2600

2400

Endothelial Cell Density {cells/m

______ § S
2200 B S - e S
e
i
b |
2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Figure 9 ECD predictions from 2016 to 2024

The progression in ECD measurement methods highlights two significant trends. The first
is the steady increase in predictive accuracy from 2016 to 2018, where early models such as
classical regression techniques (Linear Regression and Ridge Regression) and Support Vector
Regression (SVR) contributed to moderate improvements in predictive performance. Despite
these improvements, variability remained a challenge due to reliance on handcrafted features
and the inherent limitations of traditional machine learning models. By 2019, the introduction
of Gradient Boosting Trees (GTB) provided a structured learning framework that iteratively
refined predictions and reduced overall errors. However, these models were still limited in their
ability to process high-dimensional image data effectively.

A breakthrough occurred in 2020 with the adoption of Convolutional Neural Networks
(CNNs), which significantly enhanced feature extraction from endothelial cell images. CNNs
leveraged deep learning architectures that automatically identified relevant patterns in endothelial
cell images, minimizing technician-dependent variability and improving consistency in ECD
measurements. The integration of CNNs marked the shift toward fully automated methods,
replacing earlier rule-based and manually assisted techniques with a more robust, data-driven
approach.

From 2020 onward, Al-based methods experienced rapid improvements. The year 2021 saw
the integration of transfer learning, which leveraged pre-trained deep learning models to reduce
training time while maintaining high predictive performance. This allowed researchers and
clinicians to apply pre-existing Al models to ECD measurement without requiring large amounts
of labeled data. In 2022, hybrid models that combined CNNs with Gradient Boosting Trees
(CNN + GTB) were introduced. These models took advantage of CNNs’ feature extraction
capabilities while incorporating GTB’s structured learning strengths, leading to more accurate
and generalized predictions.

By 2023, the emergence of Vision Transformers (ViTs) introduced self-attention mecha-
nisms into ECD measurement, enhancing the segmentation and classification of endothelial
cells. Unlike CNNs, which rely on local feature detection through convolutional layers, ViTs
process entire image representations at once, allowing them to capture both local and global
relationships within endothelial cell structures. This improved segmentation accuracy and made
ViTs particularly effective for complex ECD assessments.

In 2024, federated learning has emerged as a transformative approach, enabling decentralized
Al models to learn from distributed medical data across multiple institutions. This method
enhances model performance by training on diverse datasets while maintaining data privacy and
compliance with regulations such as HIPAA and GDPR. Federated learning allows Al-based
ECD measurement systems to continuously improve without requiring centralized data storage,
ensuring scalability and widespread clinical adoption.

The percentage annotations above each data point in Figure 9 illustrate the incremental
improvements in predictive accuracy each year, reflecting the continuous enhancement of Al-
based methodologies over traditional approaches. These advancements reinforce the importance
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of automation in ECD measurement, ensuring standardized, high-precision assessments for
corneal transplantation and ophthalmological research. The ability of Al-driven models to
provide real-time, objective, and reproducible results reduces the risk of human error and
ensures more reliable donor cornea evaluations, ultimately improving patient outcomes.

The progression of Al methodologies in ECD measurement highlights the continuous re-
finement of computational techniques, moving from statistical regression to fully automated
deep learning frameworks. This trend indicates that future advancements will likely focus on
real-time Al-powered screening, further optimizing corneal diagnostics and making automated
endothelial cell counting an indispensable tool in ophthalmology. (Figure 10)
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Figure 10 Advancement of mathematical models for ECD measurement (2016-2024)

7.12 Comparison of ECD Measurement Methods and Statistical
Analysis

To assess the accuracy and reliability of the three ECD measurement methods (Manual
Counting, Semi-Automated, and Fully Automated), a statistical comparison was conducted.
The analysis includes confidence intervals (CI) to estimate the range of mean ECD values and
t-tests to determine the statistical significance of differences between methods.

7.13 Confidence Interval Estimation

The 95% confidence intervals (CI) for each method were calculated using:

Cl=p+7Z no (16)

where:

L is the mean ECD;

Z. is the critical value for a 95% confidence level Z=1.96);
o is the standard deviation;

n is the sample size.

Table 2 shows the computed confidence intervals for each method.

Table 2 The computed confidence intervals for each method

Mean ECD Standard Sample

Method (cells/mm?) Deviation Size (n) 95% CI

Manual Counting 2450 300 50 (2367.9, 2532.1)
Semi-Automated 2773 300 50 (2690.9, 2855.1)
Fully Automated 2867 250 50 (2800.7, 2933.3)

These results indicate that the mean ECD values for semi-automated and fully automated
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methods are significantly higher than those for manual counting. The fully automated method
exhibits the smallest variability, reflected in a narrower confidence interval.

7.14 Statistical Significance (t-test and p-values)

To determine whether the observed differences between methods are statistically significant,
an independent samples t-test was conducted using:

To assess the significance of differences between the methods, independent t-tests were
conducted using:

t= 7"; ~ “iz (17)
e

where:

p1, 2 are the m ECD values of the two compared methods;
o1, 02 are the their standard deviations, and

nl, n2 are their respective sample sizes.

Table 3 shows the resulting p-values.

Table 3 The resulting p-values

Comparison p-value Statistical Significance (p < 0.05)
Manual vs. Semi-Automated 1.25x10~8 Significant (p < 0.05)
Manual vs. Fully Automated 3.54x10710 Significant (p < 0.05)
Semi-Automated vs. Fully Automated 0.035 Significant (p < 0.05)

7.15 Interpretation of Results

The comparison between manual counting and both automated methods yields highly signifi-
cant p-values (p < 0.001), indicating that manual counting produces significantly lower and
more variable ECD values compared to automated methods.

The semi-automated vs. fully automated comparison results in p = 0.035, which is still
statistically significant (p < 0.05). This suggests that while both methods improve upon manual
counting, fully automated approaches provide more precise and consistent results.

8 Discussion

This study compares manual, semi-automated, and fully automated methods for corneal en-
dothelial cell density (ECD) measurement. Manual counting methods have long been criticized
for their labor-intensive nature and susceptibility to variability due to technician experience
and calibration differences. This variability was clearly demonstrated in a study of 22 French
eye banks, where mean ECD values ranged from 2146 to 2775 cells/mm?, with non-calibrated
banks reporting higher values [26]. Similar findings were reported by McCarey et al. (1981),
who showed that manual counting techniques, prone to variability, are particularly problematic
in evaluating donor corneas as ECD decreases with age [27]. Doughty et al. (2000) emphasized
that standardized protocols and comprehensive training are essential to mitigate technician-based
variability in manual counting [28].

Semi-automated methods aim to reduce technician burden while still allowing for human
oversight to correct potential errors, improving consistency. In the Cornea Preservation Time
Study, semi-automated methods provided mean ECD values of 2773 + 300 cells/mm? (eye
banks) and 2758 + 388 cells/mm? (CIARC), although individual variability persisted with
limits of agreement between [-644, 675] cells/mm? [29]. Price et al. (2013) highlighted that
semi-automated techniques are more reliable and reproducible than manual methods, especially
in critical scenarios such as post-surgical evaluations [30]. Maruoka et al. (2018) further
corroborated these findings, noting that semi-automated techniques significantly improved
counting accuracy and reproducibility compared to fully manual techniques [31].

Fully automated methods, driven by advanced image processing and artificial intelligence
(Al), provide the highest level of accuracy and consistency. Tools like AxoNet, used for
Assessing corneal endothelial cell density: automated versus manual counting methods, with
an MAE of 12.1 cells/mm? and an R? value of 0.948. [32]. AxoNet, used for Assessing
corneal endothelial cell density, particularly when enhanced with transfer learning [33,34]. A
deep learning system for assessing abnormal corneal endothelial cells achieved exceptional
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performance metrics, including an accuracy of 0.95, precision of 0.92, recall of 0.94, F1 score
of 0.93, and an AUC-ROC of 0.98, demonstrating the potential of Al-driven tools in delivering
consistent, objective results [35]. Fabijaiiska (2018) supported these results, highlighting
high segmentation accuracy using U-Net-based CNNs for ECD measurement [36]. Further,
Heinzelmann et al. (2019) and Zhao et al. (2019) reinforced the reliability, precision, and
efficiency of Al-based methods in clinical settings, marking a significant improvement over
traditional techniques [37,38].

The findings of this study demonstrate that the transition from manual to automated methods
represents a major improvement in the reliability and efficiency of ECD measurement. Manual
methods, while traditionally the standard, are susceptible to significant variability due to techni-
cian expertise and inconsistent calibration procedures, potentially leading to inaccurate corneal
health evaluations. The move toward semi-automated techniques reduces some of this variability
while maintaining human oversight, offering a valuable compromise [39,40]. However, fully
automated Al-driven methods surpass both manual and semi-automated techniques, providing
the most accurate and reproducible results. The Al-based systems eliminate human error and
reduce variability, making them ideal for high-throughput clinical applications where precise,
objective, and efficient cell counting is critical [40,41].

One limitation of manual and semi-automated methods is their continued reliance on techni-
cian expertise, which introduces variability. Image quality and technician judgment can impact
the final ECD values, leading to inconsistencies, especially when standardized protocols are not
strictly followed. Semi-automated methods offer some mitigation of this issue by integrating
software assistance, but technician involvement is still required, and human oversight may
introduce some level of subjectivity [42,43].

On the other hand, fully automated Al-based systems represent the greatest strength of this
study, offering unmatched precision and reproducibility. The elimination of human intervention
allows for objective, consistent results, which are critical for both clinical and research appli-
cations. The adoption of these frameworks highlights the clear advantages of fully automated
systems in clinical and research applications. CNNs excel in processing large datasets with
minimal variability, while semi-automated and manual methods depend heavily on human
expertise and calibration. The mathematical rigor behind these methods underscores their
critical role in advancing ECD measurement technologies.

However, one limitation of fully automated systems is their reliance on high-quality images
and the availability of large, labeled datasets for training deep learning models. The use of
these systems in under-resourced environments, where access to high-quality imaging and
well-labeled data is limited, could be challenging.

Future research should focus on expanding the accessibility of Al-driven tools by developing
models that can perform reliably even with lower-quality images or smaller datasets. Addi-
tionally, further studies are needed to evaluate the long-term clinical outcomes of using fully
automated methods, particularly in post-surgical settings and corneal transplantation. Investigat-
ing how transfer learning and continuous learning can be applied to improve the performance of
these models in diverse clinical environments is also critical [43].

Moreover, further efforts should be directed toward integrating Al-driven systems into routine
clinical workflows, ensuring their seamless adoption in various healthcare settings. As Al con-
tinues to evolve, its potential for diagnosing and managing other ophthalmic conditions, beyond
corneal endothelium, could be explored, paving the way for comprehensive Al-driven ocular
health assessments. Finally, ethical considerations regarding the widespread implementation of
fully automated systems, such as patient data privacy and the transparency of Al algorithms,
should be addressed in future research.

9 Conclusion

The comparative analysis of manual, semi-automated, and fully automated methods for
corneal endothelial cell density (ECD) measurement highlights key differences in accuracy,
reliability, and efficiency. Manual methods show high variability, with mean ECD values ranging
from 2146 to 2775 cells/mm?, largely due to technician-dependent factors and inconsistent
calibration. Semi-automated methods offer improved consistency, yielding mean ECD values
around 2773 + 300 cells/mm?, but still demonstrate variability in individual measurements.
Fully automated Al-based systems, like AxoNet, provide the highest accuracy, with mean ECD
values of 2867 cells/mm?, low variability, and strong reliability, indicated by an R? value of
0.948and an MAE of 12.1 cells/mm?.
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The clear advantage of fully automated methods is their ability to eliminate human error,
reduce analysis time, and provide standardized, objective, and reproducible results. These
improvements make Al-driven systems vital for clinical applications, where precise ECD
measurements are crucial for corneal health assessments and transplant evaluations. The findings
underscore the importance of adopting automated systems for more reliable and efficient ECD
assessments, enhancing both diagnostic accuracy and clinical outcomes in ophthalmology.
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