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Abstract: The technique used here emphasizes pivotal quantities and ancillary statistics relevant
for obtaining statistical predictive or confidence decisions for anticipated outcomes of applied
stochastic models under parametric uncertainty and is applicable whenever the statistical prob-
lem is invariant under a group of transformations that acts transitively on the parameter space. It
does not require the construction of any tables and is applicable whether the experimental data
are complete or Type II censored. The proposed technique is based on a probability transforma-
tion and pivotal quantity averaging to solve real-life problems in all areas including engineering,
science, industry, automation & robotics, business & finance, medicine and biomedicine. It is
conceptually simple and easy to use.

Keywords: anticipated outcomes, parametric uncertainty, unknown (nuisance) parameters,
pivotal quantities, ancillary statistics, new-sample prediction, within-sample prediction

1 Introduction

Statistical predictive/confidence decisions (under parametric uncertainty) for future random
quantities (e.g., future outcomes, order statistics) based on past and current data are the most
prevalent form of statistical inference. Such predictive inferences for future random quanti-
ties are widely used in risk management, finance, insurance, economics, hydrology, material
sciences, telecommunications, and other industries. Predictive inferences-including predictive
distributions, prediction/tolerance limits/intervals, and confidence limits/intervals for future
random quantities, based on past and present knowledge-are a fundamental statistical problem,
arising in diverse contexts with varied solutions. The approach here is a special case of broader
considerations, applicable when the statistical problem is invariant under a transformation group
that acts transitively on the parameter space [1-11].

2 Elimination of Parametric Uncertainty

LetY = (Y1 < --- < Yi,) be the first m ordered observations (order statistics) in a sample
of size h from the two-parameter exponential distribution with the probability density function

Foly) =0~ exp (f%» 9> 0,020, )
and the cumulative probability distribution function
—v — —v
R =1-ew (<150) . B =1- R —ew (<150). @

where p = (v, ¥) is the shift parameter and ¥ is the scale parameter. It is assumed that these
parameters are unknown. In Type II censoring, which is of primary interest here, the number of
survivors is fixed and Y is a random variable. In this case, the likelihood function is given by

L, 9) = [T fow) (Folwm))" ™" = L exp (f {Dyi —v) + (h = m)(ym — u)] /ﬁ)
i=1 i=1

1 m
= gm &P <— [Z(yz —y1+y1 —v)+ (h—m)(ym — y1 +y1 — U)j| /19>
i=1

©)

- ﬁexp <— |:;(y )+ (h = m) (g — yl):| /79) x %exp (_’7'(?/{719—”)>

1 Sm 1 h(s1 —v)
= ——exp | — X —exp | ———= ),
Yym—1 ] 9 9
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where
S =(51 =Yy, Sy =2 (Y, =Y )+ (h—m)(Y, —Yl)j 4)
i-1
is the complete sufficient statistic for p. The probability density function of S = (S, Sm) is given by
1 L o p( j 1exp[ h(s, — )j
f (s,5.) = 9™ 9 4
PRI e h(s, - )
N F
1 exp(_s) 1exp( hs, _U))
_ gt 9 9 9
o
Sm h
1 2 Sm h(s, — )J
=———————s"“ex ex| fo(s.)f (s), 5
r(m-1g9mt™" p( gjxs p( 9 ACOARY ©)
where
h h v
fp(sl)=5e><p( (Slg )J 5 >0, (©)
1 m_2 Sm
f‘g(sm)zmsm exp —g y SmZO. (7)
S, —v
Vi==g (8)

is the pivotal quantity, the probability density function of which is given by

f,(v,) =hexp(-hv,), v, >0, )
Sn
V= = (10)

is the pivotal quantity, the probability density function of which is given by

_ 1 m-2 .
f, (Vm)_—l“(m—l) Vo texp(—Vy ), V0. (11)

3. Adequate Mathematical Models of Cumulative Distribution Functions of Order Statistics for Constructing
One-Sided Tolerance Limits (or Two sided Tolerance Interval) in New (Future) Data Samples under
Parametric Uncertainty

Theorem 1. Let us assume that Y1< ... <Y, will be a new (future) random sample of n ordered observations
from a known distribution with a probability density function (pdf) fp (y), cumulative distribution function (cdf)

Fp(y), where p is the parameter (in general, vector). Then the adequate mathematical models for a cumulative

probability distribution function of the kth order statistic Y, ke {1, 2, ..., n}, to construct one-sided » — content
tolerance limits (or two-sided tolerance interval) for Yy with confidence level g, are given as follows:

Adequate Applied Mathematical Model 1 of a Cumulative Distribution Function of the kth Order Statistic Y
is given by

Fo(¥)

fenia(Ndr=P (Y, <y, [n) = Z[ j[F (' L=F, (v 1" (12)

0
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In the above case, a (;/,,B) upper, one-sided y — content tolerance limit yt’ with confidence level g can be
obtained by using the following formula:

F,(0%)
EvPrl [ fpsa(ndr=y [=E{Pr(P,(Y <y [n)=y)} =B, (13)
0
where
1 k-1 (n—k+1)-1
N=——r"—"(1-r , O<r<l, 14
D =Bcn—keg" ¢ 49
is the probability density function (pdf) of the beta distribution (Beta(k,n—k +1)) with the shape parameters k
and n— k+1.
Proof. It follows from (12) that
Fo(Yi)
d ” d
o j fonea (1) = =P, (6 <, | (15)

This ends the proof.
A (7,,3) lower, one-sided y — content tolerance limit with confidence level g can be obtained by using the
following formula:

F, (%)

E{Pr(P,(Y >y IM2y)}=E{Prl1- [ f,  auduzy|t=4 (16)

0

A (y,ﬂ) two-sided y — content tolerance interval with confidence level g can be obtained by using the
following formula:

{arg(E{Pr(Pﬂ(Yk > yr |n)2y)}:,8), arug(E{Pr(Pp(Yk <y’ |n)27/)}:,8)}

Vi Yk

F, (%) F, (%)
=|arg| EqPr _[ fnn(Ndr<l-y|-=p|, arg| E{Pr j foa(dr>y (=4
Y 0 e 0 ’
=[ve. W | (17)
Adequate Applied Mathematical Model 2 of a Cumulative Distribution Function of the kth Order Statistic Yy
is given by

1 n n ) .

J. foia (NAr=P, (Y, <y, [n)= Z(jj[Fp(Yk)]J L-F,(y)I"". (18)
1-F, (%) i=k

In the above case, a (;/,ﬁ) upper, one-sided y — content tolerance limit yfj with confidence level B can be
obtained by using the following formula:

1

EsPrl [ foadr=y |=E{Pr(P,(Y, <y M)2y)} =5, (19)
1-F, (W)
where
1 (n—k+1)-1 k-1
Uy=—r 1-r)—f r), O<r<], 20
n—k+1‘l( ) B(n—k+1,k) ( ) k,n—K+1( ) ( )

is the probability density function (pdf) of the beta distribution (Beta(n—k +1,k)) with the shape parameters —
k+1 and k.
Proof. It follows from (9) that
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d | d
— [ fa(Ddr=——P (Y, <y, |n). (21)
dyk 1ij‘(yk) k l,k dyk 4 k k

This ends the proof.

A (y,ﬂ) lower, one-sided y — content tolerance limit with confidence level g can be obtained by using the
following formula:

E{Pr(Pp(Yk>ykL|n)2y)}=E Prii- | f . (ndrzy =4 (22)

1-F, (%)
A (;/,,B) two-sided y — content tolerance interval with confidence level g can be obtained by using the
following formula:

{arg(E{pr(pp(Yk >y In)>7)}=p), arg(E{Pr(P,(Y, <y} In) zy)}zﬁ)}

Vi Yk

1 1
=|arg| E4Pr j f (Ndr<l—y|.=p|, arg| E{Pr I f(nNdrzy \r=p
W ) W F ()
=[ve. v | (23)
Adequate Applied Mathematical Model 3 of a Cumulative Distribution Function of the kth Order Statistic Y
is given by
n—k+1 F, (%)
k 1-F, (%) 0 (n ' ‘
[ Pnsa(n)dr=P,(Y, <y, n)= Z( jj[Fp(yk)]’ [1-F, (vl (24)
0 j=k

In the above case, a (;/,/)’) upper, one-sided y — content tolerance limit yfj with confidence level B can be
obtained by using the following formula:

n—k+1 F, (%)

kK 1-F, (W)
EPrl [ @uasea(ndr2y [=E{Pr(P,(Y <y In)27)} =B, (25)
0
where
k k-1
1 [n k 1r} k
—k+
r)= , re(0,0), 26
(Dk,n—kJrl() B(k,n—k—{—l) ‘: k :|n+ln—k+1 G( OO) ( )
1+ r
n-k+1

is the probability density function (pdf) of the F distribution (F(k,n—Kk +1)) with parameters k and n—k+1,

which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom for the
denominator.

Proof. It follows from (13) that

n—k+1 F,(Y)
g € ERO) d
— rydr=—~P < n). 27
AL (@)

This ends the proof.
A (;/,,8) lower, one-sided y — content tolerance limit with confidence level g can be obtained by using the
following formula:
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n—k+1 F,(¥c)
ko 1-F, (%)

E{Pr(P,(% >V IM2y)|=E{Pril- [ g Ndrzy|t=4 (28)

0

A (7,/3) two-sided y — content tolerance interval with confidence level S can be obtained by using the
following formula:

{arLg(E{PF(Pp(Yk > Yy |n)27)}=ﬂ), afug(E{Pr(Pp(Yk <y, |n)27/)}:ﬂ)}

Yk

n—k+1 F,(¥c) n—k+1 F,(¥¢)
K 1-F, (yF) ko 1-F, (%)
=|arg E4Pr| [ ga(ndr<ioy =B arg EsPrl [ g a(ndrzy =8
Y 0 Y 0
=[ve. v (29)
Adequate Applied Mathematical Model 4 of a Cumulative Distribution Function of the kth Order Statistic Yi
is given by
o0 n n ) o
_[ Prks1k (r)dr: Pp(Yk <Y |n):Z[jj[Fp(Yk)]J [1_Fp(yk)] . (30)
kK 1-F, (%) j=k

n—k+1 F,(y)

In the above case, a (y,ﬁ) upper, one-sided y — content tolerance limit yfj with confidence level B can be
obtained by using the following formula:

©

ESPrl [ geandr2y [=E{Pr(P,(Y <y In)2y)} =5, (31)
A
n—k+1 F (%)

where

K k

r= :

¢n—k+l,k( ) B(n_k+1,k)|: n-k+1 :|n+l
1+ r

r € (0,), (32)

is the probability density function (pdf) of the F distribution (F(n—k +1,k)) with parameters n—k+1 and k,

which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom for the
denominator.

Proof. It follows from (30) that

d T d
— Poseax (NAF =—P (Y, <, [n). (33)
W o frp dy, "

n—k+1 F,(yx)

This ends the proof.
A (7,ﬁ) lower, one-sided y — content tolerance limit with confidence level S can be obtained by using the
following formula:

©

ESPrll- [ g drzy [i=E{Pr(P,(Y, > yrIn)2 )} = 5. (34)
kK 1-F,(y)
n-k+1 F, (y¢)
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A (;/,,B) two-sided » — content tolerance interval with confidence level g can be obtained by using the
following formula:

{arg(E{Pr(Pp(Yk >y In)>7)} =), arg(E{Pr(P, (% <y |n)zy)}:ﬁ)}

Vi Yk

0 ©

=larg EsPr| [ g (Ndr<l-yp=p arg EsPrl [ g (Ndr2y =4
Y kK 1-F,(y) Y kK 1-F,(%)
n-k+L F, (y¢) K+l F, (%)
=[ve. W | (35)

4. Adequate Mathematical Models of Conditional Cumulative Distribution Functions of Order
Statistic for Constructing One-Sided Tolerance Limits (Or Two-Sided Tolerance Interval) in New
(Future) Data Samples under Parametric Uncertainty

Theorem 2. Let us assume that Yi< ... <Y, will be a new (future) random sample of n ordered observations
from a known distribution with a probability density function (pdf) fp (y), cumulative distribution function (cdf)
Fp(y), where p is the parameter (in general, vector). Then the adequate mathematical models for a conditional
cumulative distribution function (ccdf) of the Ith order statistic Y, l€{2, ..., n}, to construct one-sided 5 —
content tolerance limits (or two-sided tolerance interval) for Y, (1 <k <1 <n)), given Yi=yx, with confidence level
B, are determined as follows:

Adequate Applied Mathematical Model 5 of a Conditional Cumulative Distribution Function of the Ith Order
Statistic Y, is given by

1_5;()’0 ‘ |
F, () ok (n—k IE (y) i IE (y) n—k—j

f e (D)r =P (Y, <y, [Y, = y,in) = ( _ jl__p IWEW™

_([ I-k,n-1+1 | | k k J;k J Fp(yk) Fp(yk) ( )

In the above case, a (;/,ﬂ) upper, one-sided y — content tolerance limit y,U with confidence level B can be
obtained by using the following formula:

Fu)
'E,;(Yk)
ESPr [ fmaaMdr2y [p=E{Pr(P,(4 < Y, =yiin) 2 7)) = B, (37)
0
where F,(z) =1-F,(2),
1-k-1 (n-1+1)-1
r~—@-r)
f rN= , O<r«y, 38
I—k,rl—l+1( ) B(I—k,n—|+1) ( )
is the probability density function (pdf) of the beta distribution (Beta(l —k,n—1+1)) with shape parameters
[=k and n—1+1.
Proof. It follows from (36) that
- 'Ep()ﬁ)
d 'Ep(yk) d
d_y. '([ fina(r)dr =d_ylpp(Y| <Y Y =Y:n). (39)

This ends the proof.
A (;/,,B) lower, one-sided y — content tolerance limit with confidence level 4 can be obtained by using the
following formula:
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(40)

ETH

AR

5 (V)
E{Pril- I 1E|—k,n—|+1(r)dr 2y (1= E{Pr(Pp(Yl > Y|L |Yk = yk;n) Z)/)} =p.
0

ull

A (7, [5’) two-sided y — content tolerance interval with confidence level g can be obtained by using the

following formula:
arg(E{Pr(P, (% >yl 1Y, = yiam) 2 »)} = B), arg(E{Pr(P,(¥, <y} In)27)}=ﬂ)}
L Y Y
lﬁ(y.L) 1ﬁ,(y.“)
E(yk) 7D(Yk)
=|arg| E{Pr I finaa(Ndr<l-y |:=p|, arg| E{Pr _[ fona(ndr=y |p =4
Vi 0 i 0
=[yr. v ] (41)
Adequate Applied Mathematical Model 6 of a Conditional Cumulative Distribution Function of the Ith
Order Statistic Y, is given by
_ ir = n—k—j
o (n-K\. Fo0T[Fm)
rydr=P (Y, <y, |Y, =VY,;n)= . S 2 , 42
n—I+l,I—k() p(| yll k = Yk ) 2( j ]l: Fp(yk) Fp(yk) (42)

1
[ f
» (M) j=1-k

e

F, (%)
In the above case, a (;/,,B) upper, one-sided y — content tolerance limit y,U with confidence level g can be

n

obtained by using the following formula:

1
EqPr J. fn—l+l,lfk(r)dr27/ :E{Pr(Pp(Yl < y|U |Yk ZYk;n)ZJ/)}:ﬂa (43)
F,00)
'E/;(Yk)
where F_ (y)=1-F,(y),
(n=1+2)-1 g yI-k-1
' a-n , O<r<l, (44)

f =
n—I+1,I—k(r) B(n—l +1,|—k)
(Beta(n—1+1,1 —k)) with shape

is the probability density function (pdf) of the beta distribution

parameters n—I+1 and /—k.
Proof. It follows from (42) that
d ¢ d
—-— fonaa (Ndr=—nPF (Y, <y, [Y, = y,;n). (45)
dy| Fp_!‘yl) 1+1,1-k d | p | k k

'Ep(yk)

This ends the proof.
A (;/,ﬁ) lower, one-sided y — content tolerance limit with confidence level S can be obtained by using the

following formula:

E\Pril- I fop (Ndr=y v = E{Pr(Pp(Yl >y Y = yn) 2 7)} =p. (46)

F (Y|L)

'Ep(yk)
A (;/,,B) two-sided y — content tolerance interval with confidence level B can be obtained by using the
following formula:
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Vi Vi

[arp(E{Pr(P”(Y' > Y1V =yim 2 7)f =), arg(E{Pr(P,0n <y 1Y, =yk;n)27)}:ﬂ)}

1

1
=|arg| EqPr| [ f,p,(Ndr<i-y|t=p] ag| E{Pr| [ f_ ., (Ndr2y|t=8
w £ ) W E0P)
'Ep(Yk) 'Ep(yk)

=[vr Ch)

This ends the proof.

Adequate Applied Mathematical Model 7 of a Conditional Cumulative Distribution Function of the Ith Order
Statistic Y, is given by

n—IJrl(1 'Ep(yl) 'Ep(yl)
i | E,(yo]/fp(yn
J. o (n)dr= P, M <y Y =VYn)
(-, Eo|[Ro ]
=Z( _jl—_" D 1 B 48)
=\ ] F,(Y) F, (V)

In the above case, a (;/,,B) upper, one-sided y — content tolerance limit y,U with confidence level g can be
obtained by using the following formula:

n-1+1 lf,,(y.“) F,(0)
1-k Fn) |/ Fr(v)
E{Pr | fema(Ndr 2y [L=E{Pr(P,(4 <y [V =yin)2y)i=8,  (©9)

0

where F (y)=1-F,(y),

I_k l: I—k I’-}I—k—l
_ —-1+1
f r) = n-1+1 n .r 0 50
I—k,n—l+1() B(I—k,n—l+1){ [—K Tkﬂ E( ,00)1 ( )
1+ r
n-1+1

is the probability density function (pdf) of the F distribution (F(I —k,n—I+1)) with parameters |-k and n—I+1,
which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom for the
denominator.

Proof. It follows from (48) that

n—1+1 1_@()4) fp()h)
-k \ F, (%)) Fo(v)

d
d_y. fiaa(r)dr :d_y,P”(Y' <Y [Ye = Yi:n). (51)

This ends the proof.
A (y,ﬂ) lower, one-sided y — content tolerance limit with confidence level 4 can be obtained by using the
following formula:
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F,00)

F,00)
'fp(yk)

'Ep(yk)

J

0

n—l+1
1-k

E{Pri1-

&)/

fera(Ddr 2y [=E{Pr(P, (Y, >y Y, =yin 2y)} =4 (2)

A (7, [5’) two-sided y — content tolerance interval with confidence level g can be obtained by using the

|

following formula:
[arp(E{Pr(P”(Y' > Y%= yim 2 7)) = ). arg(E{Pr(Pr(R,00 <3P 1Y, =yin) 7))} =)

Yi Yi

[ n-141f, F,(m)) /F, ()

1-k F,() )/ Fo(w)

arg| E1Pr J i ra(Ddr<1-y | =4 |,

y|L 0

= o =[v oy (53)

n—1+1 17Fp(y| ) /F ()
1-k F, (%) )/ Fo(v)

arg| EqPr J. fl—k,n—l+1(r)dr 2y =8

W 0

This ends the proof.
Adequate Applied Mathematical Model 8 of a Conditional Cumulative Distribution Function of the Ith Order

Statistic Y, is given by
-k F,(y) L F,(
F

n—I1+1F, (yy)
n-k

=2,

j=I—k

i)

fn—|+1,|7k,(r)dr = Pp(Yl =Y, |Yk = yk;n)
Vi)

s

In the above case, a (,/3) upper, one-sided » — content tolerance limit y,u with confidence level g can be

)

n—k
]

F,\) (54)

F.(2)

_FE)
F,(Y)

obtained by using the following formula:

EqPr | fra (Ndr2y | E=E{Pr(P,04 < Y, =ym)2y)[ =4 (55)
Ik E,(yuu)/[l E,(W)J
n*'“-ﬁp()’k) 'Ep(yk)
where F,(y) =1—F,(y),
I _ k [ I _ k r:llkl
_ n-1+1
foia(r)= B(I _nk Lt:% ) K =1 'e(0,.), (56)
' [1+ — r}
n-I+1

is the probability density function (pdf) of the F distribution (F(n—1I+211—K))with parameters n — I+1 and |
—k, which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom

for the denominator.
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Proof. It follows from (54) that
d T d .
Qv foiai (N)dr = v P.(Y <y Y, =Yiin). (57)
YoE, (yn/[ ﬁp(ynJ Yi
n—1+1F, (%) 'Ep(yk)
This ends the proof.

A (;/,,8) lower, one-sided y — content tolerance limit with confidence level g can be obtained by using the
following formula:

E{Pr|1- | o, (NAr 2y [E=E{Pr(P,(Y, > y1 Y, =yim2y)l =4 (58)
-k F,00) L F,00)
n*”l'fp()’k) 'E,J(Yk)
A (7,,8) two-sided y — content tolerance interval with confidence level g can be obtained by using the
following formula:

[arg(E{Pr(Pp(Y, > Y1 1Y, = Yim 2 7)) = ), arg(E{Pr(Pr(R, % <y 1Y, = yiin) 27/))}=ﬂ)}

v Vi

arg| E<Pr

L I
Y -k F,(00)
n— I+1F (Y)

= :[Y|Lv yIU :I (59)

fo (NAdr<l—y le=81,

arg E<Pr I
w -k F, lE
n-1+1F, (Yk 'E (Yk)

This ends the proof.

foa (Ndr=y (¢ =4

5. Two-Parameter Exponential Distribution
Let Y =(Y1<... £7,) be the first m ordered observations (order statistics) in a sample of size 4 from the two-
parameter exponential distribution with the probability density function

_ y—v
f.(y)=49 1exp(—TJ, 3>0, v>0, (60)
and the cumulative probability distribution function
-v = -v
F ) =1-e( - L52) Fm)-1-Fo)-en( 152 (1)

where p=(v,9), vis the shift parameter and 4 is the scale parameter. It is assumed that these parameters are

unknown. In Type Il censoring, which is of primary interest here, the number of survivors is fixed and Y is a
random variable. In this case, the likelihood function is given by

L(v,9) =f[ £,00(F,(v) =gimexp( [i(yi —v)+(h—m)(y, —u)} /9}

i=1

=—exp£ [Z —Y+ Y, —0)+(h=m)(y, -y, + yl—v)}/é*j

i=1
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- Hi(yi -3+ (h=m)(y, - yg} /9]

1 h(y, —v) 1 Sm h(s,-v)
—exp| — = exp| ——+ ex| , 62
Xgp( 3 gmlpgxgp 3 62
where
S=(31 =Y, S, =2 (Y =Y )+ (h—m)(Y, —Yl)J (63)
i=1
is the complete sufficient statistic for p. The probability density function of S = (S1, Sm) is given by
1 1 h(s, —v)
o 3): exp( )
foSn) = —— Lf’ g ~
e (mj exp( (Sl_u)jdsl
ST 9 3
1 1 o p( 1exp( h(s, - ]
gt 9
B F(m 1) 1
s'? h
1 —2 S h h(Sl_U)J
S — —Im o x—exp| ————= [=f (s, )f (s), 64
F(m-1)g™* " eXp( ajxg p( 9 o(80)f, (5.) ©9
where
h h(s, —v)
fp(sl)zgexp( 3 J s, >0, (65)
f,(s ):;smzexp(—s—’“j, s >0. (66)
A (0 I $)
S, -
V=2 (67)

is the pivotal quantity, the probability density function of which is given by

f,(v,) =hexp(-hv,), v,>0, (68)
Sn
Vo= (69)

is the pivotal quantity, the probability density function of which is given by

1 2
fo (V)= mvﬂ exp(—v, ), V,=0. (70)
Constructing a (;/,,B) upper, one-sided y — content tolerance limit with confidence level g for the case of
Model 1

Theorem 3. Let Y1<...<Yy be the first m ordered observations from the preliminary sample of size 4 from a
two-parameter exponential distribution defined by the probability density function (49). Then the upper one-sided

y-content tolerance limit (with a confidence level f) yt’ on the kth order statistic Y; from a set of n future ordered
observations Y:1<...<Ypalso from the distribution (49), which satisfies

E{Pr(P,( <v/In=y)} =45 (1)

is given by
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1 1
Q) |1 Q) |1
Sl+S—m 1-| =L . if ! <1,
h B B

Vi = - :

1 1
th Qhﬁ
sl o

(72)

where

Q, =1-0Gy . .y, (Beta(k,n-k+1), y quantile). (73)
Proof. It follows from (71), (72) and (73) that

E{Pr(Pp(Yk <yYn) 27/)}

) YW —v
=E<LPr '[ fk,n7k+1(r)dr >y =E Pr[l_exp(_ . 9 jz qk,nk+1§7J
0
Y —0
=E{Pr| exp| — 3 <1-0Opiiny

= E{Pr(_% < In(l— Ok nkety )J} = E{Pr[ ytjlg—l) >—In (1—qkyn,k+l;y )}

_ Yy =S, S, S, —v
_E{Pr( 3 13+ 19 >—In(1-0y, .1, )

S,—v Yy =S, S,
E{Pr[ g = kSm 1§_In(1—qk,nkw)}}

~1 Ve —InQ,
=E{Pr(V, 2=V, —InQ, )| = E{1-Pr(V, <=V, -InQ, )} = E{l— n ALY } (74)

0

where

U —_—
=B (75)

m

It follows from (74) and (75) that

7l7ll<‘IVm7|nQy 7l7ll<‘IVm7|nQy
E{l— | fl(vl)dvl} = E{l— | hexp(—hvl)dvl}
0

0

- E{l—[l—exp(—h[—nfvm - |n97m} = E{exp(hn?V,, Jexp(In <) )} = E{Q exp(hV,, )}

~ (@ exp(v, ) T (v ),
0

0

=I(Qjexp(hnfvm))#vm‘2e xp(~V,, )dv,, = T

r'(m-1 "

o

| T 1 5 ym2 exp(—vm [1-hr! ])dvm
Q)
W =p. (76)

It follows from (75) and (76) that
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_ Q" |m1
7 = ykS Sl:% 1—[77} . (77)
It follows from (77) that
1
Q" |mt
Y, =31+Srm 1—{77} : (78)

Then (72) follows from (78). This ends the proof.

Constructing a (7,,8) lower, one-sided y — content tolerance limit with confidence level g for the case
of Model 1

Theorem 4. Let Y1<...<Yp, be the first m ordered observations from the preliminary sample of size 4 from a
two-parameter exponential distribution defined by the probability density function (60). Then the lower one-sided

y-content tolerance limit (with a confidence level /) ykL on the kth order statistic Y; from a set of n future ordered
observations Y1<...<Ypalso from the distribution (60)), which satisfies

E{Pr(P, (Y >y [n)27)f =5, (79)
is given by
Qb \m1 Qb \m1
s;l+s—m 1-| 2L |, 0f | 22| <y
h|™ (1-8 1-4
Vi = - .- . (80)
Qh m-1 Qh m-1
31+S_m e 1 | == S
hil1-5 1-4
where ) )
Q, =1- 0y s, (Betak,n-k +1), 1y quantile). (81)

Proof. It follows from (79) and (81) that

F, (%)
E{Pr(P,(Y, >ysIn)=y)| =E Pr[ | fkyn_m(r)drsl—yj

0

L —_—
= E{Pr(exp(— ykg UJ 21— O nkira-y ]}

Ye-S,S, S,-v
:E{Pr( kS 134_ llg S—In(l_qk,n—k-#l;l—y)j}

S —u Ve —S, S,
:E{Pr( 13 <- kS lg—m(l_qmmmyﬂ}

m

MV —INQy,
- E{Pr(vl <1V —INQ, )} -E .|. f(v)dv, f, (©2)
0
where
L
-S
S (83)
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It follows from (68) and (82) that

1V —InQy —Vp—InQy
E{ j fl(vl)dvl}: E{ J' hexp(—hvl)dvl}

0 0

=E {1— exp(—h[—nkLVm -InQ,_, ])} ~E {1— exp(hnV, Jexp(ginQy,_, )} =E {1— Q) exp(hnpV, )}

T(1 Q) exp(hv, )) £ (v, )dv,
0

T(l Q. exp h,7k m)) 1 V2 exp (-, )dv,, =1 ny]i ! ;"Zexp(—vm[l—hnt])dvm
0

r(m-1) o [(m-1)
Qh
. S ) (84)
[1— h77kL:|
It follows from (83) and (84) that
1
L Qh m-1
p =Sty e ) (85)
S, h 1-p
It follows from (85) that
1
Q) |mt
=8, 1| S T (86)
h 1-p3

Then (80) follows from (86). This ends the proof.

A. Numerical Practical Example
Let us assume that k =5, m =8, h =10, n=12, y = # = 0.95,

S=(Sl =Y,=9,8, =2 (Y, =Y,)+(h-m), —Yl)}
i=1
=(5,=9, S, =0+1+2+4+6+10+15+ 23+ (10—-8)23=107), @87)

Then, the (7/ =0.95 4= 0.95) upper, one-sided y — content tolerance limit yf with confidence level B can be
obtained from (72), where the quantile of Beta(k,n-k +1),y is given by

O k1), = 0-609138, (88)
Q  =1- Aen-kst)ay = 1-0.609138 = 0.390862. (89)
It follows from (72), (87) and (89) that

1 1
Q" \m1 0.390862]° |+
YU =S + ST"* 1— (?j -9+ 11007 [1— % —9+7.883285=16.883285.  (90)

The (;/ =0.954= 0.95) lower, one-sided y — content tolerance limit ykL with confidence level g can be
obtained from (80), where the quantile of Beta(k,n -k +1),1—y is given by

G n sy, = 0.181025, (o1)

=1- Qkonteonyiy = 1-0.181025=0.818975. (92)

1-y
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It follows from (80), (87) and (92) that

1 1
s 45 [ Qf ]m—l g, 107 {[o 818975]“’}8 =
k —%1 " TR - - Y

hili-p 10| 1-095

=9+ g[l 15335326 —1] =10.64088. (93)

The (» =0.95,8=0.95) two-sided » — content tolerance interval with confidence level B can be obtained
by using (90) and (93):
[ v+, v/ |=[10.64088, 16.883285). (94)
6. New Intelligent Transformation Technique for Derivation of the Density Function of the Student's
T Distribution
Theorem 5. If W, € N(0,1) and W, e z*(v) are independent random variables, then

W,/ W, 1o =T (), (95)

where t(v) follows the student’s t distribution with v degrees of freedom,

o (D)2
1) - f = @A), | —w<t<m, (96)
N I'(v/2) v
Proof.
2
w, ~ fl(wl):%expi—w—l , —O<W <o, (97)
2z 2
where
W 1/2 W 1/2
W, = {f} , dw, ={f} dt. (98)

It follows from (97) and (98) that

2 2 1/2
f.(w,)dw, = %exp(_w?lj dw, = %exp(_yj[%} dt=f (t | W, )dt,—oo <t<oo. (99)

1

W (Ulz) - exp( VZZ j, 0< W, <oo. (100)

W, ~ fz(Wz) ( /2

It follows from (99) and (100) that

f(t) =T f(tIw,) f,(w,)dw,

g (-““”T““]J{%} rrae ool
r(©+/2)

K r /2
J‘ W§”+l)/2)_lexp _ 1+_ dw, = (b+1)/ )) l+
) I'(v/2)2¢ 2 v Jm T(v/2) I'(v/2)

This ends the proof.

(v+1)/2
— ,—o<t<oo. (101)
1y
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7. Confidence Interval for the Difference of Means of Two Different Normal Populations
In most applications, two populations are compared using the difference in the means. Let U1, U, ..., Un be

a sample of size m from a normal population having mean _ and variance a; and let Z3, ..., Z, be a sample of
size n from a different normal population having mean . and variance af and suppose that the two samples are
independent of each other. We are interested in constructing a confidence interval for s —z . To obtain this
confidence interval, we need the distribution of U, —Z,, where

U, =iUi/m~N(ym,0§]/m), Z =Zm:Zi/n~N(,un,af/n). (102)
. i

i=1
It follows from (102) that
2 2
- = o. O
Um_Zn~N[/um_ﬂn1Fm+?nJ- (103)
It follows from (103) that
ljm _Z_n _(:um _:un)

=W, ~ N(0,1). 104
Gri/m+0'§/n ! ©.D (104)

This is independent of

m

 foz = 0D 2V -0) _(m-Dsz

(U~ =L ~ 105
;( i m O_ri (m—l) O'ri lm—l ( )
and
(Zi _Zn )2 2
X =\ / 2 (n _1) i—1 _ (n _1)Sn 2
i;(zi—zn) [o? = = A (106)
where
_ 2 _ 2
(MDSw , DS vy _ 2 (mn-2). (107)
Gm n

Taking (95), (104) and (107) into account, we have that
Um _Zn _(/um _lun)

W, 3 o2 Im+c?/n
/(m+n-2 —1)S2 _1)S2
W, /( ) \/Pm DS, , (n ﬁ)sn}/(mm_z)
O-I'ﬂ n

Um_z_n_ m~ Hn —2
- Lt 10 q/ e _T(m+n-2)~ (1), (108)
Jm-0s2/0? +(n-1)SZ /02 \on/m+oy /n

where T(m+n-2) is a t-random variable with m + n — 2 degrees of freedom,

r((m+n-1)/2) { t }()
f(t)= 1+ , —oo<t<oo, (109)
Jrm+n-2) T((m+n-2)/2) m+n-2

Using (108) and (109), it can be obtained a 100(1-)% confidence interval for U,_—Z_ — (4 — 1) from

Ljm_z_n_(lum_lun) m+n-2

< <
Jm-1S2 /62 +(n-1S? 0% Jo? Im+c?in

P(t,<T(m+n-2)<t,) =P|t,
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_1\Q2 /2 Q2 2 L
 [m-0S; /o +(0-Ds; /o, T mr ot In <0, -7, (o)

_p m+n-2 =1-a (110)

_1\Q2 2 _\Q2/ 2
<t, (m-1S; /o, +(n-1)S; /o, ’—a§/m+a§/n

m+n-2

by suitably choosing the decision variables t, and t, . Hence, the statistical confidence interval for
U, —Z,—(t, — #,) is given by

Un—DS§/0§+(n—DSj/af Un—DS§/0§+(n—DSf/of
m+n-2 m+n-2

1 1
Joilm+ao?in afofq/erof/n

The length of the statistical confidence interval for U_—Z, —(,um —yn) is given by

— N\Q2 2 —\Q2/ -2
L{tl,tzl\/(m Sz /o2 +(n-1)S2 /o '—a§/m+a,f/nJ

1 (111)

m+n-2

- 2 2 - 2 2
=(t, 1) (M ~D)Sn /o + (0 1)8"/0”~/a;/m+a§/n. (112)

m+n-2

In order to find the confidence interval of shortest-length for U, —Z —(u, — u, ), we should find a pair of

decision variables t, and t, such that (101) is minimum.
It follows from (109) and (110) that

]2. f(t)dt =t_|2. f(t)dt —]1. f(t)dt =(1-a+p)-p=1-¢, (113)
wherep (0<p<a)isa det::ision varia(:ale, O
Tf(t)dtzl—a+ p (103)
and 0
tj f (t)dt = p. (104)

0
Then t, represents the (1—a + p) - quantile, which is given by

tL,=0,. p;(t(m+n-2)) 1 (105)

t, represents the p - quantile, which is given by

t = qp;(t(m+n—2))' (106)
The shortest length confidence interval for U, —Z, — (4, — 4, ) can be found as follows:
Minimize
2 2
(t2 _t:l) = (ql—a+ p;(t(m+n-2)) - qp;(t(m+n—2)) ) (107)
subject to
0<p<e, (108)

The optimal numerical solution minimizing (t2 —t1)2 can be obtained using the standard computer software
“Solver" of Excel 2016. If o = o7, it follows from (101) that
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. t|\/(m—l)s.rf1+(n—1)s§ [m+n (t-t,) (M-1S2+(n-1)S? [m+n (109)
bk m+n-2 m+n-2 mn

If, for example, m=58, n=27, «=0.05, U, =70.7, Z =76.13, S?=(1.8)* S?=(2.42)*,then the optimal
numerical solution of (107) is given by

P=0.025 t =0, sy =—L198896, t, =0 ., s =1.98896 (110)

and it follows from (99) and (109) that the 100(1-a)% confidence interval of shortest-length (or equal tails) for
M — 1L is given by

- - (M-1)S2 +(n-1)S? [m+n

(Un=2,)-t, '
(4t — 1) m+n-2 MM |=(-6.330947,-4.52905)  (111)
- - (M=1)S2 +(n-1)S? [m+n
(Un=2Z,)-t,
m+n-2 mn
or
—6.330947 < p1,—p, <—4.52905. (112)

8. Confidence Interval for the Ratio of Means of Two Different Normal Populations

Ratio in the means is used to compare two populations of positive data. Let Us, Uo, ..., Un be a sample of size
m from a normal population having mean , and variance a; and let Uy, ..., U, be a sample of size n from a

different normal population having mean g, and variance af and suppose that the two samples are independent
of each other. We are interested in constructing a confidence interval for the ratio of means (,, ) of two

different normal populations To obtain this confidence interval, we need the distribution of U, —xU, , where

U_mziui/m~N(ym,of,/m), U, —ZU/ (,un,O' /n) 113)

It can be shown that

2 2_2
Um_KUnA'N[:um_Klun!%"_Ko-n\J 114)
m n
or
Um _ _(/um K/un) =W N (0 1) (115)

This is independent of

Nicholas Nechval, Gundars Berzins, Konstantin Nechval

m _ L -
U,-U,) /ol = L = L 116
2(U-0,) /o ] oo 2 (116)
and
n J 2/ 2 _(n-1) jzn;‘(uj _Un)z (n-0s;
U -u,) /o= - = T~ X (117)
JZ:;( j n) n Gr? (n—l) O'ﬁ an
where
m-1S2 (n-1)S?
( 2) m+( 2) =W, ~ y*(m+n-2). (118)
Gm O-n
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It follows from (84), (115) and (118) that

Wl _Um_KUn_(;um_Klun) 1
W, 7 (m+n-2) o, Koy m-1)S? (n-1)S?
2 mt J{( e O fman-2)
= Um _KUn _(/um _K,un) _ m+n;22 :T(m+n_2)~ f(t)’ (119)
Jm-1S2 /0% +(n-1S? /o7 \on Im+x’o; In

where T(m+n-2) is a t-random variable with m + n — 2 degrees of freedom. Taking Theorem 5 into account, we

have that
r((m+n-1)/2) [ t T””“”Z
f(t)= 1 , = t . 120
® ‘bdm+n—2)F«m+n—2ﬂ2) Tmin-2 T (120)

Using (119) and (120), it can be obtained a 100(1-a)% confidence interval for Um —KUn —(u, —Ku,) from

P(tl ST(m+n_2|Um_KUn _(:um_K;un))StZ)

[ ljm_’(lJ_n_(/um_K:un) m+n-2 J
~P|t, v <t

< <
Jm=1S2 /02 +(n-DS? /62 \Jo Im+x’o?in

t \/(m—l)s; /62 +(n-1)S?/ o2
' m-+n-—2
=P =l-a (121)

\/(m ~1)S? /o2 +(n-1)S% | o2
<t,
m+n-2

\/arf]/m+/czof/n <U,-«U, —(u, —Kxu,)

\/O'ri/m+1czof/n

by suitably choosing the decision variables t, and t, . Hence, the statistical confidence interval for
ljm _K{jn _(/um _Klun) is given by

Un—DSi/a§+(n—DSf/a§ Un—DSi/a§+(n—DSf/a§
m+n-2 m+n-2

\/O'rf]/m+1c20'f/n \/of]/ericzof/n

The length of the statistical confidence interval for U —xU_ —(u, —&u ) is given by

_ \Q2 /.2 ~ Ne2 g/ 2
L(tl,tzl (M-1)SZ /o2 +(n-1)SZ/ & Jaé/mwc%f/nj
m+n-—2

(m-1SZ2/c2+(n-1S? /o’
m+n-—2

=(t,-t,) Joi Im+x*c? In. (123)

In order to find the confidence interval of shortest-length for U —xU_ —(u, —x1,) , we should find a pair of
decision variables t; and t, such that (123) is minimum. It follows from (121) and (123) that
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t, t, t
j f (t)dt =j f (t)dt —j f(t)dt =(1—a+p)—p=1-a, (124)
t 0 0
where p (0< p <¢) is a decision variable,
I}
[f®dt=1-c+p (125)
0
and
Y
[ f(®adt=p. (126)
0
Then t, represents the (1—a + p) - quantile, which is given by
t2 = ql—a+ p;(t(m+n-2)) (127)
t, represents the p - quantile, which is given by
tl = qp;(t(m+n—2))' (128)
The shortest length confidence interval for U, —xU, —(u, —xu,) can be found as follows
Minimize
2
(tz _tl)z = (ql—a+p;(t(m+n—2)) - qp;(t(m+n—2))) (129)
subject to
0<p<e, (130)

The optimal numerical solution minimizing (t2 —t1)2 can be obtained using the standard computer software

"Solver" of Excel 2016. If o2 = o7, it follows from (123) that

L(tl,tzl\/(m—l)snﬁ+(n—1)8,f \/1+K_2J:(t2_tl)\/(m—liqsiinz—l)sf \/%Jr% )

m+n-2 m n
If, for example, m=6, n=4, &= 0.05, U_=117.5, U, =126.8, S’ =(9.7)?, S? =(12)?, then the optimal

numerical solution of (129) is given by
(132)

P=0.025 t =0y umin2y="2306, =0 o pmnzy = 2306

and it follows from (121) and (131) that the 100(1-a)% confidence interval of shortest-length (or equal tails) for

M — K, is given by
_ 2 _ 2 2
U, —xU, — (¢, —k1,) 2 t, (m 3Sm+(2 nS"J}~+5;,
n1:r1— : m n2 (133)
- - -1 -1
Um_KUn_(/um_Klun)StZ (m )Sm+(n )Sn \/l-’-’(_
m+n-2 m n

If « =1, it follows from (133) that

_ 2 _ 2
(Um _Un)_tz (m 1)Sm +(n 1)Sn i—l_l,
m+n-2 Vm n

(;um_lun)e > >
(Um_U-n)__t1 (m-1)S; +(n-1)S; UL+1
m+n-2 m n
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(117.5-126.8) - 2.306x10.6 EE
- =(-25.07, 6.47) (134)
(117.5-126.8)+2.306x10.6 /€+%
or
-25.07 < Moo=, <6.47. (135)

An analytical expression for determining the optimal value of x (the ratio in means of two different normal
populations) can be obtained from (121), where it is assumed that o> =&~ and (p4 —K12,)=0:

2 2
m+n-—2 (m=DS, +0;:szh/m+KﬂlnsUW
<U -« _ m+n

n

tl\/(m—l)Srf]Jr(n—l)Sfm - J

- - (m-1S?2 +(n-1)S? >
2 2 m n
Stz\/(m_1)8m+(n_1)sn y—1/m+1c2/n U,<xU, +t, Nl/m+x*/n

m+n-2
m+n-2

(m-1)S2 +(n-1)S?

K+1 m-i;n—2 x/l/m+1c2/nsllj_—m,

- U,

T _ 2 _ 2
L&—mSK+t2\/(m DSy +(n =13, Vi/m+x®/n

m+n-2

(M-1S2+(n-1S?

KSU—m—tl m+n-2 V1/m+x?/n,

n Un
~ (m-1S2+(n-1S?
KZU—m—t2 m+n-2 Vl/m+x?/n

n

Kk <0.926656 + 2306£V1/6+ K’ 14, [
K >0.926656 — 2306£x/1/6+ K> 14

K < 0.926656 + 0.192773/0.166667 + 0.25x7,
K >0.926656 — 0.1927731/0.166667 + 0.25”

minimize:

2
(K —0.926656 —0.192773:/0.166667 + 0.25x~ ) ,

x <1.05526,
= 2 |7\ x>0815431) (136)
(K —0.926656 +0.192773+/0.166667 + 0.25x ) | o=l
subject to: x> 0.
Thus, it follows from (136) that
< (0.815431, 1.05526). (137)
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Conclusion

The new intelligent computational models proposed in this paper are conceptually simple,
efficient, and useful for constructing accurate statistical tolerance or prediction limits and
shortest-length or equal-tailed confidence intervals under the parametric uncertainty of applied
stochastic models. The methods listed above are based on adequate computational models of
the cumulative distribution function of order statistics and constructive use of the invariance
principle in mathematical statistics. These methods can be used to solve real-life problems in
all areas including engineering, science, industry, automation & robotics, machine learning,
business & finance, medicine and biomedicine, optimization, planning and scheduling.
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