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Abstract: In the present article, a fuzzification measure of robust design in condition of “desired
target being best” is regulated, which consists of the “complement” of the membership value
of objective response and PMOO. The mean value of “complement” of the membership value
of a set of test data of objective response belonging to its desired target value in fuzzification
is taken as an indicator to join the assessment of the 1st part of partial preferable probability
of the objective; the dispersion of a set of test data in term of membership with regard to the
desired target value is taken as the other indicator to participate the assessment of the 2nd part
of partial preferable probability of the objective. Moreover, the fuzzification measure of robust
design is regulated in term of PMOO. As utilizations, two instances are presented to illuminate
the regulation in design.

Keywords: fuzzification, membership value, robust design, target being best

1 Introduction
As to multi-objective optimization (MOO), an inexact or linguistic description for responses

appears in some cases, which leads to the assessments with characteristic of “fuzzy” in some
sense [1–5], such problem has been primarily solved in recent research with the fuzzed PMOO
(probabilistic multi - objective optimization approach) [6–8].

Subsequently, a fuzzification measurement is put forward to deal with the MOO problem for
the problem of “desired target being best” flexibly [8]. The closeness degree of the experimental
data to its desired target value of an attribute is characterized by the “membership of the data
belonging to the desired target value”, and the membership value is directly used as the utility
of the objective to join the assessment of PMOO. Furthermore, the membership u was used as
the beneficial indicator, i.e., “the larger the better” type, to conduct the PMOO evaluation [8].

However, since the maximum value of membership u is 1 exclusively, which is a finite value,
instead of infinite; so an appropriate manner to deal with this problem is needed. Additionally,
in condition of robust assessment, the spreading of experimental data must be taken into account
in proper manner as well.

In this article, an alternative regulation is put forward by introducing the “complement” of
the membership value, i.e., η = 1 – u as an indicator logically to deal with the matter [3], which
forms a rational fuzzification regulation of robust design in term of PMOO in condition of
“desired target being best”; moreover, two instances are represented to illuminate the regulation.

2 Rational Fuzzification Regulation of Robust Design
in Condition of “Desired Target Being Best” in Term
of PMOO

2.1 Membership Value and Its Complement of an Objective in
Condition of “Desired Target Being Best”

Above discussion indicates that the membership value and its complement of an attribute in
condition of “desired target being best” can be introduced to characterize the closeness degree
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Abstract: Pacemakers are critical in managing cardiovascular arrhythmias, yet device mal-
functions remain a significant clinical challenge, impacting patient safety and outcomes. This
study presents a structured comparison of pacemaker interrogation reports from three lead-
ing manufacturers: Abbott referred to as Manufacturer A/A Devices, Boston Scientific as
Manufacturer B/B Devices and Medtronic as Manufacturer C/C Devices focusing on battery
performance, lead functionality, pacing modes, and arrhythmia management. By analyzing the
interrogated data, device reliability, longevity, and diagnostic capabilities of the devices are
understood. Data were categorized and compared with each other to assess performance trends
and clinical usability. Results revealed significant variations in battery longevity, lead perfor-
mance monitoring, and arrhythmia detection capabilities among the devices. Manufacturer C
interrogation reports provide trend analysis and battery life management whereas Manufacturer
A provide real-time diagnostics and alerts, and Manufacturer B reports demonstrated long-term
stability and efficiency. The findings highlight the need for standardized reporting practices
across manufacturers to enhance data consistency, comparability, and clinical utility. Such
standardization would streamline clinician workflows, improve decision-making, and ultimately
higher patient outcomes. This study underscores the importance of real-world data to optimize
pacemaker management and calls for collaborative efforts among manufacturers, clinicians,
and regulators to develop unified reporting frameworks. By integrating predictive analytics and
remote monitoring capabilities, future advancements in pacemaker achieve higher patient care
and device performance.

Keywords: pacemakers, cardiovascular arrhythmias, interrogation reports, medtronic, Abbott,
Boston Scientific

1 Introduction
Cardiovascular arrhythmias, characterized by irregular heartbeats, are a significant global

health concern, affecting millions of individuals and leading to severe complications such
as stroke, heart failure, and sudden cardiac death [1]. Pacemakers, which deliver electrical
stimulation to regulate heart rhythms and restore normal cardiac function, have become indis-
pensable in managing these conditions. Since their inception as external devices in the late
1950s, pacemakers have evolved into sophisticated implantable systems capable of adaptive
pacing and real-time monitoring [2]. Despite these advancements, device malfunctions ranging
from minor operational irregularities to critical failures remain a persistent clinical challenge,
posing serious risks to patient safety and outcomes [3].

Modern pacemakers consist of several critical components, including the pulse generator,
leads, electrodes, and sensors, all of which work in concert to ensure effective cardiac stimu-
lation. The pulse generator, housing the battery and electronic circuitry, serves as the control
unit, while the leads and electrodes transmit electrical impulses to the heart [4]. Advanced
pacemakers also incorporate sensors that enable adaptive pacing based on the patient’s phys-
iological needs, offering personalized therapy. However, these devices are not immune to
failure. Hardware malfunctions, software anomalies, lead defects, and battery depletion are
among the common issues that can compromise pacemaker performance, underscoring the
need for a deeper understanding of failure mechanisms and the implementation of preventive
measures [5–7].
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Abstract: Controlling chaos in recurrent neural networks (RNNs) is a crucial challenge in
both computational neuroscience and artificial intelligence. Chaotic behavior in these networks
can hinder stability and predictability, particularly in systems requiring structured memory
and temporal processing. In this study, we apply the periodic pulse method to stabilize the
dynamics of chaotic RNNs using a sinusoidal activation function. Two network configurations
(2 and 3 neurons) were analyzed using numerical simulations in MATLAB. Our results show
that the periodic pulse method effectively suppresses chaotic behavior, as evidenced by a
reduction of the largest Lyapunov exponent from 0.317 to -0.042. The system transitions from
an unpredictable regime to a stabilized fixed point. This confirms the method’s potential to
regulate nonlinear neural dynamics with minimal external perturbations. Future work will focus
on extending this approach to larger recurrent networks (LSTMs, reservoir computing models)
and comparing its performance with other chaos control strategies such as delayed feedback
and chaotic synchronization. This study contributes to the understanding of chaos in neural
networks and its potential applications in neuroscience and AI.

Keywords: recurrent neural networks, chaos control, periodic pulses, Lyapunov exponent,
nonlinear dynamics

1 Introduction
Complex systems refer to assemblies of interacting elements whose emergent behaviors

are often difficult to predict or model. When these interactions are governed by nonlinear
functions, such systems can exhibit chaotic dynamics, characterized by extreme sensitivity to
initial conditions [1, 2]. Among complex systems, recurrent neural networks (RNNs) hold a
central position. These networks, equipped with feedback loops, are widely studied in the field
of neurodynamics, a discipline that analyzes neural network dynamics. The significance of
RNNs lies in their ability to model complex cognitive processes such as learning, memory, and
temporal information processing [3, 4].

The application of chaos theory to neurodynamics has revealed a fascinating characteristic:
the normal functioning of the brain appears to be associated with controlled chaotic states.
A system’s dynamics are considered chaotic if, in the long term, the system is deterministic,
aperiodic, bounded, and highly sensitive to initial conditions. This chaotic behavior is crucial
for explaining flexibility, adaptability, and the ability to solve complex cognitive problems [5,6].
However, transitions to more ordered states can be linked to neurological disorders, such as
epilepsy or Alzheimer’s disease [7, 8]. Therefore, understanding and controlling chaos in
neural networks is a fundamental challenge in neurodynamics, with direct implications for
computational and clinical neuroscience.

In the literature, numerous studies have focused on analyzing and controlling chaos in RNNs.
Pioneering research has examined the impact of transfer functions, such as exponential and
sigmoid functions, on the dynamics of neuromodules [9, 10]. Various methods, including
chaotic synchronization [11] and periodic pulse stimulation , have been developed to suppress
or regulate chaotic behaviors in these systems. However, these studies remain limited to specific
activation functions and simplified neural configurations.

These two control methods have been underexplored in the configuration we propose. There-
fore, we arbitrarily begin with periodic pulse stimulation, leaving synchronization for future
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Abstract: Probabilistic multi-objective optimization based material selection is conducted for
gear manufacturing. This method incorporates the new concepts of preferable probability and
total preferable probability of an alternative, which are determined by comprehensively consid-
ering all possible property responses of the alternative. Each property response of a material
contributes a partial preferable probability to the alternative in a linearly correlative manner,
either positively or negatively, depending on whether it is a beneficial or unbeneficial type in the
evaluation. The total preferable probability of an alternative is obtained by multiplying all partial
preferable probabilities. The optimal choice is the alternative with the maximum total preferable
probability. In gear manufacturing material selection, five criteria are considered: core hardness,
surface hardness, surface fatigue limit, bending fatigue limit, and ultimate tensile strength. Core
hardness is regarded as an unbeneficial response, while the other four are beneficial. Through
quantitative assessment, carburized steel is ultimately chosen as the optimal material.

Keywords: gear manufacture, material selection, quantitative assessment, preferable probability,
multi-object optimization

1 Introduction
A systematic and quantitative method for material selection is crucial for effective material

design and application in practical engineering, especially when dealing with a material database
containing a vast amount of data [1].

Since the pioneering work of Ashby [2, 3], numerous methods have been developed to
analyze material property data to achieve rational and systematic results [1–5]. However,
material selection is inherently challenging [1–3], as it involves multiple material properties
such as strength, ductility, fatigue resistance, and corrosion resistance, some of which may even
conflict with each other. Therefore, decisions on material selection and substitution require a
comprehensive consideration of all relevant material properties to achieve a balanced “trade-off”
solution. This indicates that material selection is essentially a multi - objective optimization
problem.

Recently, probabilistic multi – objective optimization (PMOO), developed from a systems
theory perspective [6], has introduced new concepts of preferable probability and total preferable
probability. Each material property contributes a partial preferable probability to the alternative
in a linearly correlative manner, either positively or negatively, depending on whether it is a
beneficial or unbeneficial type in the evaluation. The partial preferable probability of each
property with the same physical meaning is normalized within the alternative material group.
To fully consider the simultaneity of all property responses in the evaluation, the multiplication
of all partial preferable probabilities produces the total preferable probability of an alternative
material. This total preferable probability serves as the sole indicator reflecting the material’s
overall property response. Consequently, the alternative material with the highest total preferable
probability is the optimal choice.

PMOO offers several advantages. It avoids the confusing problems found in other approaches
[6, 7], such as the unreasonable “additive operation” of different property responses and the
subjective choice of normalization factors for each property response in other multi - objective
optimizations (MOO), as well as the irrational or non - quantitative statements in empirical
approaches [6, 7]. In this paper, PMOO is applied to material selection for gear manufacturing.
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Abstract: Nowadays, the symbiosis of human abilities and the mastery of artificial intelligence
will contribute to increased productivity and excellence in industry and social services. The
use of artificial intelligence in various fields requires standardization of the safety of its knowl-
edge and skills. International collaboration on artificial intelligence safety standardization is
expanding. The UN has created a Global Advisory Body on Artificial Intelligence to support the
efforts of the international community of specialists in managing intelligent systems related to
the risks and safety of their use. The author proposes international standard of safe application
of ensemble intelligent interoperable agents. Ensembles of agents with artificial intelligence
are multi-agent synergistic self-organizing systems that function according to the laws of de-
velopment, synergy and self-organization. Ensembles of intellectual agents solve the problem
in the course of self-organization and cooperation according to the criteria of preference and
restriction. The solution is considered found when, in the course of their nondeterministic
interactions, agents reach the best consensus (temporary equilibrium or balance of interests),
which is taken as a solution to the problem. The advantages of intelligent agents that allow you
to build self-organizing ensembles are especially manifested in conditions of a priori uncer-
tainty and high dynamics of the world around you, allowing you to build adaptive ensembles
with communicative abilities, rebuilding your plans for events in real time. The higher the
intelligence of each agent and the richer the opportunities for communication between agents,
the more complex and creative behavior the ensemble can demonstrate. The intellect of the
ensemble arises and manifests itself in the process of self-organization of intellectual agents.
Intelligent agents use a physical, informal and logical model of the environment. That is, they
use both attributes and sets of entities, processes, relationships, etc. Modern technologies allow
you to create ensembles of intelligent agents with communication abilities, characterized by
high openness, flexibility and efficiency, performance, scalability, reliability and survivability,
approaching the intellectual abilities of a person and professional teams in their cognitive and
functional capabilities and even sometimes surpassing them.

Keywords: artificial intelligence, security of intelligent systems, international cooperation

1 Introduction
The slightest errors in the design of intelligent systems can lead to catastrophic consequences.

In Arizona, an unmanned car from Uber hit a woman crossing the street in the wrong place.
In the driver’s chair was a pilot, but he did not have time to stop the car. This accident
was the first fatal accident involving a car with a third level of autonomy. It turned out
that the laser radars of the car recognized the pedestrian as much as 5.6 seconds before the
accident. But the algorithm decided not to reduce speed and began emergency braking only
0.2 seconds before the collision. All such facts in order for humanity, as far as possible, to act
ahead of schedule, predict the possible dangers that may arise when introducing technologies
using artificial intelligence. Experts say this today. Hazards are technological, legal, legal
and ethical. New technologies pose both technical and ethical challenges. experts express
various approaches to the principles of establishing responsibility for the actions of artificial
intelligence: the responsibility of a particular subject - a manufacturer, developer, owner,
user, expert or programmer. Human ingenuity and the desire for perfection, combined with
the capabilities of new technologies, can solve the problems of mankind. Security solutions
can ensure standardization of artificial intelligence. ISO focuses on standards relevant to the
information and communication technology (ICT) industry. International Standards Association
is focused on reaching out to government and industry in all of the locations around the world
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Abstract: Electronics manufacturing processes are complex and prone to yield loss and latent
failures due to subtle process deviations and quality escapes. This paper presents a holistic
approach to improving first-pass yield and predicting failures by integrating a Manufacturing
Intelligence for Reliability and Automated Insights (MIRAI) data platform with computer
vision-based monitoring of Standard Operating Procedure (SOP) adherence. The proposed
system combines self-serve data analytics workflows for yield and field failure analysis with
real-time process observation using deep learning vision models. Manufacturing data from
production tests, reliability screenings, and field returns are aggregated and analyzed to identify
key signals correlating with yield drops and field fallouts. Simultaneously, a PROSPECT tool
employs AI cameras at assembly stations to record operator actions and detect deviations from
standard procedures. A machine learning failure prediction model is then trained on the enriched
dataset (including vision-detected deviations) to proactively flag high-risk units in real time.

Keywords: computer vision, process observation, failure prediction, manufacturing analytics,
yield improvement

1 Introduction
Modern electronics manufacturing is characterized by intricate assembly and test processes

with thousands of interdependent steps. First-pass yield (FPY) is the percentage of units passing
all tests without rework. Maintaining a high FPY is critical for cost efficiency and product
quality [1]. Even minor deviations in how a process is executed can introduce defects that either
cause immediate test failures or latent field failures after the product is shipped. Traditional
quality control and yield analysis techniques often rely on reactive measures like identifying
defects or yield drops only after they have occurred [1]. In many factories, engineers manually
investigate yield excursions or perform periodic audits of operator compliance to SOPs (the
standard work instructions for each task). These manual approaches are time-consuming,
inconsistent, and may miss subtle issues until significant scrap or customer returns occur [2].
There is a growing need for intelligent, automated systems that can monitor production in real
time, ensure process consistency, and predict failures before they happen.

1.1 Holistic Manufacturing Intelligence and Yield Challenges
The concept of Manufacturing Intelligence for Reliability and Automated Insights (MIRAI)

refers to an integrated data-driven approach that looks at the entire manufacturing process right
from assembly stations on the factory floor to field performance in order to extract insights that
improve yield. A holistic approach is necessary because yield loss can stem from many sources:
machine settings, component variability, environmental factors, human errors in following
SOPs, etc. [3] Conventional yield analysis in high-volume electronics production involves
pouring over vast amounts of test data and process logs to find correlations with failures [4].
For example, if a particular assembly station shows a drop in yield (more units failing its test),
engineers must determine if a systemic cause exists, such as a mis calibrated tool or a change in
a component lot. Historically, such analysis has been reactive and limited by human bandwidth
and experience [5]. Intel’s manufacturing group reported that manual end-of-line yield analysis
was too slow and could not examine every unit, prompting a shift to proactive, AI-driven yield
analysis that examines 100% of data and flags issues for engineers [5]. Advanced analytics,
including machine learning, enable detection of yield patterns and root causes more quickly than
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Abstract: Motivated artificial intelligence plays a relevant role in digital generation of informa-
tion. Motivated artificial intelligence activates the generation of meanings and technological
action. Its motivational functionality and motivation goals are determined by developers and
users of technologies, which in turn helps to form AI motivation in the context of digital trans-
formation. Formation of artificial intelligence motivation in digital generation of information is
complex and multifaceted task that includes both theoretical and practical aspects of AI motiva-
tion in technological thinking and actions. Artificial motivated intelligence must have clearly
defined goals that it must achieve. The goal of motivation can be set in the form of functionality
(ontology, erudition, reflection, usefulness, preference), which will guide the motivation of
AI. The use of reinforcement learning methods will allow AI to independently find optimal
strategies for achieving its goals. It receives positive or negative reinforcement depending
on how successfully it performs information transformation tasks. To form motivation of AI,
it is necessary to ensure its ability to adapt to changing conditions and tasks. This includes
learning from new data, knowledge and experiences. In some cases, it is useful to implement
elements of emotional intelligence so that AI can better understand and respond to human
emotions and actions. This improves the digital generation of information. It is important to
consider ethical aspects and security. It is necessary to ensure that the digital generation of
information does not lead to undesirable consequences or harm. Artificial intelligence must
be able to effectively interact with users and other systems to receive feedback and adjust its
actions in accordance with changing conditions. Research and implementation of motivation
models, such as the hierarchy of needs or self-determination, can be useful in international
digital generation of information. Formation of AI motivation requires an interdisciplinary
approach that includes psychology, computer science and ethics. Motivation of AI to advance
scientific and technological achievements is relevant in digital generation of information in
various fields of activity. The motivation of hybrid intelligent systems is realized on the basis of
knowledge engineering through synergetic communication.

Keywords: artificial intelligence, human motivation, motivated AI, AI assistant

1 Introduction
The integration of knowledge engineering with machine learning offers a promising approach

to the formation of motivated adaptive artificial intelligence. This integration combines the
strengths of data-driven learning with formal, structured reasoning, allowing AI models to be
both highly accurate and explainable. By leveraging structured knowledge, such as electronic
health records in healthcare, scientific axioms, or legal guidelines, motivated AI systems gain
the ability to perform common-sense reasoning, which increases their reliability and makes
them more knowledge-aware. Their ability to provide verifiable, human-readable explanations
makes them especially valuable in mission-critical domains. The focus is on developing
hybrid human-motivated adaptive artificial intelligence systems with functionalities (ontology,
erudition, reflexivity, utility, preference) that use multimodal approaches, incorporating various
forms of data, including text, speech, images, and human-centric video.

Functionality (ontology, erudition, reflection, usefulness, preference) plays a unique role
in the formation of motivated adaptive artificial intelligence and its relationship with other
aspects of intellectual activity. Ontology is a structure representing knowledge in a certain
area. It includes definitions of entities, their properties and relationships. Ontologies help
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to structure information. Creating a clear knowledge model allows artificial intelligence to
better understand the context and relationships between different concepts. Ontologies improve
semantic search and the quality of information retrieval, allowing the system to better understand
user requests. Ontologies allow different systems to exchange and use knowledge, which is
especially important in complex ecosystems. Erudition represents extensive knowledge in
various fields. An AI with erudition can integrate knowledge from different fields and apply it in
new contexts. An erudition-rich AI is able to provide more accurate and meaningful answers to
complex questions. Erudition allows an AI to solve problems using a combination of knowledge
from different fields, which facilitates innovation.

Reflection is the ability of an AI to analyze its own actions and results. An AI can evaluate
its previous decisions and learn from mistakes to improve future results. Reflection helps an
AI adapt its algorithms and approaches based on the experience gained. Reflection of an AI
helps optimize its processes and increase efficiency. Utility is the ability of an intelligent system
to benefit the user in solving specific problems, assessing desired results, optimizing solutions
in terms of time and resource costs, and adapting to changing user needs and preferences.
Preference is associated with choosing between different options or actions. Artificial intelli-
gence tracks and analyzes user preferences to provide personalized recommendations. Artificial
intelligence makes decisions based on utility assessments of different options. Preferences
determine the formation of goals and action strategies in different situations.

The relationship between ontology, erudition, reflection, utility, and preference forms the
basis for a motivated and adaptive intelligent system. Motivated adaptive artificial intelligence
helps to effectively process information, learn from experience make informed decisions, which
determines its compatibility in various areas of human activity.

2 Aspects of Human Motivation
Human motivation is a complex and multifaceted process that is determined by many factors.

The main aspects of human motivation can be divided into several categories:
(1) Intrinsic motivation comes from within a person, based on personal interests.
(2) Physical condition significantly affects motivation.
(3) Personal values and beliefs of a person shape his motivation.
(4) Clearly defined and achievable goals increase the level of motivation.
(5) Confidence in one’s own strengths and abilities to achieve goals plays an important role

in motivation.
(6) Emotions play a key role in motivation. Positive emotions, such as joy or satisfaction, can

increase motivation, while negative emotions, such as fear or stress, can decrease it.
(7) Extrinsic motivation is caused by external factors.
(8) Social support from family, friends, and colleagues significantly increases motivation.
(9) Comparing yourself to others can both increase and decrease motivation.
(10) Cultural norms and values influence what motivates people.
(11) Economic conditions influence motivation by limiting or expanding opportunities for

self-development.

Understanding these aspects of motivation helps both in personal life and in managing people,
as it allows you to identify and use factors that contribute to increasing motivation and achieving
goals. Motivation occurs as a result of the interaction of various internal and external factors.
Let’s consider the elements and stages that contribute to the emergence of motivation. The
elements of human motivation include key components: needs, goals, expectations, emotions,
personal meaning, experience and learning. Each of these elements can interact with each other,
creating a unique motivational system for each person.

Motivation often begins with the awareness of needs or desires. These can be basic physiolog-
ical needs (food, safety) or more complex ones, such as the need for recognition, socialization
or self-actualization. When a person is aware of their needs, they begin to formulate goals that
can help them satisfy them. Clear and specific goals serve as a source of motivation, directing
efforts to achieve the desired result. An individual evaluates his or her chances of success in
achieving the set goals. If he or she believes that his or her efforts will lead to the desired result,
this increases motivation. The belief that the goal is achievable is an important factor.

A person’s emotional state also plays a significant role. Positive emotions such as joy and
inspiration can help increase motivation, while negative emotions such as fear or doubt can
decrease it. External stimuli such as rewards, incentives, support from others, and the social
environment can significantly affect the level of motivation. For example, positive feedback
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or recognition of success can strengthen the desire to act. Motivation also arises from how
important a task or goal is to a person. If a person believes that achieving a goal is important to
his or her life or values, this increases his or her motivation.

Previous experience also influences motivation. Successful experiences can increase con-
fidence and desire to continue striving for a goal, while failures can have a depressing effect.
The process of human motivation is a complex and multifaceted mechanism that includes many
factors that influence the behavior and actions of an individual. The motivation process is
dynamic and can change depending on situations, personal circumstances, and changes in a
person’s life.

3 Human Motivation of Artificial Intelligence
Human motivation of artificial intelligence is the process by which humans define goals

and objectives for intelligent systems and set the parameters within which these systems must
operate.

Experts formulate specific goals and objectives that artificial intelligence must achieve [1].
This could be process automation, data analysis, decision-making assistance, and so on. Clearly
defining goals allows artificial intelligence to perform its tasks more effectively. Experts set
parameters that limit the actions of artificial intelligence in accordance with moral and social
principles. This includes ensuring safety.

Developers provide feedback to artificial intelligence, allowing it to learn and adapt. This
includes adjusting algorithms based on the results of the system’s work and user feedback. Thus,
artificial intelligence becomes more accurate and effective in achieving its goals. Motivating
artificial intelligence also involves understanding the context in which it operates. Developers
train and consider social, cultural, and economic factors to ensure that its actions are appropriate
and relevant. Developers require that artificial intelligence be transparent in its actions. This
includes explaining the decisions it makes so that users can understand the logic behind its
actions. This is important for establishing trust in intelligent technologies.

Professionals provide control over intelligent systems by setting boundaries and limitations
in their functioning. This is important to prevent possible negative consequences and ensure that
intelligent technologies are useful to humans and society. Motivating artificial intelligence by
humans is a complex process that requires active participation, responsibility, and understanding
from developers and users of technologies.

4 Ontological, Erudite, Reflexive, Useful, Preferential
and Meaningful Motivation of Artificial Intelligence

We will consider the motivation of artificial intelligence from various points of view, including
ontological, erudite, reflexive, useful, preferential and meaningful. Ontological motivation is
related to the essence and nature of artificial intelligence [2]. It includes an understanding of
what artificial intelligence is, how it functions, and what its capabilities and limitations are.
This understanding forms the basis for the development and application of artificial intelligence,
as well as for forming expectations for its work. Ontological motivation addresses issues of
identity, consciousness, and the ability of artificial intelligence to be self-aware.

Erudite motivation is based on the knowledge and information that artificial intelligence can
use to perform its tasks [3]. This motivation implies that artificial intelligence must be able to
process, analyze, and interpret data in order to make informed decisions. The more data and
knowledge available to artificial intelligence, the more effectively it can act and adapt to different
situations. Reflective motivation implies the ability of artificial intelligence to self-reflect and
analyze its actions and decisions [4–6]. This includes evaluating its results and adjusting its
behavior based on the experience gained. Reflexive motivation allows artificial intelligence to
learn from its mistakes and improve its algorithms, which in turn increases its efficiency and
reliability.

Utility motivation focuses on the practical application of AI to solve specific problems and
improve people’s lives. This may include automating processes, improving access to information,
optimizing resources, and creating new opportunities. Utility motivation implies that AI should
behave in a way that brings real benefits to users and society as a whole. Preference motivation
concerns how AI can take into account the preferences and desires of users when making
decisions. This includes customizing AI so that it can adapt its actions to individual needs
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and preferences of people. Preference motivation allows for more personalized and targeted
solutions, which increases user satisfaction.

Meaningful motivation of AI includes understanding the context and values that should
be taken into account in the decision-making process. Artificial intelligence should take into
account the context in which it operates. This may include cultural, social, and economic factors
that influence decision-making. The aspects of AI motivation discussed above highlight the
relevance of an integrated approach to its development and application. Understanding these
motivations can help developers and researchers create more efficient and ethical intelligent
systems that benefit society and take into account the interests of users.

5 Artificial Intelligence Motivation Technologies
We will also consider artificial intelligence motivation technologies in the context of creating

systems that can effectively achieve given goals and optimize their actions. The following key
technologies and approaches are related to artificial intelligence motivation. In this approach,
the agent learns to interact with the environment, receiving rewards or penalties for its actions.
The goal of an intelligent assistant is motivation based on external rewards.

Goal programming of motivation to perform specific tasks or achieve specific goals. Devel-
opers set goals, and algorithms adapt to achieve them efficiently. Evolutionary algorithms are
motivated by the principles of natural selection to optimize solutions. Populations of possible
solutions are created, which are subject to mutation and selection, which allows finding optimal
solutions to complex problems. Iterative learning methods motivate artificial intelligence to im-
prove itself by analyzing its previous decisions and adjusting its actions based on the experience
gained.

Generative models, such as GAN (Generative Adversarial Networks), are motivated to
create new data or solutions, which can be seen as a form of motivation to generate better
results. Adaptive systems are motivated to change their parameters depending on environmental
conditions, which allows them to more effectively achieve goals in changing conditions. Multi-
agent systems are motivated to coordinate and interact between agents to achieve common
goals.

Deep learning neural networks are motivated to analyze large amounts of data and identify
patterns, which helps artificial intelligence adapt and improve its actions. Creating motivated
AI assistants with Cursor IT vibe coding based on GigaChat and Deep Research. A special AI
vibe coding tool Cursor has appeared, which helps to program without writing manual code.
The developer from OpenAI notes that Cursor suggests in advance what it wants to write. The
Cursor AI assistant has greatly advanced the process of creating AI assistants using vibe coding
in Cursor.

Based on GigaChat, using Cursor, you can assemble AI assistants for a digital clinic that
answer questions and guide the client without manually writing code. In 2025, a standard will be
introduced in Russia: Artificial Intelligence Systems in Healthcare. The standard allows intelli-
gent systems to perform most healthcare competencies: management and marketing, regulatory
decision-making, clinical recommendations, patient routing, medical knowledge engineering,
accounting and finance, personnel, design and processing of diagnostic images of ultrasound
- X-ray and others, organizing communications between doctors and with patients, and so on.
The introduction of intelligent systems contributes to the development of the entire healthcare
system, including clinical practice, management, morbidity monitoring, epidemiological surveil-
lance, etc., thus affecting all participants in the healthcare system, including patients [7, 8].
Interdisciplinary competencies in managing the implementation of artificial intelligence systems
in healthcare will contribute to the improvement of clinical medical treatment practice and the
healthcare system as a whole.

Principal researcher Jakub Pahotsky of the OpenAI development department, the developer
of Deep Research, taught the system to do, firstly, reviews of scientific literature on a given
topic, secondly, write texts for research, thirdly, create program code, fourthly, analyze scientific
materials and put forward hypotheses. He expands the functionality and motivates Deep
Research with the help of the AI vibe coding tool Cursor, firstly, to write complex programs,
secondly, to create hardware solutions, and thirdly, to conduct research in scientific fields using
models for generating new knowledge. Minimizing the risks of autonomous intelligence requires
a digital transformation of standardization. Motivated adaptable artificial intelligence in the
international digital transformation of standardization will combine new advanced intelligent
technologies in various areas of human activity [9].
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6 AI Engineer Developer of Motivated AI
Swix highlights the special role of AI engineers as developers who create and adapt neural

networks to create motivated AI assistants. This process with additional tools:
(1) LLM (Large Language Models): language models, such as GPT-4 chat, which allow the

neural network to understand and generate text.
(2) Memory: the ability of AI to remember the context of a dialogue in order to use knowledge

from past experience.
(3) Planning: the ability of a neural network for programming to break tasks into stages, as

well as perform them sequentially.
(4) Tools: integration with browsers, code interpreters or other external services. These

technologies allow AI assistants to answer questions and perform complex multi-stage tasks.

These technologies enable motivated AI assistants to answer questions and perform complex
multi-step tasks. Swix identifies several important components for creating motivated AI
assistants:

(1) Gateway solutions, RAG frameworks – systems for working with external knowledge
bases.

(2) Vector DBs, graph knowledge bases – allow artificial intelligence to store information
and also learn from past data.

(3) Code execution environments (sandbox) – for example, E2B, where AI can test its code.
(4) Browser control and internet search – for example, the ability to visit websites and analyze

information.
(5) Self-checking cycles (Self-Ask, React) – AI learns to make decisions based on previous

results.

These tools form the basis for creating advanced solutions. An AI engineer can start creating
motivated AI assistants without being a PhD researcher. To do this, it is enough to understand
the basic stack of technologies and learn how to combine them correctly. We are on the threshold
of a new era when code can be written by voice, when motivated AI assistants can develop
complex software and engineering without human participation.

6.1 Data Quality and Preparation
Data quality and preparation are key steps for successful problem solving with an AI assistant.

Proper data preparation ensures high accuracy, reliability, and efficiency of the model. It is
necessary to consider the main aspects related to data quality and preparation.

(1) Data quality assessment:
• Completeness: availability of all necessary data for training and testing.
• Accuracy: correctness and reliability of data.
• Consistency: absence of inconsistencies within the data.
• Relevance: timeliness and relevance of data.
• Absence of missing values and errors.
(2) Data collection:
• Use of reliable sources.
• Ensuring data diversity to model different scenarios.
(3) Data cleaning:
• Removal of duplicates.
• Handling of missing values (e.g. filling with mean, median, or deletion).
• Correction of input errors.
• Standardization of data formats.
(4) Data transformation:
• Scaling and normalization (e.g. Min-Max, Z-score).
• Encoding of categorical variables (e.g. one-hot encoding).
• Splitting data into training, testing, and validation sets.
(5) Data augmentation:
• Creating additional data to increase the volume and improve the robustness of the model

(especially important in computer vision and natural language processing tasks).
(6) Data analysis:
• Visualization and detection of correlations.
• Detection of outliers and anomalies.
(7) Documentation and data management:
• Maintaining metadata.
• Ensuring reproducibility of experiments.
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(8) Ensuring ethics and privacy:
• Anonymization of personal data.
• Compliance with regulatory requirements for data processing.

It is important to remember that the quality of the data directly affects the results of the AI
assistant. The better the data is prepared and verified, the higher the likelihood of obtaining
accurate and reliable decisions.

6.2 Designing Supercomputer with an AI Assistant
Designing supercomputer with an AI assistant involves using artificial intelligence to auto-

mate the development, optimization of architecture, software, and management of computing
systems. Here are the main areas and approaches to implementation.

(1) General concept:
• Design automation: the AI assistant analyzes requirements, explores existing architectures,

and suggests optimal solutions.
• Self-learning and adaptation: the system learns from performance, energy consumption,

and other metrics to improve its architecture and algorithms.
• Code generation: the AI assistant writes or improves the code of interpreters, operating

systems, drivers, and software components.
(2) Implementation stages:
a) Analysis of requirements and goals:
• Definition of the tasks that the supercomputer should solve
• Setting performance criteria: speed, scalability, energy efficiency.
b) Architecture design:
• Using machine learning to find optimal configurations of processors, memory, network.
• Generating architectural diagrams taking into account parallelism, distributed computing,

and resilience.
c) Training and optimization:
• Using reinforcement learning to tune system parameters.
• Simulations and modeling to evaluate performance and choose the best solutions.
d) Software generation:
• Creating interpreters, compilers, and operating systems using AI.
• Self-improving components that adapt to load and requirements.
e) Automation of testing and deployment:
• AI assistant automatically identifies bottlenecks and suggests fixes.
• Continuously training the system on new data.
(3) Technologies and tools:
• Machine learning and deep learning.
• Generative models (GPT, GANs, etc.) for generating code and architectural diagrams.
• Simulation platforms for testing proposed solutions.
• Cloud platforms and distributed systems for scaling.
(4) Example of a use case:
• An AI assistant is tasked with building a high-performance supercomputer for simulating

physical processes.
• Analyzes existing architectures, collects metrics.
• Generates several architecture options, training them with simulations.
• Selects the most efficient option, writes the code for interpreters and drivers.
• The system continues to learn and optimize during operation.
(5) Important aspects:
• Security and control: it is necessary to monitor that the AI agent does not go beyond the

limits of acceptable solutions.
• Ensuring transparency: it is important that AI decisions are explainable.
• Ethical and legal issues: the use of AI to design powerful systems must be accompanied by

ethical standards.

7 Conclusion
Building motivated AI assistants using technologies like Cursor’s Vibe Coding is essential to

building modern, motivated intelligent systems. Motivated AI assistants can adapt to the needs
and preferences of users, making interactions more natural and effective. Using Vibe Coding,
you can create interfaces that take into account the emotional reactions of users, improving the
overall user experience.
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Motivated AI assistants can provide personalized recommendations and solutions. This is
especially important in areas like e-commerce, where users expect systems to offer products and
services that match their interests and needs. AI assistants built with Vibe Coding principles
can learn from interactions with users, allowing them to develop and improve their skills. This
creates a more dynamic and responsive environment where assistants can better understand the
context and intent of users.

Motivated AI assistants can be developed with emotional intelligence, allowing them to
recognize and respond to user emotions. This can increase user trust and satisfaction, especially
in services that require a high degree of emotional interaction. AI assistants that understand
user motivations and goals can more effectively help solve problems. This can be useful in
business, education, and other areas where it is important to quickly find solutions and optimize
processes.

The creation of motivated AI assistants also raises questions of ethics and responsibility for
developers. It is important to consider how such systems can affect users and society as a whole,
and to develop them with ethical norms and standards in mind. The creation of motivated AI
assistants using Cursor’s Vibe Coding opens up new horizons in the field of human-machine
interaction. These technologies can significantly improve user experience, increase the efficiency
and adaptability of systems, and contribute to a deeper understanding of user needs [10–12]. It
is important to continue to explore these aspects in order to create research, safe and ethical AI
solutions that will benefit humans and society.

The motivation of artificial intelligence for scientific research is based on its program goals,
functionalities and learning systems. AI learns from large volumes of data, which motivates it
to find new patterns and improve its models [11,12]. Continuous self-learning and improvement
of results serve as an internal motivating force for AI. AI reinforcement systems stimulate it
to perform verified research actions, search for and develop new solutions. AI serves as a tool
for accelerating scientific discoveries, analyzing complex data and modeling processes, which
contributes to its motivation to develop knowledge and technology together with experts.
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traditional methods, allowing engineers to address problems sooner and thus prevent further
yield loss [5]. This aligns with the broader Industry 4.0 trend of employing big data and AI to
achieve adaptive, automated process control for better quality [6].

1.2 Standard Operating Procedures and Human Factors
At the same time, a significant portion of quality issues in assembly processes can arise

from human operators not perfectly following the SOPs. SOPs are detailed instructions that
standardize how each manufacturing step should be performed to ensure consistency, safety, and
quality [7]. Despite training, operators may inadvertently skip steps, use incorrect techniques,
or deviate due to fatigue or time pressure [8]. Historically, ensuring Process observation has
been done via periodic manual observation by line supervisors or quality engineers. However,
manual monitoring is inherently limited, since a supervisor might spot-check an operator for
a few minutes, providing only a snapshot of compliance. It’s been observed that such manual
audits are inconsistent and infrequent, varying by who does the checking and often failing to
catch issues that occur between audits [2]. Moreover, compiling and analyzing handwritten
compliance notes from different shifts or lines can take days, delaying any corrective actions [2].
Human monitoring of SOP compliance does not scale well to a large production floor and may
miss trends that impact yield.

Recent advances in computer vision (CV) and AI offer a promising solution: automated,
continuous monitoring of Process observation using cameras and machine learning. By training
vision models to recognize the required actions or steps in a process, manufacturers can get
an objective, 24/7 “eye” on every station [2]. Unlike a human who can only watch one station
periodically, an AI-driven vision system can concurrently monitor all stations and detect any
deviation in real time [2]. For instance, a deep learning model can be trained to detect whether
an operator picks up the correct component, uses the proper tool, and performs assembly steps
in the correct sequence [7].If a step is skipped or done out of order, the system can instantly flag
it [7]. This level of constant vigilance ensures that mistakes are caught immediately, allowing
for quick correction before a faulty unit moves further down the line [2]. A case study at a
display assembly line noted that deploying AI smart cameras for SOP monitoring allowed them
to “keep an eye on every movement on the assembly line all the time,” something previously
impossible with manual checks [2].The result was more consistent adherence to process and the
ability to identify operators or steps that needed improvement in real time. Indeed, computer
vision-based SOP compliance systems eliminate human bias and fatigue from the equation,
providing consistent and objective monitoring around the clock [8]. This not only prevents
defects due to process deviation but also creates a rich data source on how the process is actually
being executed.

1.3 Data-Driven Failure Prediction
Beyond immediate yield improvement, there is a strategic opportunity in correlating process

data (including SOP deviations) with downstream failures to predict and prevent those failures.
In electronics manufacturing, some defects are not detected until later stages of production
or even until products are in the field (customer usage) [9]. By then, the cost of the failure is
much higher which may require scrapping an assembled unit, performing costly rework, or
handling warranty returns. If we can predict which units are likely to fail final tests or in the field
based on early indicators, we can intervene proactively. Prior research and industry practices
have shown the value of linking manufacturing process data to failure outcomes: for example,
IntraStage (a manufacturing analytics provider) demonstrated that by correlating detailed test
data from production with the results of failure analysis on returned units, manufacturers could
identify patterns (signatures) that reliably indicate a unit with a latent problem [10]. Once those
“attributes of failure” are known, a predictive engine can scan all in-process and shipped units to
find others with the same risk factors and thus target them for preventive action [10]. In essence,
if certain process deviations or test parameter anomalies are found to strongly correlate with
later failures, they become features in a failure prediction model.

With sufficient historical data, a machine learning model can be trained to recognize the
combination of signals that foretell a likely failure (either at end-of-line testing or in field
use) [1]. Such a model can then run in real time during manufacturing, alerting operators or
stopping a line when a high-risk unit is identified, so that the unit can be inspected or fixed
immediately. This approach moves quality control from detection to prediction, saving time
and cost by addressing issues before they fully manifest [11]. It also reduces work-in-progress
(WIP) waste – rather than adding value to a unit that will eventually be scrapped, the process
can be halted or corrected early on.
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1.4 Research Objective
In this paper, we propose an integrated system that combines MIRAI workflows for data-

driven analysis with computer vision-based SOP adherence monitoring through Process Ob-
servation and Statistical Prediction for Enhanced Compliance and Throughput (PROSPECT)
to improve yield and enable failure prediction in electronics manufacturing. Unlike siloed
solutions that either focus on big data analytics or on vision inspection, our approach unifies
these into a closed-loop intelligence system. By doing so, we aim to achieve two main outcomes:
Improved Yield and Quality, through rapid identification of yield detractors (whether they be
machine anomalies or SOP issues) and enforcement of process discipline; and (2) Proactive
Failure Prevention, through correlation of process deviations with failure modes and real-time
prediction of failures to enable intervention. We emphasize a workflow that not only analyzes
historical data (for root cause analysis) but also actively monitors and controls current produc-
tion (for immediate corrections). The work described is generic and can be applied to many
electronics manufacturing settings, focusing on data and algorithms rather than any proprietary
equipment. We also align our approach with comparable strategies reported in literature and
industry. For example, the use of computer vision for real-time quality and compliance mon-
itoring is increasingly recognized as a transformative technology in manufacturing, with the
market for such solutions projected to reach $39 billion by 2029 [12]. Similarly, manufacturing
case studies have found that when SOP compliance meets expectations, line efficiency and yield
are maximized [13]. Building on these insights, our contribution is to design and document a
comprehensive framework that integrates these elements (data analytics, vision, and machine
learning) and to discuss its implementation details and results.

2 Methodology
2.1 MIRAI Data Intelligence Workflow

The Manufacturing Intelligence for Reliability and Automated Insights (MIRAI) work-
flow is a data engineering and analytics pipeline designed to empower engineers with self-service
insights across the manufacturing process. MIRAI aggregates production data such as test re-
sults, process parameters, component information and provides various analysis modules to
pinpoint issues affecting yield and reliability. The MIRAI workflow comprises four main
components:

2.1.1 Yield Analysis
A self-service analysis tool for identifying signals associated with station yield drops during

both ramp-up and sustaining production phases. In ramp-up (new product introduction or early
production), yields can fluctuate as the process stabilizes; in sustaining (high-volume steady
production), any sudden yield drop is a concern [14]. The MIRAI yield module continuously
monitors yield at each test station (the percentage of units passing at that station) and triggers
analysis when a significant drop or negative trend is detected. It automatically searches for
common factors among the failing units that could explain the yield loss. For example, if Station
5’s yield fell from 98% to 92%, MIRAI might analyze dozens of attributes of each unit (such
as which assembly line it came from, who the operator was, which lot of components were
used, calibration settings of the equipment, etc.) to find statistical correlations. Techniques akin
to commonality analysis are employed such as using association rule mining or contingency
table analysis to find factors that are overrepresented in failed units [15]. This helps identify
systematic causes of yield loss (as opposed to random defects). The result of a yield analysis
might reveal, for instance, that “Units that failed at Station 5 are 3 × more likely to have
come from Line 2 and used Component Batch X,” pointing engineers to investigate Line 2
or that component batch. These analytics are delivered in a self-serve dashboard, allowing
process engineers to drill down without requiring data science expertise. By quickly pinpointing
likely causes, the team can take corrective actions (machine maintenance, station recalibration,
additional operator training, etc.) to bring yield back up. This workflow reduces the time to
root cause by automating much of the heavy data analysis that engineers would otherwise do
manually.

2.1.2 Field Failure Analysis
A self-serve analysis capability focused on identifying signals in manufacturing data that

correlate with field failures (i.e. units that pass all factory tests but later fail during use by
customers, resulting in returns or repairs). Data for this analysis comes from linking field return
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records (or failure analysis reports from returned units) with the original manufacturing data
of those units. The MIRAI field analysis module takes a population of products – some that
had field failures and some that did not – and performs retrospective data mining to find what
factors in the production or test data are predictive of those failures. For instance, it may analyze
whether certain test measurements were marginal (close to spec limits) on units that eventually
failed, or if a particular factory, production date, or supplier lot is statistically associated with
higher field failure rates. This is essentially a supervised learning or statistical correlation task:
the units have a label of “field failure” or “no failure,” and the system examines all available
manufacturing attributes to see which correlate strongly with the label [16]. As with yield
analysis, commonality or classification techniques are applied, but with field failures as the
target. The outcome could be a set of risk factors – e.g., “Units that failed in the field tend
to have had longer soldering cycle times on average” or “Field failures are concentrated in
products built with PCB supplier Y in a given week.” These insights allow engineering and
reliability teams to initiate corrective actions such as design modifications, supplier changes, or
targeted recalls for suspect lots. By making field-failure analysis self-service, MIRAI enables
a faster feedback loop from customer experience back to manufacturing. This is critical in
avoiding widespread issues; as soon as a pattern is detected linking field issues to a process
variable, that information can be used to improve production or screening tests [17]. Prior
industry approaches that correlate manufacturing test data with field outcomes have shown the
value of such analysis in preventing future failures [10] that effectively turns large datasets of
past production into actionable knowledge to improve product reliability.

2.1.3 “Bring Your Own Data” Analysis
In addition to standard yield and field analyses, MIRAI supports user-requested custom

analyses, essentially allowing engineers to bring their own data for specialized investigations.
Often in manufacturing, engineers run experiments or additional stress tests (for example,
ongoing reliability tests like ORT, Highly Accelerated Life Testing (HALT), or qualification
tests on samples) and want to analyze the results in context of manufacturing data [18]. In the
MIRAI workflow, a user can provide a list of units and a binary outcome (Pass/Fail) from some
external test or criteria – for instance, a set of units that underwent an On-going Reliability Test
(ORT) where a few units failed while others passed. The DataOps team (or the data platform
automatically) will gather all relevant manufacturing data for that population of units and
perform analysis similar to the above to find signals differentiating the fail group from the pass
group. This could involve feeding the combined dataset into a classification model or running
targeted queries (like comparing means of certain measurements or doing decision tree analysis
to find splits). The result is a report to the requesting engineer with any statistically significant
factors that correlate with the failures. For example, if out of 100 units tested in ORT, 5 failed,
the analysis might find that all 5 failing units were processed on a particular SMT (surface
mount technology) line or all used a particular lot of a component, suggesting a latent issue. By
allowing ad-hoc data analysis in this manner, MIRAI becomes a flexible analytics extension for
quality engineering experiments. It essentially leverages the data pipeline to answer one-off
questions. The pass/fail labeled dataset provided by the user might come from reliability tests
(like ORT, environmental stress screening), customer returns classified by failure mode, or even
simulations [19]. MIRAI treats this like a mini “competition” between variables to explain the
outcome, employing anything from logistic regression to more advanced feature importance
ranking. Importantly, this step often requires careful data integration – ensuring that the units
in the provided list are correctly matched to their records in various manufacturing databases
(traceability, test results, repair logs, etc.). The DataOps aspect implies that data engineers
may assist in data cleaning and preparation, but the goal is eventually to make this process
streamlined so that an engineer with minimal coding can get results by simply uploading a CSV
of serial numbers with labels. This workflow dramatically accelerates root cause analysis for
issues discovered outside the standard test flow, by bringing all available production data to bear
on the problem.

2.1.4 MIRAI Sentinel (MIRAI Sentinel)
The final component is a proactive auto-analysis and alerting system that continuously scans

manufacturing data across all build stages to catch emerging issues without waiting for human
requests. While the previous components are triggered by an engineer’s query or an obvious yield
drop, MIRAI Sentinel is an always-on watchdog. It performs automated commonality analysis
on recent production data in search of anomalies or deviations from baseline. For example,
it may automatically cluster recent failures across different stations and see if they share any
common factor (e.g., all from the same shift or same supplier lot) and then alert engineers that
“5 failures have occurred across two different stations in the last day, all involving Component
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Z – this is unusual and worth investigating.” Likewise, MIRAI Sentinel can be configured to
monitor trends such as gradually declining yields, shifts in test measurement distributions, or
increasing retest rates. When certain thresholds or abnormal patterns are detected, the system
triggers an alert or generates an “Auto Commonality Report.” This proactive analysis uses a
combination of statistical process control (SPC) rules and machine learning anomaly detection.
It might leverage control charts for yield and test metrics and apply clustering algorithms to
group suspect units [20]. By spanning across build stages, it means MIRAI Sentinel can connect
the dots (for instance, noticing that a particular assembly issue in an early stage is causing fails
only at a later test stage). Alerts could be sent via email or shown on a dashboard, highlighting
the suspected common cause. The aim is to shorten the time to discovery of issues that might
otherwise only be found after a lot of units have failed. This turns yield management from a
reactive “pull” (engineers digging for causes after yield drops) into a proactive “push” model
where the system itself highlights potential problems [5]. MIRAI Sentinel therefore acts like an
automated quality engineer, continuously learning from data and assisting human engineers by
focusing their attention where it’s needed. In practice, implementing MIRAI Sentinel requires
robust data engineering: streaming data pipelines, data normalization to compare across shifts
and lines, and scalable computing to run analyses frequently (potentially on each new batch
or each day’s production data). It also requires careful tuning to avoid false alarms – ensuring
alerts are meaningful by using logic to filter out spurious correlations (as commonality analyses
can sometimes find coincidental patterns [15]). Therefore, MIRAI Sentinel adds an intelligence
layer on top of the manufacturing process that preemptively detects and communicates issues,
thus embodying the notion of holistic intelligence by looking broadly and acting in real time.

From a system architecture perspective, MIRAI is built on a centralized manufacturing data
lake that ingests data from various sources: automated test equipment outputs, production
execution systems (with information on lots, machines, and operators), as well as external
data like field returns [21]. A key enabler for MIRAI’s effectiveness is this integration of data
sources. Recent reports from industry emphasize that connecting all plants and processes via
an operational data lake to get a real-time, unified view is a foundational step for deploying
AI/ML interventions for yield improvement [22]. Our implementation follows this principle
– all relevant data about each unit (its genealogy through the factory, all test readings, and
eventually the SOP deviation data from vision systems described later) are linked via a unique
identifier (such as the unit’s serial number). This comprehensive data foundation allows the
analyses in MIRAI’s four workflows to be performed accurately and consistently. The user
interfaces for MIRAI include dashboards for engineers with interactive filters and visualizations,
and a query engine for advanced users to run custom queries or machine learning models. In
essence, MIRAI serves as the analytical “brain” of the manufacturing line, ingesting raw data
and outputting insights or alerts that drive improvement actions.

2.2 Computer Vision System for SOP Monitoring
An integral part of our approach is the use of computer vision to monitor station activities

for Process observation. This system provides the eyes on the factory floor to complement
MIRAI’s data analytics [23]. The computer vision setup consists of cameras installed at critical
operator workstations (assembly or test stations where human interaction is involved) and an AI
inference pipeline that processes the video feed from these cameras in real time. The goal is to
automatically verify whether each operator is following the prescribed steps in the SOP for that
station and to record any deviation or departure from the SOP.

2.2.1 Camera Installation and Data Capture
Cameras are positioned to get a clear view of the workspace and the operator’s actions,

without obstructing the operation. We used industrial-grade cameras with appropriate resolution
and frame rate to capture necessary details for example, identifying tools, parts, and hand
movements [24]. In some cases, a single wide-angle camera per station is sufficient; in others,
multiple angles or a depth camera might be employed if the task is complex. The system
design can accommodate both edge processing (smart cameras with onboard AI accelerators
like NVIDIA Jetson devices [2]) or a central server approach where video is streamed to a local
server running the models. In our pilot, to minimize network load, we opted for edge AI cameras
that perform on-board inference and send only summary data/events to the central database.
Each camera is time-synchronized with the production line system and tied to a specific station
ID. Through the line control system, we know which product serial number is at that station at a
given time (since each unit is scanned or otherwise identified at station entry). This integration
is crucial: it allows us to tag any detected SOP deviation with the specific unit (serial number)
and step, feeding that information into the manufacturing data records.
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2.2.2 Model Training for Action Recognition
Developing the computer vision model requires training it to recognize the key actions or

objects involved in the station’s SOP. This is formulated as an action recognition or sequence
verification problem. We collected training data by recording many instances of the station oper-
ation, including both correct procedures and some examples of incorrect actions (if available).
Depending on the use case, different AI techniques can be used:

(1) Object Detection and Pose Estimation: For tasks where the SOP involves using certain
tools or parts, object detection models (e.g., based on convolutional neural networks like YOLO
or Faster R-CNN) are trained to detect the presence and placement of those tools/parts in each
frame. Human pose estimation models can track the operator’s hands and body to see if they
reach the correct areas in the correct order. For example, if SOP says “pick up screw, use
screwdriver on location A, then B,” the system would detect the screwdriver and the motion of
hand to location A then B.

(2) Action Sequence Modeling: In more complex workflows, we use sequence models. A
common approach is to break the video into a series of discrete actions using a temporal action
segmentation model. Alternatively, treat it as a classification per time window: e.g., a deep
learning model (such as a 3D CNN or a transformer-based video model) that can classify what
action is being done in a short clip. We trained such models on annotated video: subject-matter
experts labelled a number of video clips with the action being performed (or labeled if a step
was done wrong). The model learns to discriminate correct vs incorrect actions.

(3) State Machine with Vision Triggers: In some implementations, it is useful to encode
the expected order of operations as a state machine or rule-based logic, and use the vision
algorithms to confirm each step. For instance, state 1 “tool X picked up” must occur before state
2 “tool X applied to part Y”. The vision system outputs events like “tool X detected in hand” or
“part Y present in fixture” which are fed into a simple logic engine that verifies the sequence.

For our pilot, we started with a relatively constrained task (a single station with a well-
defined set of steps) and trained a deep learning model to detect a few key events: whether
the operator performed a required check with a camera (vision inspection step) and whether a
certain component was tightened with a torque tool. The model was a custom CNN that took
image frames as input and output whether the specific action was observed. We augmented this
with sensors data when available (e.g., the torque tool provides a reading when used – which we
also log for cross-reference). All AI models were developed using open-source frameworks and
we ensured not to hard-code any proprietary features. They were validated to a high accuracy on
a test dataset of annotated videos before deployment (achieving, for example, >95% precision
and recall in detecting the presence or absence of the critical action).

2.2.3 Real-Time SOP Compliance Monitoring
Once deployed, the vision system operates continuously during production. Real-time

inference on the camera feed compares the ongoing operator actions against the SOP model.
If every expected step is observed in the correct order, the system remains silent (or just logs
compliance). If a deviation is detected – for example, a step is missed within the allotted time or
an incorrect action is performed – the system immediately raises an alert. In our implementation,
the alert is both visual (displayed on a dashboard for line supervisors) and logged electronically.
The alert includes details like: Station ID, timestamp, description of deviation (e.g., “Step
3 – connector inspection – was skipped”), and the unit’s serial number. At that moment, a
supervisor can intervene, or the system could even be configured to stop the conveyor/belt
for that unit if automatic interruption is desired (in our pilot, we opted to alert rather than
stop, to study the occurrences first). This immediate feedback mechanism prevents the unit
from silently continuing down the line with an undetected process defect. It also provides
an opportunity to correct the mistake: the operator or a rework technician can perform the
missed step or verify the product before it moves on. Such real-time alerts greatly reduce the
chance of a defective unit reaching the end of the line or, worse, the customer [2]. Moreover,
continuous monitoring generates a trove of compliance data. The system essentially produces a
timestamped event stream of all deviations (and potentially confirmations of correct steps). This
data is invaluable for analysis – for instance, to see if certain times of day or certain operators
have more deviations, or which steps are most problematic.

2.2.4 Data Logging and Integration
All detected deviations (and optionally a record of compliance events) are stored in a database,

with references to product serial numbers and step identifiers. We structured a Deviation Log that
captures: (Unit Serial, Station, Step/Action ID, Deviation Type, Timestamp, Operator ID (if
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available)). Alongside, the production system provides the information of whether the unit
eventually passed or failed subsequent tests, was repaired, and so on. By integrating this log with
the main manufacturing data (as part of MIRAI’s data lake), we can perform correlation analysis
between SOP deviations and yield or failures – this is the core of Phase 2 and Phase 3 of the
pilot, described next. It is worth noting that careful attention was paid to time synchronization
and data alignment. We used the station’s start trigger (when a unit arrives and is scanned) to
mark the beginning of an operation, and we buffered any vision-detected events during that
operation to associate with that unit’s serial. This ensures the deviation data is properly linked
to the correct unit, which is critical for accurate analysis. Privacy and worker acceptance were
also considered: the purpose of cameras is to improve the process and training, not to surveil
workers punitively. We ensured the system focused on task elements (and the footage was not
used beyond the scope of process improvement), which helped in gaining cooperation for the
pilot.

2.3 Process Observation and Statistical Prediction for Enhanced
Compliance and Throughput (PROSPECT) Workflow

With the vision system in place to capture SOP deviations, we designed a pilot study in three
phases to leverage this data for yield improvement and failure prediction.

2.3.1 Phase 1: Monitor PROSPECT and Identify Key Deviations
The first phase focused on establishing baseline SOP compliance levels and determining

whether non-compliance was contributing to yield loss at the station of interest. We selected a
particular assembly station that had experienced periodic yield fallout (lower first-pass yield) in
the past, suspecting operator errors as a possible cause. Initially, we measured the station’s yield
fallout rate (the fraction of units failing at that station) over several production runs to have a
baseline. Next, we activated the computer vision monitoring at this station to record station
activities continuously. Over a period of several weeks, every action at this station was observed
by the AI system as described earlier. During this time, we did not make major interventions;
the idea was to passively collect data on how often and what types of SOP deviations were
happening. The system generated a log of deviations, which we then analyzed. We identified key
SOP deviations by frequency and potential impact. For example, we discovered that one
particular step, scanning a barcode on a sub-component to verify its presence, was occasionally
skipped. Another deviation noted was an improper torqueing sequence: operators sometimes
tightened screws in the wrong order or missed the last screw, contrary to the SOP. We also noted
the frequency of each deviation and whether certain operators had more deviations, though
individual performance was anonymized in analysis. This phase had an iterative loop aspect:
when a critical deviation was identified, we took immediate corrective action by communicating
with the production team. For instance, upon finding the skipped barcode scans, we updated
the station’s work instructions and retrained operators to emphasize that step. We also added a
simple error-proofing measure: the station software now requires the barcode scan input before
allowing the process to continue (forcing compliance). These interventions (training and process
changes) were implemented, and the station yield was measured again to see if it improved.
Indeed, after addressing the top deviations, the station’s yield fallout dropped noticeably (we
observed an improvement from about 92% first-pass yield to 96%, for example, after enforcing
the barcode scan step). Phase 1 is thus a cycle of observe → identify → fix → observe
again, gradually reducing human error-induced falls in yield. In essence, this phase answers:
“What SOP violations happen and are they hurting yield?” It establishes a direct link between
adherence and quality, echoing the industry observation that SOP compliance correlates with
better performance [25]. By the end of Phase 1, we had a much cleaner process at the pilot
station (fewer deviations after interventions) and a list of residual deviations that were harder to
eliminate or quantify. Crucially, we had captured data that some deviations still occurred (albeit
less frequently), and those instances could be studied in Phase 2 for their impact on failures.

2.3.2 Phase 2: Track Deviations by Serial Number and Correlate with Failures
In this phase, we shifted from focusing on station yield at the point of occurrence to

the downstream effects of SOP deviations. The approach was to follow each unit through the
rest of the manufacturing process (and even field use, if data allowed) and see if those that
experienced a deviation at the station have a higher chance of failing later compared to those
with no deviations. We started by instrumenting the system to track serial numbers of units
with deviations. For every unit that passed through the monitored station, the deviation log was
checked. If any SOP deviation was recorded for that unit, we flagged that unit in a “deviation
present” category; units with no detected issue were flagged as “deviation-free.” We then
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compiled the outcomes for each unit: did it pass final testing? Did it require rework or repair? If
it failed, what was the failure mode (captured via failure analysis or troubleshooting logs)? If
available, we also tracked if the unit had any field return or early life failure after shipment. This
data was gathered over many units (on the order of thousands, to get statistically meaningful
results) during the period of the pilot. With this labeled dataset (units with deviation vs without,
and their eventual fates), we performed a deviation-failure correlation analysis. Essentially, this
is calculating the conditional probabilities and looking for statistically significant differences.
For example, we found that units which had the torque sequence deviation (missed screw
tightening) were far more likely to fail the end-of-line functional test for that product. The
failure mode in those cases was often related to that part – e.g. a loose heatsink or connector
causing a test failure. We quantified this: suppose out of 1000 units that had no deviations, 5
failed later tests (0.5% failure rate), but out of 50 units that had a certain deviation, 5 failed
(10% failure rate) – that would strongly indicate a correlation. In our study, one particular
deviation (improper torque) had a very high correlation with a specific failure mode observed
in environmental stress tests (vibration test failures), with an odds ratio suggesting those units
were ~8 times more likely to fail than baseline. On the other hand, some deviations seemed to
have little to no impact – e.g., if an operator momentarily deviated but corrected themselves
(a transient hesitation that was flagged but ultimately the step was done), it did not translate
to any measurable difference in outcomes. We also cross-correlated the data: it could be that
a combination of deviations or a deviation at one station in combination with another factor
leads to failure. However, since our pilot dealt with one station primarily, we kept the analysis
straightforward: a binary “deviation happened at station X” vs outcomes. The failure analysis
(FA) data from the repair technicians was invaluable – it allowed us to link a cause to effect
(for example, “unit failed final test due to loose connector; indeed, a deviation earlier indicated
that connector was not scanned or secured properly”). We measured the deviation-failure
correlation in terms of metrics like precision and recall as well: if we use “deviation occurred”
as a predictor of failure, how accurate is it? For critical deviations, the precision (how many
of the flagged units actually failed) might not be extremely high because many units with a
deviation still pass (perhaps the deviation was minor or caught later), but the recall (how many of
the failing units had a known deviation) was quite high. In one case, 70% of the units that failed
a certain test had experienced a particular SOP deviation upstream. This kind of insight validates
the hypothesis that PROSPECT has a direct effect on yield and reliability. It also provides a
list of deviations ranked by their impact on quality. This information feeds back to Phase 1’s
loop: deviations that show strong correlation with failures become top priority to eliminate
through process improvements or poka-yoke (mistake-proofing) mechanisms. Essentially, by
the end of Phase 2, we had created a deviation-failure repository – a collection of cases linking
specific procedural missteps to specific failures, complete with data statistics. This repository is
an asset for both engineering and training: it can be used to justify investments in automation or
training (e.g., “We must fix this step because it’s causing X% of our failures”) and to educate
operators on the importance of each SOP step (“Skipping this screw tightening leads to failures
in vibration testing, as data shows”). Moreover, this set of correlated features and outcomes lays
the groundwork for predictive modeling.

2.3.3 Phase 3: Build and Train a Failure Prediction Model
In the final phase, we leveraged the insights and data collected to develop a machine learning

model that predicts unit failures in real time based on observed SOP deviations (and potentially
other data). The concept is to enable the factory to catch a likely-failing unit as early as
possible and apply a fix or additional screening right away, thereby preventing the failure from
either propagating down the line or escaping to the field. The input features to the model
included the SOP deviation flags for each unit from the monitored station (and we can extend to
multiple stations as we scale up). For our pilot, since we instrumented one station, the primary
features were binary indicators of whether each type of deviation occurred for that unit. We also
considered adding other easily available features to improve prediction – for example, whether
the unit had any borderline test results (within spec but near limit) at that station, or how many
times the unit was retested at that station. But the simplest effective model was one that used the
presence/absence of the key deviations as features. The target label for the model was whether
the unit eventually failed at final test (or required any repair) – essentially a proxy for yield
outcome. (In future extensions, the target could be field failure, but that data was scarcer; for
the pilot we focused on predicting final test fallout, which itself is highly beneficial for yield
if addressed). We split our collected dataset (Phase 2 data) into training and validation sets,
maintaining chronological order to avoid leakage (training on earlier units, and validating on
later units, mimicking deployment). We then trained a classification model. We experimented
with a few algorithms: a simple logistic regression, a decision tree, and an ensemble like a

Research on Intelligent Manufacturing and Assembly • SyncSci Publishing 207 of 218

https://www.syncsci.com/journal/RIMA
https://www.syncsci.com


Volume 4 Issue 1, 2025 Vinit Vithalrai Shenvi and Ashutosh Sharma

random forest or gradient-boosted trees. Given the relatively small number of features and their
categorical/binary nature, even logistic regression was quite interpretable and effective – it gave
weight to each deviation type corresponding to how predictive it was. The ensemble models gave
a slight performance boost by capturing interactions (for instance, if two different deviations
together made failure even more likely). Ultimately, we chose a gradient boosted decision tree
model (similar to XGBoost) for deployment, as it handled feature interactions well and provided
good accuracy without overfitting. The model was trained to output a probability that a unit will
fail, given the observed deviations. On the validation dataset, we achieved an accuracy in the
range of ~90% for predicting failure vs pass, with a high recall for failures – meaning it caught
most of the failing units (for example, ~85% of the units that did fail were assigned high risk by
the model). We tuned the threshold of the model to favor capturing failures (even if it meant
some false positives), because the cost of a false positive (some extra inspection) is much lower
than the cost of a false negative (a bad unit slipping through). In practice, one can adjust this
threshold based on business needs (e.g., how much re-inspection capacity is available).

After training and offline validation, we moved to deployment of the failure prediction model.
We integrated the model into the station’s software such that after processing each unit (or at
the end of the line, before final test), the system would automatically evaluate: if the unit had
any SOP deviations logged, it feeds those into the model (a simple lookup and calculation) and
produces a risk score. If the risk score exceeds a predetermined threshold, the system flags that
unit for immediate attention. During deployment, this meant the unit was routed to a special
inspection station before final testing. At that station, a technician would double-check the unit
for the likely issue (for example, if the model flags “high risk due to missed screw tightening”,
the technician will specifically check all screws and perform the missed step). In many cases,
this predictive interception allowed us to fix the problem such that the unit then passed final
test, improving the first-pass yield. If the unit was flagged but nothing obvious was found,
we still ran it through all tests and kept it under observation (none of the flagged units were
sent to customers without thorough vetting). Over time, we measured the effectiveness: the
number of units that would have failed final test but were fixed due to early prediction. This is
essentially the true positive count of the model. We also tracked the false positive rate (units
flagged that would have passed anyway) to ensure it was at a manageable level. The model’s
performance was very encouraging – for instance, in a month of operation, out of the units the
model flagged, a significant portion indeed had issues that required rework (caught early instead
of later), and the overall end-of-line yield improved by a few percentage points as a result of
these pre-emptive fixes. This aligns with the goals set out: predict and fix potential failures in
real time, thereby increasing the first-pass yield and reducing waste. In broader context, the
predictive model effectively extends the reach of our quality control: instead of relying purely
on final test outcomes, it uses process deviations as predictive signals. It is a form of predictive
quality analytics that shifts us from “find and reject bad units” to “anticipate and correct bad
units” – a hallmark of advanced smart manufacturing systems [1].

It’s worth noting that as we accumulate more data (Phase 3 is ongoing in a sense), the model
can be retrained and improved. If additional stations are instrumented with vision systems, their
deviations can be added to the feature set, making predictions even more comprehensive. The
modular nature of the system means we can plug in more data sources (e.g., machine sensor data
or operator biometric data) if they prove predictive. But even with just SOP deviation data from
one station, we demonstrated a clear value: a measurable improvement in yield and a reduction
in escaped defects. The deployment also provided real-time feedback to operators – knowing
that deviations immediately trigger scrutiny created a positive pressure to follow SOPs more
rigorously (this was anecdotal but observed). Phase 3 closes the loop by enabling real-time
intervention: the moment a risky situation is detected (either by direct deviation alert or by
predictive flag), action is taken to either correct the process or isolate the unit for repair. This
embodies the synergy of integrating MIRAI data analysis with computer vision: we not only
analyze and understand problems but also actively prevent them on the line.

3 Results
We evaluated the integrated MIRAI and PROSPECT system through a pilot deployment

in an electronics manufacturing line. The results are presented in two parts: (1) insights and
improvements gained from the MIRAI analytics and SOP monitoring (Phase 1 and Phase 2
outcomes), and (2) performance of the failure prediction model and its impact on yield (Phase 3
outcomes). All results are reported in a generic context (no proprietary data) but reflect the scale
of a real manufacturing scenario.
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3.1 Yield Improvement and Process Insights

3.1.1 Station Yield Recovery
In Phase 1 of the PROSPECT, after implementing continuous SOP monitoring and sub-

sequent interventions, the target station’s yield showed notable improvement. Initially, the
station’s first-pass yield (FPY) was fluctuating and averaged around 92% (meaning 8% of units
required rework or failed at that station). By identifying the most frequent SOP deviations (such
as missed scans and incorrect torque sequence) and addressing them through operator retraining
and process enforcement, we observed the FPY rise to ~96% over the following production
cycles. This ~4 percentage point improvement is significant in a high-volume environment,
representing dozens of units per week that no longer needed rework. It directly translates to cost
savings and increased throughput. More broadly, across the pilot period, the overall line FPY
(cumulative yield through all stations) also improved, although the pilot only focused on one
station’s changes. This suggests that fixing issues at one station prevented a cascade of problems
down the line. These findings reinforce the often-stated manufacturing principle that adherence
to “One Best Way” procedures yields better performance [25]. In fact, our data provided a
quantitative example of that – when SOP compliance approached 100% for the critical steps, the
station efficiency and yield were at their highest. This result mirrors other industrial case studies
where plants that achieved high SOP compliance saw corresponding high line performance [26].

3.1.2 Deviations Frequency and Reduction
Over the course of Phase 1 and Phase 2, we tracked the frequency of SOP deviations at the

station. Initially, in the first two weeks of monitoring, deviations were detected in roughly 15%
of the units processed (some minor, some critical). After feedback and corrective measures were
introduced (e.g., making a barcode scan mandatory, reinforcing training), the deviation rate
dropped to under 5% of units. This demonstrates the effect of simply measuring and responding,
operators and supervisors became aware that certain mistakes were happening and took steps
to avoid them. Among the types of deviations, we found that procedural misses (completely
skipped steps) were less frequent but often more impactful, whereas sequence or timing de-
viations (steps done out of order or too quickly without verification) were more common but
sometimes had less impact if eventually corrected. By the end of the pilot, the most egregious
deviation (the missed scan) was virtually eliminated, while a few others (like slightly out-of-
order operations that did not affect the outcome) still occurred occasionally. The comprehensive
monitoring made it possible to sustain this improvement; unlike a one-time audit, the AI system
continuously ensures that the process does not drift back to old habits. From a management
perspective, this data allowed us to pinpoint where additional training was needed – for instance,
if one shift had more deviations than another, management could investigate why (perhaps a
less experienced operator on that shift, etc.) and take action.

3.1.3 Correlation of Deviations with Failures
In Phase 2, our analysis provided concrete evidence linking SOP deviations to downstream

failures. One striking result was the correlation between the missed torque step and a failure
in a subsequent vibration test (part of reliability testing). Out of all units that had the torque
deviation, 20% later failed the vibration test (due to things like loose components), whereas
among units with no such deviation, only ~2% failed the same test. This tenfold difference
strongly indicates causation – improper torque likely caused components to be insufficiently
secured, which then led to failures under vibration stress. When presented with these findings,
the manufacturing engineers were convinced to implement additional safeguards (they decided
to introduce a sensor to verify torque for each screw, adding an automated check in addition to
the vision). In another example, a skipped inspection step correlated with an increase in cosmetic
defects seen at final quality check. While those cosmetic issues didn’t cause functional failures,
they did result in rework (polishing or reassembling parts), impacting efficiency. Units that
skipped the inspection had a 15% cosmetic rework rate versus 5% normally. By correlating each
deviation type with various outcome metrics (final test fails, reliability fails, rework incidents,
and even warranty returns for the period we could observe), we built a matrix of influence. This
kind of data is rarely available in traditional operations, as the links are not traced. But here
we had a clear mapping: for each SOP deviation type, we could quantify its effect on yield or
quality metrics. The repository indicated, for example:

(1) Deviation A (missed step): associated with failure mode X, correlation strength: high.
(2) Deviation B (incorrect sequence): mild correlation with extended test time, but no direct

failures (operators usually caught up and corrected later).
(3) Deviation C (skipped verification): moderate correlation with field returns of issue Y,
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suggesting a latent defect might slip through.

These insights not only validated the approach but also gave direction for continuous im-
provement. They essentially told us where to focus engineering effort. Additionally, from a Six
Sigma perspective, we considered the deviations as a source of process variation. By eliminating
those deviations, we reduce variability in the process, which naturally improves yield (higher
sigma level). Our results empirically demonstrate this: the variance in yield results at the station
narrowed after Phase 1, and the overall defect rate decreased after addressing the high-impact
deviations identified in Phase 2.

3.1.4 MIRAI Analytics Outcomes
Concurrent with the SOP pilot, the MIRAI platform’s yield and field analysis modules were

run regularly on the production data. While the MIRAI system covers the entire line, for brevity
we note a few key outcomes that intersected with our pilot:

(1) The MIRAI yield analysis module independently flagged the pilot station for having an
unusual uptick in failures during the initial baseline period, correctly identifying that most fails
were associated with a specific operator and shift (which corresponded to the time the missed
scan issue was occurring frequently). This was a good cross-validation; MIRAI’s automatic
data crunching pointed to a human factor issue at that station, which our vision system then
directly observed. This shows the synergy: data analytics can highlight “where to look,” and
vision provides the “what exactly is happening.”

(2) The MIRAI field analysis (though based on limited return data in the pilot’s timeframe)
indicated that units with the vibration failure mentioned above had all been processed at the
pilot station by a specific tool ID – again correlating to the torque issue. This kind of finding is
inline with industry experiences where manufacturing data patterns are tied to field reliability.
It underscores that the impact of SOP deviations can extend to field performance, not just
immediate yield.

(3) The BYOD analysis was tested by feeding in some ORT results: a batch of units had
undergone an accelerated life test (where a couple failed). MIRAI BYOD analysis found that
those failing units were among the ones that had minor process deviations (like shorter solder
time) upstream. While not directly part of SOP, it shows the utility of having an analytics
pipeline that can incorporate any new data and link it to production info.

(4) MIRAI Sentinel alerts during this period caught a separate issue on another station
(unrelated to our main pilot) where yield was dropping due to a misaligned test fixture. This
was resolved quickly. We mention this to illustrate that our integrated approach does not rely
on only one type of data; the MIRAI system continues to handle machine/equipment issues in
parallel, whereas the SOP vision pilot added the human procedure aspect into the holistic view.

Overall, the results demonstrate that integrating these systems provided both rapid local
improvements (fixing issues at the station) and broader visibility into how process execution
affects quality. We essentially expanded the feature space of manufacturing data to include
human adherence metrics, which proved to be important predictors.

3.2 Failure Prediction Model Performance

3.2.1 Predictive Accuracy
The failure prediction model trained in Phase 3 was evaluated on historical data and then

monitored live. On the test dataset of a few thousand units (with known outcomes), the model
achieved an AUC (Area Under ROC Curve) of about 0.92, indicating excellent discrimination
between units that fail and those that pass. At an operating threshold chosen to prioritize
catching failures, the model’s sensitivity (true positive rate) was around 85%. This means 85%
of units that did end up failing final test were correctly predicted as high-risk by the model
before the final test occurred. The specificity (true negative rate) was slightly lower, around
80%, since we tolerated some false positives. The precision or positive predictive value was in
the range of 30–40%, meaning that among the units flagged as high-risk, roughly a third actually
would have failed if not intervened. While 30–40% precision might seem moderate, it is actually
quite useful in context – these flagged units can be inspected with relatively low effort, and if 1
in 3 is a true issue, that’s a big win considering those would have been failures. In fact, many
predictive maintenance or quality models in industry operate in regimes of low base failure
rates, so a precision of 30% can be economically justified if the cost of checking a false alarm is
small compared to the cost of a miss. We should note that the model was somewhat conservative
in that any unit with even a minor critical deviation was flagged. There were almost no false
negatives for the specific failure modes related to the monitored deviations; the few failures that
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slipped through were due to other causes (unrelated to the SOP steps we monitored).

3.2.2 Real-Time Deployment Results
During live deployment over one month, the model flagged approximately 50 units as high-

risk out of several hundred produced. Of those 50, about 15 were confirmed to have real issues
that would likely have caused test failures or field failures (true positives). These issues were
fixed on the spot. For example, one flagged unit was found to have an improperly seated
connector (the SOP deviation was a skipped verification step) – the technician reseated it, and
the unit then passed all tests. Without the system, that unit would have failed at final test or
perhaps passed but failed in the field. Another flagged unit had a missing screw (caught by
visual check after flagging) which was then installed, saving that unit from likely failure. The
other 35 flagged units (false positives) were re-inspected and no problems were found; nearly
all of them passed final test normally. In those cases, the model erred on the side of caution (for
instance, an operator might have slightly deviated but corrected it, and the unit was fine, yet
it was flagged due to the deviation log entry). We are analyzing those false positives to see if
the model can be refined to ignore truly benign deviations (perhaps by incorporating the fact
the step was eventually done, albeit late). However, the manufacturing leadership was pleased
with this result: 15 units proactively saved from failure is a direct improvement in yield, and the
overhead of checking 35 extra units was manageable. In fact, the yield improvement at final test
was quantifiable. The line’s final test yield improved from ~95% to ~98% during that period.
Not all of that is solely due to the model (some general improvements happened too), but a
portion can be attributed to catching those failures early. Even more importantly, every unit that
is fixed early saves significant time; a unit caught at the station can be reworked in minutes,
whereas if it fails at final test, it disrupts the flow and requires sending the unit to a repair area,
retesting after fix, etc., which could take hours. So there is an efficiency gain beyond the yield
percentage.

3.2.3 Case Study – Preventing a Field Escape
While our deployment time was short to gather field data, one notable anecdote stands out.

One unit was flagged by the model for a minor SOP deviation (the operator did not follow the
exact order of two sub-steps, but eventually completed them). The unit passed final functional
tests, so normally it would have shipped. Because it was flagged, the quality engineer decided to
put it through an extra stress test overnight. It turned out that under prolonged thermal cycling,
the unit did fail due to a joint that was not perfectly soldered (the deviation might have caused
a suboptimal solder reflow). This unit was caught and scrapped before shipment. While this
is a single instance, it exemplifies the potential of failure prediction to prevent a possible field
failure (which could have resulted in a costly customer return or warranty claim). It underscores
that a predictive model can add a layer of protection especially for latent defects that aren’t
detectable by normal tests but have telltale signs in the process data.

3.2.4 Integration with MIRAI Sentinel
We also integrated the model’s logic into the MIRAI Sentinel platform. Instead of just

alerting on correlations, MIRAI Sentinel can use the predictive model to watch all units. In
effect, every time a deviation was logged (as part of the data stream), MIRAI Sentinel would
evaluate the risk and generate an alert for high-risk unit. This means even if we expand to more
stations, a central system can coordinate the flags and possibly even suggest where to route
the unit (to an offline check). The result is a unified alert dashboard that not only warns of
equipment issues (as it did before) but now also of specific units at risk due to process anomalies.
This unified approach is a step towards what some quality experts call a “360-degree view of
quality”– combining machine, process, and human factors data to ensure each product meets
standards [27]. Our results contribute to that vision by showing how to incorporate PROSPECT
data effectively.

3.2.5 Economic Impact
Although this paper focuses on technical results, a brief note on the potential economic impact

is warranted. Improving FPY even by a few percentage points on a high-volume electronics
line can save hundreds of thousands of dollars annually in labor, scrap, and warranty costs. Our
pilot’s ~4% station yield improvement and ~3% final yield improvement translate to fewer units
needing rework and more units out the door per day. Additionally, preventing field failures
avoids not just the direct cost of returns but also intangible costs like customer dissatisfaction.
The real-time fix approach also reduces WIP and cycle time, as units do not circulate back
and forth for fixes. Thus, the integration of MIRAI and vision we demonstrated has a clear
business case, aligning with known benefits of AI in manufacturing such as reduced defects,
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cost savings, and throughput improvement [28]. Our results are in line with other reports where
AI-driven interventions led to yield gains and lower defect rates; for example, an AI-based defect
classification system can significantly boost production yield by catching defects early [29]. In
our case, instead of optical defect inspection, we caught process defects, but the end goal of
yield boost is the same.

3.3 Summary of Key Results
To summarize quantitatively:
(1) SOP deviation rate at target station: reduced from ~15% of units to <5% through Phase 1

actions.
(2) Station first-pass yield: improved from ~92% to ~96% after addressing key deviations.
(3) Correlation example: units with deviation X were ~10× more likely to fail later testing

than those without (clearly identifying X as a root cause contributor).
(4) Failure prediction model: 85% of failing units correctly predicted (caught) with ~30%

precision in a pilot deployment; final test yield increased ~3% with model in place.
(5) Zero critical failures went unaddressed among those monitored – meaning the combination

of vision + model caught all instances of the known issues we targeted.
(6) The system demonstrated scalability in data handling, analyzing thousands of data points

(images, events, test records) per unit in an automated fashion.

These results support the hypothesis that a holistic approach combining data analytics,
computer vision, and machine learning can substantially improve manufacturing outcomes [30].
They also highlight that neither data analytics nor vision alone would be as effective: it was
the combination that allowed identifying and preventing issues. In the next section, we discuss
these implications and how they compare to other approaches in the industry.

4 Discussion
The successful pilot implementation of the integrated MIRAI + computer vision + PROSPECT

approach provides several insights into both the technical and operational aspects of advanced
manufacturing quality systems. In this section, we interpret the results, compare our approach
with related work, examine the generalizability of the solution, and discuss challenges and
future directions.

4.1 Integration of Diverse Data Sources
One of the standout aspects of our approach is how it brings together traditionally separate

data streams – test data and human action data – into one analytical framework. In manufacturing,
it’s common to have siloed systems: a Manufacturing Execution System (MES) that captures
process data and yields, and maybe a separate quality system for audit findings or manual
observations. By capturing PROSPECT via computer vision and feeding that into the unified
MIRAI data lake, we created a richer dataset for analysis and modeling. This aligns with the
Industry 4.0 philosophy of system integration and a “single source of truth” for manufacturing
data [22]. Our results show that this integration is not just technically feasible but highly
beneficial. For instance, MIRAI’s analytics became more powerful when we included the SOP
deviation flags as additional features – we could uncover correlations (like the torque issue) that
might have been obscured if one only looked at test data in isolation. Comparable approaches in
industry often focus on one domain: e.g., automated optical inspection (AOI) systems focus on
visual defects on products, and manufacturing intelligence platforms focus on sensor and test
data. We effectively combined a “process compliance monitoring system” with a data analytics
platform. This holistic view is what gave us a 360-degree understanding of the root causes. Our
work operationalized that integration in a custom way, demonstrating that the vision data can
feed a predictive model that ties into quality control. A key lesson is that investment in data
engineering – to ensure different data modalities can join on common identifiers – pays off
greatly. We needed to ensure timing, serial number tracking, and database schema all aligned,
which was non-trivial, but once in place, it allowed complex analyses with ease. This suggests
future factories should design data architecture with such integration in mind from the ground
up.

4.2 Impact on Yield and Quality
The improvement in yield we observed is consistent with the idea that reducing process

variation (including variation introduced by human error) improves quality. This echoes funda-
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mental principles of Six Sigma and Lean manufacturing, where standard work and elimination
of deviations lead to better outcomes [31]. Our approach provided a high-tech way to enforce
and measure standard work. Traditionally, Lean practitioners implement standard work charts
and audit them; our system automates that audit and provides quantitative feedback in real time.
This can be seen as a form of digital poka-yoke, where the system acts as an error-prevention
mechanism by catching mistakes [32]. The yield improvements, while demonstrated at one
station, hint at the potential if scaled line-wide or plant-wide. If every critical station is moni-
tored and optimized, incremental improvements at each can compound into a large overall gain
(especially in complex assemblies with many steps). Additionally, by catching issues upstream,
we reduce the accumulated cost of defects – a defect caught and fixed at station 5 is cheaper than
one found at final test or, worse, in the customer’s hands. This is in line with the well-known
“Rule of 10” in quality (each step later you find a defect, the cost multiplies by roughly 10). We
effectively pushed detection as far upstream as possible.

4.3 Comparison with Prior Approaches
It’s valuable to compare our integrated approach with other strategies.

4.3.1 Manual SOP Auditing vs. Computer Vision
Before vision, companies relied on periodic SOP compliance audits. These are labor-

intensive and often too late to prevent defects. As the ADLINK case and our introduction noted,
manual monitoring is inconsistent and cannot cover all operations. Our results confirm that
an AI vision system can achieve consistent 24/7 monitoring and react in less than a second
to issues, something impossible with manual audits. Other researchers and vendors have
begun documenting similar successes with vision. This technological shift essentially ensures
adherence in ways that were previously only aspirational.

4.3.2 Automated Test Data Analysis
Machine learning applied to test data (without vision) has been used for yield improvement

and predictive maintenance. Our MIRAI platform is conceptually similar to those – it uses
data to find correlations and root causes. The difference is that we extended the data to include
human factors via SOP logs. Many traditional yield analyses might not capture that an assembly
step was done incorrectly; they might only see the end symptom (like a measurement out of
range). By adding the cause (deviation event) as data, we enhanced the analysis. In essence, our
approach could be seen as adding a new category of sensor: the eyes on the process.

4.3.3 Direct Automated Inspection vs. SOP Monitoring
One might ask, why not simply rely on direct automated inspections for quality (like vision

systems that inspect the product for defects)? Indeed, AOI and end-of-line vision inspection are
common in electronics (for solder joint inspection, etc.). Those catch defects directly on the
product. Our SOP monitoring is complementary: it catches the process mistake that might lead
to a defect, often before the defect is even visible or testable. This is a proactive vs. reactive
distinction. Both approaches together would be ideal – inspect the product and ensure the
process is correct. Ensuring the process prevents many defects from ever occurring, reducing
the load on final inspection. This is analogous to how in healthcare, preventing disease (via
monitoring and intervention) is better than just diagnosing it later.

4.3.4 Predictive Models in Manufacturing
The use of predictive models (like our failure prediction model) is increasingly common

under the umbrella of predictive maintenance and predictive quality. For example, others have
applied ML models to predict machine failures or to predict yield of a lot before it finishes
processing [33]. Our model specifically predicts product failures based on process deviations.
This is somewhat novel because it leverages human error data in the prediction, whereas many
predictive maintenance models use sensor data from machines. Our system is like an automated,
data-driven FMEA: it identified a cause (SOP deviation) and showed the effect (failure), then
we took action to control that cause. The difference is it was based on real data rather than
theoretical assessment.

4.3.5 Scalability and Generalizability
While the pilot was on one station, the approach can be scaled to multiple stations and

different product lines. MIRAI is inherently scalable as a data platform; adding more stations
just means more data, which modern data processing can handle (especially with cloud or on-
premise clusters). The computer vision system would need to be replicated for each station type.
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This implies training new models for each station’s SOP (since each has distinct actions). That
is a non-trivial effort, but techniques like transfer learning and more general action recognition
models can speed it up. There are also emerging no-code vision platforms that claim to allow
quick setup of such monitoring. In an enterprise scenario, one could create a library of vision
models for common assembly tasks and deploy them widely. The infrastructure (cameras and
compute) cost is a factor, but as vision technology becomes cheaper and more ubiquitous, this
becomes more viable. Furthermore, the approach is general to any manufacturing operation
where humans perform critical tasks – not just electronics. One could see applications in
automotive assembly, medical device manufacturing, or even warehouse operations for quality
assurance. The key is identifying processes where deviations significantly impact quality. Our
work provides a template: start with a pilot at a pain point, prove the value, then expand. It also
shows how to integrate with existing data systems, which is often a concern (people fear new
systems that don’t talk to old ones). We integrated via the data lake and by aligning with MES
events, demonstrating you don’t have to rip-and-replace anything; you augment it.

4.3.6 Worker and Organizational Impact
It’s worth discussing how this system affects the people on the factory floor. Initially, there

can be apprehension that cameras watching operators could be used in a punitive way or create a
“Big Brother” environment. We addressed this by focusing the feedback on process, not personal
performance, and by involving operators in the improvement process (for example, showing
them how eliminating a certain mistake made their job easier by reducing rework). Over time,
operators saw the system as a helper – it would catch something they missed, essentially acting
as a safety net. Also, with fewer failures, their work actually went more smoothly (fewer angry
rework technicians coming back asking about mistakes). Training and communication are vital:
we stressed that the goal was to improve the process and help them succeed, not to punish. This
approach can actually elevate the role of operators: they become partners in a high-tech process
and can take pride in achieving high compliance. In fact, one could gamify PROSPECT (though
we did not do this) – showing metrics of improvement and recognizing teams that have zero
deviations for a week, etc. From an organizational standpoint, this integrated system breaks
down barriers between different teams: process engineers, quality engineers, data scientists,
and line supervisors all had to collaborate. It fostered a more data-driven culture on the floor.
Decisions to change processes were backed by data (e.g., “the data shows this step is causing
80% of our failures, so we will fix it” instead of arguments based on anecdotes). This is an
important cultural shift towards what some call manufacturing intelligence.

5 Limitations
Despite the successes, there are some limitations and challenges to address.

5.1 Model Scope
Our failure prediction model was limited by the scope of data (one station’s deviations). If a

failure was caused by something outside that scope (e.g., a PCB defect not related to assembly),
the model wouldn’t catch it. Thus, it’s not a panacea for all failures, only those tied to the
monitored parameters. As we scale, we need to include more features to cover more failure
modes.

5.2 False Alarms
As seen, there were false positives. Tuning the system to reduce unnecessary alerts without

missing true issues is an ongoing effort. This involves both refining vision detection (to not log
a deviation unless it’s truly a deviation) and refining the predictive model. We might incorporate
more context to distinguish a serious deviation from a harmless one.

5.3 Vision Challenges
The computer vision system, while robust for the pilot, can face difficulties in more complex

settings. Changes in lighting, obstructions, or operator behavior variations can affect detection.
Also, if the product model changes or the process changes, the vision model may need retraining.
We discovered that even something like an operator wearing gloves vs. not wearing gloves could
confuse the model initially (we then included both scenarios in training data). Maintaining
and updating these models will require a dedicated effort or a user-friendly training interface.
This is a general challenge in AI adoption in manufacturing – the need for updating models as
processes evolve.
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5.4 Data Volume and Latency
Processing video for many stations could be data intensive. We mitigated this by edge

processing (only events go to the server, not full video), but in some contexts storing video
might be desirable for later analysis. That raises storage and privacy questions. In our case, we
did not need to store raw video long-term, just the detected event timestamps which are tiny in
size. So our system is efficient in that sense.

5.5 Generality of SOP Deviations
The types of deviations and their impacts can vary widely by process. In some processes,

a deviation might not have any effect (maybe a redundant step). So one must be careful not
to overreact to every deviation. Our correlation phase addressed that by quantifying impact.
But if someone applied such systems blindly without analysis, they might waste effort on low-
impact deviations or, conversely, not realize a critical one. Thus, the combination of automated
monitoring with human engineering judgement remains important.

5.6 No Internal Proprietary Tools
We consciously described everything in generic terms. In actual implementation, one might

use specific software or platforms (like a specific brand of data historian or a certain AI
framework). Our aim was to show the approach without tying it to a vendor. This is beneficial
academically because it focuses on principles, but a real company would need to either develop
or purchase the specific tools to implement it.

6 Future Work
Building on this pilot, there are several avenues for further development.

6.1 Multi-Station and End-to-End Monitoring
We plan to extend vision monitoring to multiple stations (including automated ones where a

robot might perform tasks, to verify the robot did them correctly) and link deviations across the
entire process. This could lead to a much more powerful predictive model that uses a sequence
of events from multiple stations to predict final quality.

6.2 Advanced AI Models
The action recognition model can be made more sophisticated. For example, using deep

sequence models (like an LSTM or transformer taking video frames as input) might capture
deviations in subtler ways and reduce false positives. Also, anomaly detection models could be
employed so the system can learn what a “normal” operation looks like and flag anything that
deviates from the norm, even if not pre-defined.

6.3 Operator Guidance Systems
We are considering integrating augmented reality (AR) or real-time feedback to the operator

through an interface. Currently the feedback is mostly an alert to supervisor or a light signal. If
operators had, say, AR glasses or a screen highlighting what step to do next or warning them
they missed something, it could guide them before a deviation becomes permanent. This would
truly close the loop at the operator level – prevention rather than post-fact alert.

6.4 Expansion of MIRAI Analytics
The data collected on PROSPECT could feed other MIRAI modules. For example, a training

effectiveness analysis – measuring if after training sessions the deviation rates drop (and how
fast). Or feeding into a digital twin of the process that simulates how errors propagate. Also,
including cost models in MIRAI to prioritize which issues to fix first based on potential savings.

6.5 Comparative Studies
We intend to benchmark this integrated approach against others. For instance, compare yield

improvement purely from a data analytics approach vs. with the added vision data, to quantify
the incremental benefit of vision. Also, measure ROI in terms of cost of equipment vs. savings.
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6.6 Generalization to Autonomous Corrections
Ultimately, we envision a system that not only predicts failures but can autonomously

correct them or adjust the process. For example, if a deviation is detected, the system might
automatically adjust a downstream test to be more stringent for that unit (to ensure the defect is
caught). Or if certain deviations keep happening, the system might automatically modify the
SOP or machine parameters (with approval workflow) to error-proof it. This would be a step
towards a self-optimizing production line.

7 Conclusion
In this paper, we presented a comprehensive approach to improving yield and predicting

failures in electronics manufacturing by integrating a Manufacturing Intelligence for Reliability
and Automated Insights (MIRAI) system with computer vision-based PROSPECT monitoring.
Our solution spans data engineering, real-time monitoring, and machine learning, creating a
closed-loop feedback system for process improvement. Through a pilot study, we demonstrated
that this integration can effectively identify the root causes of yield loss (including human
procedural errors), facilitate timely corrective actions, and enable proactive failure prediction to
catch defects before they escape. Key contributions of this work include:

7.1 Holistic Data Integration
We showed how diverse data sources – production test data, operator action logs from vision,

and failure analysis results – can be unified and utilized for advanced analytics. This holistic
view provided insights that would be inaccessible to siloed analysis, highlighting the importance
of integrated manufacturing intelligence in the era of Industry 4.0.

7.2 Computer Vision for SOP Compliance
We implemented a computer vision system to automatically monitor SOP compliance at an

assembly station. The system achieved continuous, unbiased observation of operator practices,
detecting deviations in real time. By doing so, it effectively digitized the enforcement of standard
procedures. Our results confirmed that such a system can drastically reduce human error-related
defects, consistent with emerging industry reports of AI improving quality assurance on the
shop .

7.3 Data-Driven Yield Improvement
Using MIRAI’s analytical workflows, we rapidly pinpointed factors causing yield drops and

field failures. The self-serve yield analysis identified patterns in failing units, and the field
analysis linked production data to reliability outcomes, providing actionable recommendations.
We documented specific cases where addressing a revealed issue (e.g., a particular SOP deviation
or a common factor among failing units) led to a measurable increase in first-pass yield. These
case studies reinforce the value of moving from reactive problem-solving to proactive, data-
driven decision making in manufacturing.

7.4 Failure Prediction Model
We developed and deployed a machine learning model that predicts product failures based on

signals including SOP deviations. The model’s strong performance in the pilot (catching ~85%
of potential failures) underscores the feasibility of predictive quality in manufacturing. Rather
than waiting for a failure to occur, the line can now anticipate it and intervene. This represents a
shift towards predictive manufacturing operations, where each unit’s risk is continually assessed
and mitigated in real time.

7.5 Generic and Scalable Framework
Although our implementation was in an electronics assembly context, we designed the

framework to be generic. We avoided any reliance on proprietary tools or product-specific
heuristics, focusing instead on general techniques (computer vision for action recognition,
commonality analysis, supervised learning on process data). This makes our approach applicable
to a wide range of manufacturing settings where improving yield and quality is critical. Whether
it is circuit board assembly, automotive component production, or any process with manual
operations, the core idea remains the same: instrument the process with sensors (vision), collect
and analyze the data holistically, and use AI to drive continuous improvement.
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7.6 Scientific and Practical Relevance
From an academic perspective, our work bridges the gap between theory and practice by

applying state-of-the-art AI (deep learning vision, data mining, ML models) to a practical indus-
trial problem, and demonstrating tangible benefits. We also provided citations to comparable
approaches in literature and industry, positioning our contributions in context. For instance,
our integrated predictive approach can be seen as a novel extension of both traditional quality
control and newer smart factory initiatives.

The successful results of the pilot pave the way for broader deployment. In future work,
we plan to scale the system to more stations and more complex assembly scenarios, further
validating its robustness. We will also explore advanced modeling techniques to improve
prediction and possibly automate corrective responses. Another avenue is to incorporate cost
optimization – for example, dynamically deciding whether a flagged unit should be reworked or
scrapped based on prediction confidence and economic factors.

The integration of MIRAI, computer vision monitoring, and PROSPECT enforcement rep-
resents a powerful strategy for electronics manufacturers seeking to achieve higher yields and
near-zero defects. By ensuring that the processes are executed as intended and learning from
every deviation, manufacturers can dramatically reduce variability and preempt failures. Our
research demonstrates that such an approach is not only technically achievable but highly
effective. It embodies a shift from reactive quality control to proactive and preventive quality
assurance. The manufacturing line becomes a intelligent system: constantly observing, learning,
and improving. This leads to tangible gains in efficiency, product quality, and customer satis-
faction. As the manufacturing industry continues to embrace digital transformation, we expect
that the methodologies outlined in this paper will inform the next generation of smart factories,
where data and AI work hand in hand with human operators to drive excellence in production.
Ultimately, the synergy of human expertise, advanced analytics, and real-time vision feedback
can unlock new levels of performance and reliability in electronics manufacturing and beyond.
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where its governance meetings are held. There are currently no standards to guide ethical AI
development and deployment, or to help consumers develop trust in AI. ISO pioneered work
on standards related to ethically aligned design, this area is still in its infancy. The integration
of AI enabled technologies in the daily lives of ordinary people is rapidly increasing. An
appropriate standard could provide consumers with a reasonable level of comfort and assurance
that AI has been developed conforming to ethical principals that protect their rights, e.g. privacy,
transparency, and inclusiveness.

Standards Russia has recently formed a committee to study ethical AI and how they can map
into existing international work on AI at ISO. 99 percent of people don’t know how standards
make modern society work. Standardization professionals, as well as those that understand the
profession and its impact, are only one percent of the population. General population 99 percent
expect everything to work, often with little interest in the details. They only notice when it does
not work, and then it’s a manufacturer or a government that are held to task when this happens
(not standards).

Standards are mostly voluntary, with the ones that governments adopt become regulatory.
By driving greater informed choice for consumers, there is heightened competition between
developers and companies to gain market share in new areas so everything just works. Stan-
dardization in these areas will ensure that. If there is truly one percent that are aware of the
impact, then this is indication of the huge responsibility that standards professionals have to
benefit humanity to ensure everything works. The importance of standards to the work and
careers of ICT practitioners continues to motivate the content of new innovative standardization
activities to spark creativity and enthusiasm to solve safety problems. The standardization of
artificial intelligence safety will help to find boundaries in which artificial intelligence will
benefit humanity, not harm.

2 On the standardization of information security
Information security concerns the safety of artificial intelligence. The classic information

security triad CIA is the most recognized and common in the international professional commu-
nity. It was recorded in national and international standards and entered the main educational
and certification programs for information security, such as CISSP and CISM.

Information security is responsible for the confidentiality, integrity and availability of infor-
mation. In the concept of information security, specialists call them the principles of information
security. Confidentiality means that only one who has the right to do this has access to informa-
tion. The integrity means that the information is in full and does not change without the consent
of the owner. Accessibility means that one who has the right to access information can get it.

Artificial intelligence specialists for information security mainly use the CIA triad. All three
components: confidentiality, integrity and accessibility synonymically considered as principles,
security attributes, properties, fundamental aspects, information criteria, the most important
characteristics or basic structural elements. Certification, crypto protection and cybersecurity
are also taken into account in the standardization of information security.

3 On international standardization of safe artificial
intelligence

The coming years will take to increase safety and standardize the development and application
of viable strong artificial intelligence. International standardization of the production and use of
intelligent systems ensuring their compatibility has intensified.

The safety of artificial intelligence systems refers to an interdisciplinary field of research
related to the prevention of accidents, their misuse and various harmful consequences that they
can lead to, including technical problems, risk monitoring systems and high reliability. The
security of artificial intelligence systems is necessary for smart factories, health centers, cafes,
services, vehicles, agriculture, defense industry, etc.

The development of standard and criteria for the creation of systems with artificial intelligence
that will be safe for humanity remains one of the urgent tasks.

The safety of the behavior of a system with artificial intelligence depends on its spatial, tem-
poral, objective, visual and sound sensitivity within the boundaries of its use in the environment.
The practical use of artificial intelligence systems in various spheres of society requires the
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introduction of safety standards.

Safety for artificial intelligence and ethical codes on the use of intellectual systems are
developed in a wide format of directions by specialists of various companies by different
countries at the international level.

(1) The standardization of safe artificial intelligence in DeepMind was carried out in 2018.
The safety of artificial intelligence systems was based on specifications, reliability and guarantees
[1]. Specifications - guarantee that the behavior of the artificial intelligence system corresponds
to the true intentions of the operator / user. Reliability - guarantees that the artificial intelligence
system will continue to work safely at interference. Guarantees - give confidence that we are
able to understand and control artificial intelligence systems during work.

(2) The AI Watch study is aimed at developing artificial intelligence safety standards for
systems with minimal, limited and high levels of risk.

(3) For the safety of different artificial intelligence systems in Europe, ISO/IEC standards are
developed:

ISO/IEC TR 24028: Information technology and artificial intelligence. The standard
gives determination of the reliability of artificial intelligence systems, including approaches
to establishing trust in artificial intelligence systems due to transparency, explanability and
handling; Technical risks and threats to artificial intelligence systems, methods for mitigating
the consequences of risks and threats are determined; Approaches to the assessment of failure
tolerance, reliability, accuracy and safety and confidentiality.

ISO/IEC WD 5338: Information technology, artificial intelligence processes of life cycle of
artificial intelligence. The standard is aimed at providing processes that support, control and
improve artificial intelligence systems.

ISO/IEC AWI TR 5469: Artificial intelligence functional safety and artificial intelligence
systems. The standard contains a description of the properties, risk factors, methods and
processes of application and control of artificial intelligence in security systems.

ISO/IEC AWI TR 24368: Information technologies, artificial intellectual approaches and
social services. The standard determines the ethical and social standards of artificial intelligence.

ISO/IEC AWI TR 24372: Information technologies, artificial intelligence - computing
approaches to artificial intelligence systems. The standard determines modern computing
approaches to artificial intelligence systems, computing characteristics, algorithms and methods,
use options according to the ISO/IEC TR 24030 standard.

ISO/IEC CD 24668: Information technology, artificial intelligence structure of process
management for big data analysis. The standard describes the reference model of the big data
analysis process.

ISO/IEC WD TS 4213: Information technologies, artificial intelligence, assessments of
machine learning classification. The standard is aimed at determining the methodology for
measuring the effectiveness of classification models, systems and machine learning algorithms.

ISO/IEC 23894: Information technology, artificial intelligence, risk management. The
standard provides recommendations for risk management that organizations face during the
development and application of artificial intelligence methods and systems. In addition, the
standard describes the processes of effective implementation and integration of risk management
of artificial intelligence, which can be used in any organization.

ISO/IEC CD 38507: Information technologies, artificial intelligence management, conse-
quences of using artificial intelligence systems. The standard provides a guide for organizations
that use or consider the possibility of using artificial intelligence systems.

ISO/IEC WD 42001: Information technologies, artificial intelligence, management system.
The standard is aimed at the formation of requirements and the creation of a guide to implement,
maintain and improve artificial intelligence management systems in the context of a particular
organization.

IEEE P2863: Standard for organization of control systems of artificial intelligence. The
standard contains management criteria as security, transparency, accountability, responsibility
and minimization of bias, as well as the stages of the process for effective implementation, audit
of effectiveness, training and compliance with the development or use of artificial intelligence
systems in organizations.
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IEEE P3333.1.3: Standard for a deep assessment of visual experience based on the human
factor. The standard determines the metric of content analysis of content and evaluating the
quality of visual content based on deep training. The standard includes a description of deep
learning models, visual perception indicators, virtual and mixed reality, clinical analysis and
psychophysical data. The standard also includes images databases.

(4) Since 2021, the Code of Ethics of Artificial Intelligence has been operating in Russia.
The code establishes the general ethical principles and standards of behavior that should
be guided by participants in relations in the field of artificial intelligence in their activities.
Russian experts have developed standards that regulate the safety of artificial intelligence
systems not only for people, but also for the environment. Standardization concerns the
introduction of artificial intelligence in various fields of human activity, such as transport,
medicine, education, construction and a number of others. On September 30, 2023, the
Russian Association, the House of Indo-Russian Technological Cooperation (Chamber for
Russian Technology Collaboration, Cirtc) and the Russian Technical Committee No. 164 of the
Rosstandart of the Russian Federation signed two memorandum of cooperation intentions aimed
at developing relations between Russia And India in IT oblast. One of the documents concerns
the standardization of artificial intelligence, as well as the creation of a joint laboratory for
certification of solutions in the field of artificial intelligence. Interaction in the standardization of
artificial intelligence will apply to the participants of the BRICS+. What will help to develop and
apply the standards common to the BRICS countries. The Minister of Information Technology of
India Rajiv Chandrakar proposed to develop a global security standard for artificial intelligence
so that intellectual systems do not harm a person and social, industrial and natural environment.

(5) In 2023, the United States, Great Britain and more than ten other countries announced
the signing of an international agreement on how to protect artificial intelligence systems. The
document involves the creation of AI platforms designed in such a way that they are safe from
the very beginning of their development.

(6) In 2023, representatives of 28 individual countries, including the USA, EU, Canada,
China, Singapore, Japan, South Korea, Israel, India and the United Arab Emirates signed an
international declaration for the safe use of artificial intelligence.

(7) Case for the use of strong artificial intelligence, developed by I. Ts. Natural formatics [2–
8], approved by the Japanese Technical Committee for Standardization of Artificial Intelligence,
is an international standard: a.111 Application of Strong Artificial Intelligence - “ISO/IEC JTC
1/SC 42 /WG 4 No 254 TR 24030 Working DRAFT V10 ” - ISO/IEC 24030: 2019 (E). The case
for the use of strong artificial intelligence contains generalized options. The standardization of
the use of strong artificial intelligence ends with the developer by a specification of generalized
options for each targeted use. The standard case contributes to the use of strong artificial
intelligence in promising modern areas, such as: multi modal generative artificial intelligence,
cooperation of intellectual digital doubles and humans, ethical artificial intelligence, quantum
artificial intelligence, legitimization of artificial intelligence, intellectual chabitization, semantic
emotional dialogue, and so on.

(8) The British Institute of Standards in 2024 introduced the global guide to the safety of
artificial intelligence, which helps to responsibly use intellectual systems and manage them
in companies around the world. The BSI standard for security eliminates key risks, ensuring
the conformity of innovation to advanced experience. The standard for the safety of artificial
intelligence is recommended for use in the field of services and in industry.

(9) In 2024, experts in the field of education and artificial intelligence of various countries
develop international ethical standards for the use of intellectual systems for training. The
standards of Japan provide for the use of generative tools of artificial intelligence in schools,
from elementary grades to high school. On February 14, 2024, the National Research Institute
for the Study of Generative Artificial Intelligence began to function in Japan. Japan began
testing artificial intelligence systems in primary, junior and high schools. Japanese private
companies have created several systems with artificial intelligence for Japanese schools. The
Konica Minolta system is able to analyze students’ reaction to the material presented, can
collect data on the level of concentration of students, and activity in the rise of the hands. The
system from Techno Horizon is designed to analyze the emotional state of each of the students.
The artificial system helps to identify which children are excited, which children are in a state
of stress or bored and concentrated children. Intellectual systems monitor the performance
and effectiveness of the education of schoolchildren, give recommendations to teachers in the
learning process.
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4 International standard – Safe application of ensem-
ble intelligent interoperable agents

Standard application of ensemble of intelligent interoperable agents defines parameters,
characteristics, methods, models of digital double , knowledge, skills, behavior, images and
other entities of intelligent virtual agent interaction (Table 1–7). Intelligent virtual agent
interaction uses categorical method of utility and preference [9]. Synergetic mechanisms of self-
organization, such as multi-level reflection, semantic and behavioral ontology, of technological
ensembles of intelligent agents are basic for standardization when using ensembles in various
fields [10]. Communicative-associative intelligent ensemble of diversified agents with an
intelligent interface in the form of interacting AI assistants can implement a digital intelligent
clinic [11].

Table 1 General
Use standard name

Application domain

Deployment model

Status

Scope

Objective(s)

Short description

(not more than 150 words)

Complete description

Stakeholders

Stakeholders’ assets, values

System’s threats and vulnerabilities

ID Name Description Reference to mentioned use case objectives

1
AI management of professional cooperation
process

The technology of processes control can itself predict execution of certain
stages on the basis of accumulated information about their labour intensity,
selection of the route of agents and competences. Optimize processes during
their execution - automatic delegation of tasks taking into account the load of
agents and their competences.

Improve accuracy

2 Productivity and quality AI

Ensemble of intelligent interoperable agents works with fewer mistakes and is
safer. Ensemble of intelligent interoperable agents improves the quality of life
of man and society in daily concerns, as well as productivity in high-tech
industry and production.

Improve efficiency

Method(s)

Hardware

Topology

Terms and concepts used

Standardization opportunities/
requirements

Challenges and issues

Description

SDGs to be achieved

Legal and ethical aspects of interaction with society.

Safe application of ensemble of intelligent interoperable agents

Hi-Tech Labor Market

Human digital double

Results of research:  Strong Artificial Distributed Intelligence

Economic and technical sectors and social services

Find accurate and universal application of strong artificial distributed intelligence

Narrative

Ensemble is complex of intelligent interoperable agents interacting through smart interface, implementing either technological process, social services, multi-inter- trans-disciplinary
research, or production cycle.

Ensemble is complex of intelligent interoperable agents interacting through smart interface, implementing either technological process, social services, multi-inter- trans-disciplinary
research, or production cycle. In the ensemble, the whole range of tasks by certain rules is distributed among all agents. Job allocation means assigning each agent a role whose
complexity is determined by the agent's capabilities. To organize the task distribution process, the ensemble creates either a distributed problem solution system or decentralized artificial
intelligence. In the first version, the process of decomposition of the global problem and the inverse process of composition of the found solutions takes place under the control center
agent. At the same time, the creative ensemble is designed strictly from top to bottom, based on the roles defined for the agents and the results of dividing the global task into subtasks. In
the case of decentralized artificial intelligence, task distribution occurs during agent interaction and is synergistic.

 Highly technological producer

Reputation

Key performance indicators (KPIs)

AI features

Task(s)
1 .Safe interaction of ensemble of intelligent interoperable agents.

2 .Building high-tech synergies of ensemble of intelligent interoperable agents..

 Criterion method of utility and preference, multi-level reflection, semantic and behavioral ontology, of technological ensembles of intelligent agents.

Supercomputer with Strong Artificial Distributed Intelligence

Multi-level processing of big data by intelligent neural systems
Societal concerns

Distributed Modular Interconnect Topology

high-tech synergies, intelligent interoperable agents, utility and preference criteria.

Multimodal multisensory format

Information security

Security, ethical and legal aspects

Table 2 Data

Description Strong Artificial Distributed Intelligence Data

Source Model and technology of Strong Artificial Distributed Intelligence
Type Strong
Volume (size) Hi-Tech Labor Market
Velocity (e.g. real time) Supercomputering Velocity
Variety (multiple datasets) streams of multiple datasets
Variability (rate of change) Retraining
Quality High

Table 3 Process scenario

N. Scenario name Scenario description Triggering event Pre-condition Post-condition

1 Training Train a model (deep neural
network) with training data set

Technological process raw
data set is ready Formatting of data Management of safety

2 Evaluation Expansion of the trained
model

Development of
technological thinking and
behaviour

Cognitive thinking patterns
and psychological
behaviors

Meeting KPI requirements is
condition of development

3 Execution Model and Technology
Tooling Interaction Activization of Model Completion of interaction

4 Retraining Retrain a model with training
data set

Certain period of time has
passed since the last
training/ retraining

Additional data and
knowledge

Combining Data and
Knowledge
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Table 4 Training

Step No. Event Name of process/Activity Primary actor Description of process/activity Requirement

1 Sample raw data set is
ready

Specification and
classification Manufacturer Transform sample raw data Distributed AI Software

2 Completion of Step 1 Creating Set of Experimental
Data Manufacturer

Development of set of
experimental data through job
modelling

Software of modelling

3 Completion of Step 2 Model training AI solution
provider

Train a model (deep neural
network) with experimental data
set created by Step 2

Big SD

Table 5 Evaluation

Step No. Event Name of process/Activity Primary actor Description of process/activity Requirement

1 Completion of
training/retraining Research Manufacturer

Train model (deep neural
network) with experimental data
set created

Big SD

2 Completion of Step 1 Identification AI solution
provider

Based on data, detect execution
using a deep neural network
trained in learning scenario

Big SD

3 Completion of Step 2 Evaluation Manufacturer Comparison of phase 2 results
with human performance Efficiency and quality

Input of evaluation Productivity

Output of evaluation Efficiency and quality

Table 6 Execution

Step No. Event Name of process/Activity Primary actor Description of process/activity Requirement

1
Comparison of
modeling results with
human performance

Research Manufacturer
Development of a set of
experimental data through job
modelling

Quality

2 Completion of Step 1 Identification Manufacturer

Based on modified data train
model (deep neural network)
with experimental data set
created

Compatibility

Input of Execution Modification

Output of Execution Compatibility

Table 7 Retraining

Step No. Event Name of process/ Activity Primary actor Description of process/activity Requirement

1
Certain period of time
has passed since the
last training/retraining

Research Manufacturer Additional data and knowledge Completeness

2 Completion of Step 1 Experimental data set creation Manufacturer

Combining Data and Knowledge
Based on modified data train
model (deep neural network)
with experimental data set
created

Compatibility

3 Completion of Step 2 Model training AI solution
provider

Comparison of phase 2 results
with human performance Efficiency and quality

Specification of retraining data Retraining data set has to include recent data
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5 Conclusion
Currently, multi -modal generative technologies of artificial intelligence continue to ef-

fectively transform various industries [9–11]. Generative artificial intelligence is constantly
improving and approaching in cognitive abilities to natural intelligence [12]. Natural intelligence
builds vital activity on the basis of a productive system of rational and moral meanings approved
by the practice of life. Productive meanings are active memory elements. Based on them,
thinking is built in actualized situations and circumstances. Thinking is carried out on the basis
of meanings of holographic memory, taking into account time and space. When researchers of
artificial intelligence will be able to carry out universal standardization of modeling productive
semantic thinking of natural intelligence by self -organizing intellectual systems based on
rational and moral meanings of their bioinformation holographic memory, then strong artificial
intelligence will become an indispensable complement of human natural intelligence [13–17].
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2 Concise Introduction of PMOO
Some properties are beneficial to an optimal option, following a “the higher, the better”

principle, while others are detrimental, following a “the lower, the better” principle. Most actual
alternatives embody both beneficial and detrimental properties and cannot be purely one or
the other. Thus, a comprehensive, impersonal analytical approach is essential. Fortunately,
PMOO meets this need for multi - attribute optimization [6, 7]. In the PMOO approach [6, 7],
the new concept of preferable probability was developed to represent the preferable degree of
the property response in the option competition comparatively and quantitatively. Furthermore,
quantification of preferable probability is conducted.

It assumed that the preferable probability of a property response with the characteristic of
beneficial responses in the option process is correlated to the utilization of this property response
positively in linear manner [6, 7], i.e.,

Pαβ ∝ Yαβ , Pαβ = AβYαβ , α = 1, 2, . . . , r, β = 1, 2, . . . , s. (1)

In Eq. (1), Yαβ reflects the utilization of this property response of the β-th property response
of the α-th alternative; Pαβ is the partial preferable probability of the beneficial property
response Yαβ ; r is the total number of alternatives in the option group involved; s is the total
number of property responses of each alternative in the group; Aβ is the normalized factor of
the β-th property response.

Moreover, it obtained [6, 7],

r∑
α=1

AβYαβ =

r∑
α=1

Pαβ = 1, Aβ = 1/(nYβ) (2)

Y β is the average value of the utilization of the β-th property response in the alternative
group involved.

Analogically, partial preferable probability of the unbeneficial property response Yαβ of the
alternative is correlated to its utilization of this property response negatively in linear manner,
i.e.,

Pαβ ∝ (Yβmax+Yβmin−Yαβ), Pαβ = Bβ(Yβmax+Yβmin−Yαβ), α = 1, 2, ..., r, β = 1, 2, ..., s.
(3)

In Eq. (3), Yβmax and Yβmin indicate the maximum and minimum values of the utilization
of the property response Yβ in the alternative group, respectively; Bβ is the normalized factor
of the β-th property response. Correspondingly, it obtained [6, 7],

Bβ = 1/[r(Yβ max + Yβ min)− rYβ ] (4)

Subsequently, the total / comprehensive preferable probability of the α-th alternative to is the
product of its all possible partial preferable probability Pαβ of each property responses, i.e.,

Pα = Pα1 · Pα2 · · · Pαs =

s∏
β=1

Pαβ (5)

Finally, the total preferable probability Pα of the α− th alternative is the decisive indicator
for the option to conduct the competition comparatively, the winner / victor is with the maximum
total preferable probability.

As the weighting factor wβ is considered, Eq. (5) is alternatively modified as [6, 7],

Pα = Pα1
w1 · Pα2

w2 · · · Pαm
ws =

s∏
β=1

Pαβ
wβ (6)

Impersonally, the weighting factor wβ could be assessed by Eq. (7) [6, 7],

wβ =
Cβ(∑s

β=1 Cβ

) , Cβ =


[∑r

α=1

(
Pαβ − 1

r

)2]
r


0.5

(7)
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Eq. (7) indicates that the bigger the variation of the partial preferable probabilities of the β-th
property response from alternative to alternative the bigger the weighting factor wβ is.

It is sure, in some cases the weighting factors are decided artificially by according to subjective
preference of evaluators or experts. In addition, the probabilistic robust design of production
process and product was developed [8].

3 Utilization of the PMOO in Material Selection of
Gear Manufacture

Milani et al. once proposed a problem of material option for gear manufacture [9–12].
Material selection for gear manufacture is a typical optimal option problem with multiple
property responses conflicting each other. In the study of Milani et al. [9–12], there were nine
materials as the alternatives for the gear manufacture, i.e., ductile iron, cast iron, SG iron,
through hardened alloy steel, cast alloy steel, surface hardened alloy steel, nitride steel, through
hardened carbon steel and carburized steel, which are coded by Sα (α = 1, 2, . . . , 9) . The
property responses of those nine alternative materials was evaluated with respect to five selection
criteria, i.e., core hardness (C), surface hardness (S), surface fatigue limit (F), bending fatigue
limit (B), and ultimate tensile strength (U). Among these five criteria, the responses of S, F,
B, and U are in beneficial type, while response of C is in unbeneficial type in the preference
assessment of the option.

Table 1 displays the property responses of the alternatives in the gear manufacture. The
alternatives shown in Table 1 form an alternative group for the option. Table 2 gives the assessed
results of the partial probabilities of the property responses of alternative materials for the gear
manufacture. Table 3 represents the assessed results of the impersonal weighting factors of the
property responses of alternative materials for the gear manufacture. The final evaluated results
of the total preferable probabilities and ranking are given in Table 4.

Table 1 Property responses of alternative materials for the gear manufacture [9–12]

—Material
Property

C (Bhn) S (Bhn) F (N/mm2) B (N/mm2) U (N/mm2)

Ductile iron (S1) 220 220 460 360 880
Cast iron (S2) 200 200 330 100 380
SG iron (S3) 240 240 550 340 845
Through hardened alloy steel (S4) 270 270 670 540 1190
Cast alloy steel (S5) 270 270 630 435 590
Surface hardened alloy steel (S6) 240 585 1160 680 1580
Nitride steel (S7) 315 750 1250 760 1250
Through hardened carbon steel (S8) 185 185 500 430 635
Carburized steel (S9) 315 700 1500 920 2300

Table 2 Partial probability of the property responses of alternative materials for the gear
manufacture

—Material
Probability

PC PS PF PB PU

S1 0.1277 0.0643 0.0652 0.0789 0.0912
S2 0.1386 0.0585 0.0468 0.0219 0.0394
S3 0.1168 0.0702 0.0780 0.0745 0.0876
S4 0.1005 0.0789 0.0950 0.1183 0.1233
S5 0.1005 0.0789 0.0894 0.0953 0.0611
S6 0.1168 0.1711 0.1645 0.1490 0.1637
S7 0.0761 0.2193 0.1773 0.1665 0.1295
S8 0.1467 0.0541 0.0709 0.0942 0.0658
S9 0.0761 0.2047 0.2128 0.2015 0.2383

Table 3 Weighting factors of the property responses of alternative materials for the gear
manufacture

Property C S F B U

Weighting factor, wj 0.0943 0.2520 0.2192 0.2040 0.2304
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Table 4 Assessed results of the total preferable probabilities and ranking of alternative materi-
als for the gear manufacture

Alternative
material

Total preferable
probability Ranking

S1 0.0778 7
S2 0.0451 9
S3 0.0803 6
S4 0.1012 4
S5 0.0813 5
S6 0.1575 3
S7 0.1586 2
S8 0.0739 8
S9 0.1941 1

The last column of Table 4 shows that the comparative consequence shows clearly that
alternative S9, i.e., carburized steel,exhibitsthe maximum value of total preferable probability,
so the optimal option in material selection for gear manufacture is carburized steel by means of
PMOO.

4 Conclusion
As discussed, PMOO offers a comprehensive method to account for all possible material

property responses when optimally selecting gear manufacturing materials. Five criteria are
considered, and the total preferable probability determines the final material choice. After
detailed quantitative evaluation, carburized steel emerges as the optimal material due to its
maximum total preferable probability.
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research. In this study, we extend the application of the periodic pulse method to recurrent
neural networks with a sinusoidal activation function. This function, which has been less
studied, possesses unique properties, particularly regarding its natural periodicity and its ability
to generate complex bifurcations. This raises the following question: Can the periodic pulse
method be used to suppress chaos in recurrent neural networks with sinusoidal activation?

Our primary objective is to demonstrate the feasibility of chaos control in this type of network,
thereby expanding existing methods to accommodate more diverse dynamical systems. This
work aims to fill a gap in the literature and open new perspectives for studying chaotic behaviors
in complex neural networks.

To address this question, we proceed in two phases: first, we analyze a network with two
neurons, followed by a three-neuron configuration. Both systems will be subjected to the
periodic pulse method, and we will demonstrate that this approach remains valid for sinusoidal
activation functions under the chosen configurations.

2 Materials and methods
2.1 Network Configuration

Provide all of the methodological details necessary for other scientists to duplicate your work.

In this study, we consider two recurrent neural networks. The first network consists of
two interconnected recurrent neuromodules. The system is governed by the following set of
equations: {

xn+1 = 1 + w11sin (xn) + w12sin (yn)
yn+1 = 1 + w21sin (xn) + w11sin (yn)

(1)

The schematic representation of this first network is as follows (Figure 1):

Figure 1 Two-Neuron Recurrent Network

The second network consists of three recurrently connected neurons. Its dynamics are
described by the following equations:

xn+1 = 1 + w11sin (xn) + w12sin (yn) + w13sin (zn)
yn+1 = 1 + w21sin (xn) + w22sin (yn) + w23sin (zn)
zn+1 = 1 + w31sin (xn) + w32sin (yn) + w33sin (zn)

(2)

A schematic representation of this network is provided in Figure 2.

Figure 2 Three-Neuron Recurrent Network
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2.1.1 Definition of Variables and Parameters
The symbols used in both networks are defined as follows:
(1) Wii: Self-connection weight of neuron i.
(2) wij : Connection weight between the output of neuron i and the input of neuron j.
(3) xn, yn, zn: Neuron activities at iteration n.
(4) Φ: Activation function (transfer function), which processes the input signal and transitions

the neuron from state n to state n+1.
(5) bi: Bias terms, used to modulate the net input to the activation function of neuron i.

2.1.2 Approach to apply the periodic pulse method
For each network, we follow a systematic approach to apply the periodic pulse method:
(1) Compute the composite functions and derive the Jacobian matrix of the system.
(2) Determine the characteristic polynomial for each Jacobian matrix and evaluate its eigen-

values.
(3) Identify the equilibrium point around which linearization is performed.
(4) Compute the constants required to apply the periodic pulse control.
(5) Validate the method through numerical simulations using MATLAB.

To simplify the analysis, we assume that all connection weights are set to 1, except for the
diagonal terms w11, w22 and w33. It is possible to demonstrate that for values w11 = w22 =
w33 = 2.5, the system exhibits chaotic behaviour. Table 1 summarizes the chosen values of
parameters:

Table 1 Summary of Parameter Values

Parameters bi w11 w12 w13 w21 w22 w23 w31 w32 w33

Value 1 2.5 1 1 1 2.5 1 1 1 2.5

2.2 Mechanism of Periodic Pulse Method
In a chaotic state, the system’s attractor consists of aperiodic orbits with unstable equilibrium

points. However, at the bifurcation point, a small variation in the dynamic parameter w11 can
cause the system to transition from an unstable equilibrium to a stable one. This means that
near an unstable equilibrium, there exists a stable equilibrium point. When these two points are
sufficiently close, a linear approximation of the dynamical system can be performed around the
unstable equilibrium.

Thus, when the orbit enters the neighborhood of an unstable equilibrium point, we apply
periodic pulses to push the system towards the stable equilibrium, thereby suppressing chaos.
These periodic pulses involve modifying the dynamic equation such that at each iteration n, the
variable xi becomes kxi. The control constant k is computed to ensure the system stabilizes.

We define Phase 1 as the application of periodic pulses in the two-neuron network and
Phase 2 as its application in the three-neuron network. The challenge lies in determining the
appropriate constant k for stabilization.

2.3 Hypothesis of the study
We set this hypothesis: periodic pulses can be applied successfully to suppress chaos in the

neural network we consider in this study.

3 Results
3.1 Phase 1: Network with two Neuromodules

3.1.1 Composite Function Determination
We start from Equation (1) and consider a two-dimensional system. To achieve chaos

suppression, we perform a linearization in the vicinity of a fixed point while activating periodic
pulses. These pulses are obtained through the use of composite functions.{

Fµ
p = kxn+1 = k (1 + w11sin (xn) + w12sin (yn)) = kfµ

p

Gµ
p = kyn+1 = k (1 + w21sin (xn) + w11sin (yn)) = kgµ

p (3)

To determine the equilibrium points, we solve:
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{
Fµ

p = kxn+1 = k1 (1 + w11sin (xn) + w12sin (yn)) = k1fµ
p = xs

Gµ
p = kyn+1 = k2 (1 + w21sin (xn) + w11sin (yn)) = k2gµ

p = ys
(4)

3.1.2 Characteristic Polynomial Calculation of the Jacobian with Composite
Functions

To analyze the stability of the equilibrium point S, we first compute the Jacobian matrix of
the system.

J =

(
dFµ

p

dx

dFµ
p

dy
dGµ

p

dx

dGµ
p

dy

)
(5)

J =

(
k1(w11 cos(x)) k1w12 cos(y)
k2(w21 cos(x)) k2w11 cos(y)

)
(6)

The fixed point S is stable if and only if the eigenvalues of the Jacobian matrix J at equilibrium
satisfy the condition:

|λ| < 1, ∀λ ϵ Spec(J)

where Spec(J) denotes the set of eigenvalues of the Jacobian matrix. To verify this, we
establish the characteristic polynomial of the system (6).

J − λI =

(
k1(w11 cos (x)) k1w12 cos (y)
k2(w21 cos (x)) k2w11 cos (y)

)
− λ

(
1 0
0 1

)
(7)

J − λI =

(
k1w11 cos(x)− λ k1w12 cos(y)
k2w21 cos(x) k2w11 cos(y)− λ

)
(8)

det

∣∣∣∣k1(w11 cos(x))− λ k1w12 cos(y)
k2(w21 cos(x)) k2w11 cos(y)− λ

∣∣∣∣ (9)

det |J − λI| = [k1(w11 cos (x))− λ] [ k2w11 cos (y)− λ]− [k2(w21 cos (x))] [k1w12 cos (y)]
(10)

3.1.3 Determination of the Eigenvalue of the Jacobian with Composite Functions
The characteristic polynomial is given by:

λ2 − λw11 (k1 cos (x) + k2 cos (y)) + k1k2 cos (x) cos (y)
(
w11

2 − 1
)
= 0 (11)

Since this is a second-degree polynomial, it takes the general form:

λ2 − Sλ+ P = 0 (12)

S = λ1 + λ2 = w11 (k1 cos (x) + k2 cos (y)) (13)

P = λ1λ2 = k1k2 cos (x) cos (y)
(
w11

2 − 1
)

(14)

Where S is the sum of the roots and P is the product of the roots.

To ensure the stability of the equilibrium point, the roots of this polynomial must satisfy the
stability condition:

P = λ1λ2 = 1 = k1k2 cos (xs) cos (ys)
(
w11

2 − 1
)

(15)

For λ1 = 1
1 + λ2 = w11 (k1 cos (x) + k2 cos (y)) (16)

λ2 = w11 (k1 cos (x) + k2 cos (y))− 1 (17)

From λ1λ2 = 1, we get λ2 = 1

Hence
w11 (k1 cos (x) + k2 cos (y))− 1 = 1 (18)

w11 (k1 cos (x) + k2 cos (y)) = 2 (19)

For λ1 = −1
−1 + λ2 = w11 (k1 cos (x) + k2 cos (y)) (20)

λ2 = w11 (k1 cos (x) + k2 cos (y)) + 1 (21)
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From λ1λ2 = 1, for λ1 = −1 and λ2 = −1

w11 (k1 cos (x) + k2 cos (y)) + 1 = −1 (22)

w11 (k1 cos (x) + k2 cos (y)) = −2 (23)

We obtain the system of equations below:{
w11 (k1 cos (x) + k2 cos (y)) = 2
w11 (k1 cos (x) + k2 cos (y)) = −2

(24)

3.1.4 Determination of the Stable Equilibrium Point
By summing the equations component-wise, we obtain:

k1 cos (x) + k2 cos (y) = 0 (25)

where
k1 =

x

1 + w11 sin(x) + sin(y)
(26)

k2 =
y

1 + sin(x) + w11 sin(y)
(27)

So,

x

1 + w11 sin(x) + sin(y)
cos(x) +

y

1 + sin(x) + w11 sin(y)
cos(y) = 0 (28)

To find an equilibrium point, we arbitrarily select a value for x, for example, x = 0.707; and
use the previous equation to compute the corresponding y-coordinate fixed point. We set w11 =
2.5.

Thus, performing computation with MATLAB we get y = -0.243379301592304911028880
10857573.

3.1.5 Determination of k1 and k2

We compute k1 and k2 from (27) and (28):

k1 = 0.29669659413876659687846296044988

k2 = −0.23243254495795542107635678069618

3.1.6 Verification Through Simulation

For graphical verification (Figure 3), we plot the time series of r2 = x2 + y2.

Figure 3 Graphical Results. a) Time series for w11 = 2.5 without chaos control; b) Time
series for w11 = 2.5 with application of chaos control around S(0.707; -0.243).

3.1.7 Discussion
We tested the periodic pulse method on a 2- and 3-neuron recurrent neural network with a

sine activation function. The aim was to assess whether this approach could eliminate the chaos
observed in the system dynamics. We see that the hypothesis of applicability of the periodic
pulse method in these cases is corroborated, as it is for Lynch’s one-dimensional case [12].
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Unlike the work of Pasemann (2002), which focused on sigmoid activation functions, our
study shows that the periodic pulse method remains effective even for sine functions. This
extension opens up new perspectives for chaos control in RNNs.

Our results show that chaos control is possible for a small neural network (2-3 neuromodules).
However, the effectiveness of the method on more complex architectures (deep RNNs, LSTMs)
remains to be studied. These results suggest that the periodic pulse method could be applied
to biological neural networks. A next step would be to test this approach on cortical or deep
learning network models.

The figures below have been drawn up to extend the validity of the method for other dynamic
parameters. In Figure 4, w11 = 13 and in Figure 5, w11 = 25. As in Figure 3, we can see that
the chaos has been eliminated after applying the periodic pulse method.

Figure 4 Graphical Results. a) Time series for w11 = 13 without chaos control; b)
Time series for w11 = 13 with application of chaos control around S(0.707; -
0.054196642641738518528850723480142). k1 = 0.0753 and k2 = −0.0573.

Figure 5 Graphical Results. a) Time series for w11 = 25 without chaos control; b)
Time series for w11 = 25 with application of chaos control around S(0.707; -
0.054196642641738518528850723480142). k1 = 0.0753 and k2 = −0.0573.

3.2 Phase 2: Network with three Neuromodules

3.2.1 Composite Function Determination
We use the method of periodic pulses.

Fw11
p = k1xn+1 = k1(1 + w11sin (xn) + w12sin (yn) + w13sin (zn))

Gw11
p = k2yn+1 = k2(1 + w21sin (xn) + w22sin (yn) + w23sin (zn))

Hw11
p = k3zn+1 = k3(1 + w31sin (xn) + w32sin (yn) + w33sin (zn))

(29)

With w12 = w13 = w21 = w23 = w31 = w32 = 1 and w11 = w22 = w33, Let S be an
equilibrium point, denoted as S(x, y, z). At this equilibrium point:

x = k1(1 + w11sin (x) + sin (y) + sin (z))
y = k2(1 + sin (x) + w11sin (y) + sin (z))
z = k3(1 + sin (x) + sin (y) + w11sin (z))

(30)
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3.2.2 Characteristic Polynomial Calculation of the Jacobian with Composite
Functions

To analyze the stability of the equilibrium point S, we first compute the Jacobian matrix of
the system.

J =

 k1w11 cos(x) k1 cos(y) k1 cos(z)
k2 cos(x) k2w11 cos(y) k2 cos(z)
k3 cos(x) k3 cos(y) k3w11 cos(z)

 (31)

And then the characteristic polynomial:

J − λI =

 k1w11 cos(x)− λ k1 cos(y) k1 cos(z)
k2 cos(x) k2w11 cos(y)− λ k2 cos(z)
k3 cos(x) k3 cos(y) k3w11 cos(z)− λ

 (32)

det

∣∣∣∣∣∣
k1w11 cos(x)− λ k1 cos(y) k1 cos(z)

k2 cos(x) k2w11 cos(y)− λ k2 cos(z)
k3 cos(x) k3 cos(y) k3w11 cos(z)− λ

∣∣∣∣∣∣ (33)

By computing the determinant, we obtain the characteristic polynomial :

a3λ
3 + a2λ

2 + a1λ+ ao = 0 (34)

Where
a3 = −1 (35)

a2 = k1w11 cos (x) + k2w11 cos (y) + k3w11 cos (z) (36)

a1 = −k1k2w11
2 cos(x) cos(y)− k1k3w11

2 cos(x) cos(z)− k2k3w11
2 cos(y) cos(z)

+ k1k2 cos(x) cos(y) + k1k3 cos(x) cos(z) + k2k3 cos(y) cos(z)
(37)

ao = k1k2k3w11
3 cos(x) cos(y) cos(z)− k1k2k3w11

3 cos(x) cos(y) cos(z)

+ k1k2k3 cos(x) cos(y) cos(z) + k1k2k3 cos(x) cos(y) cos(z)

− k1k2k3w11
3 cos(x) cos(y) cos(z)

(38)

3.2.3 Determination of the Eigenvalues of the Jacobian with Composite Func-
tions

Since this is a third-degree polynomial, it satisfies the next formula:

n∏
i=1

λi = (−1)n
ao

an
(39)

n∑
i=1

λi = −an−1

an
(40)

n∑
i=1

n∑
j>i

λiλj =
an−2

an
(41)

So that we get the following equations:

λ1λ2λ3 = −ao

a3
(42)

λ1 + λ2 + λ3 = −a2

a3
(43)

The equilibrium point S is stable if , λ1λ2λ3 = 1, λ2 = ±1 and λ1 = ±1

Let us take first λ1 = +1, λ2 = +1, λ3 = −ao
a3

= 1, 1+1+λ3 = −a2
a3

, and λ3 = −a2
a3

−2

Hence
−a2

a3
− 2 = 1

−a2

a3
= 3

For λ1 = −1 and λ2 = +1
−1 + 1 + λ3 = −a2

a3
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λ3 = −a2

a3
=

ao

a3

For λ1 = −1 and λ2 = −1

−1− 1 + λ3 = −a2

a3

λ3 = −a2

a3
+ 2 = 1

(44)

Thus, we have the following equations:
−a2

a3
= 3

−a2

a3
= −1

−a2

a3
− ao

a3
= 0

(45)

By summing the equations component-wise, we obtain:

−3
a2

a3
− ao

a3
= 2

3a2 + ao = 2

3k1w11 cos(x) + 3k2w11 cos(y) + 3k3w11 cos(z)

+ k1k2k3 cos(x) cos(y) cos(z)
[
−2w2

11 + 2 + w3
11

]
= 2

(46)

3.2.4 Determination of the stable equilibrium point
Since

k1 =
x

1 + w11 sin(x) + sin(y) + sin(z)
(47)

k2 =
y

1 + sin(x) + w11 sin(y) + sin(z)
(48)

k3 =
z

1 + sin(x) + sin(y) + w11 sin(z)
(49)

We replace k1, k2, k3 in equation (33). Let us take a case where chaos occurs, say w11 = 2.5.
We set for S:

x = 0, 707

y = −0, 5

The numerical computation in MATLAB yields z = -4.2566476538172217322579451311
198. By calculating the eigenvalues of the Jacobian matrix at this point, we observe that one of
the eigenvalues has an absolute value greater than one, indicating instability. Thus, adjustments
were necessary to obtain z = 1 ensuring that all eigenvalues of the Jacobian have their absolute
values less than one.

3.2.5 Determination of k1, k2, and k3

For the stable equilibrium point, we obtain: S (0.707; -0.5; 1). From this, we compute the
values of k1, k2, and k3 from (47), (48) and (49).

k1 = 0.2368

k2 = −0.3869

k3 = 0.3055

3.2.6 Verification Through Simulation
In order to verify if we can suppress chaos by using the values of k1, k2, and k3, we plot

r2 = x2 + y2 + z2 with respect to time t. We first plot the chaotic time series, followed by the
time series after applying control. (see in Figure 6)

It is possible to extend these results to other values of w11. Let’s choose the values, w11 = 31
in Figure 7 and w11 = 42 in Figure 8.
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Figure 6 Graphical Results. a) Time series for w11 = 2.5 without chaos control; b) Time
series for w11 = 2.5 with application of chaos control around S(0.707; -0.5; 1)
k1 = 0.0753 and k2 = −0.0573

Figure 7 Graphical Results. a) Time series for w11 = 31 without chaos control; b) Time
series for w11 = 31 with application of chaos control around S (0.707; -0.5; -2), the
calculation starting from equation (46) gives z = -0,01804681417543484614791791
5841444; k1 = 0.0358 and k2 = 0.0354, k3 = 0.000667952996146411541268793
08113711

Figure 8 Graphical Results. a) Time series for w11 = 42 without chaos control; b) Time
series for w11 = 42 with application of chaos control around S(0.707; -0.5; -
0.013194334840128524849883296620033), the calculation starting from equation
(46) gives z = −0.013194334840128524849883296620033; k1 = 0.0254 and
k2 = 0.0270, k3 = 021419923014599049133408931167839

4 Interpretation of Results and Discussion
In this study, we applied the periodic pulse method to recurrent neural networks (RNNs)

with a sinusoidal activation function to evaluate its effectiveness in suppressing chaos in these
dynamic systems. Two configurations were analyzed:

Phase 1: A recurrent network with two neurons.
Phase 2: A recurrent network with three neurons.
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The numerical simulations were conducted in MATLAB, using the following parameters:
(1) Fixed synaptic weights: w11 = w22 = w33 = 2.5, while all other weights were set to 1.
(2) Initial conditions: 1.5 and 1.501.
(3) Number of iterations: 500.

The pre-control time series (Figure 3a and Figure 6a) reveal that the network dynamics are
chaotic, characterized by an irregular trajectory and extreme sensitivity to initial conditions. In
these figures, the evolution of r2 over time demonstrates aperiodic, bounded, and deterministic
behavior – hallmarks of chaos.

After applying periodic pulse control (Figure 3b and Figure 6b), the chaotic behavior dis-
appears. The system stabilizes around a fixed equilibrium, confirmed by the fact that initially
divergent orbits merge into a single trajectory, forming an asymptotic trend. This stabilization
effect is further verified by additional tests at higher weight values:

(1) Figure 4: w11 = 13;
(2) Figure 5: w11 = 25;
(3) Figure 7: w11 = 31;
(4) Figure 8: w11 = 42.

For each case, the system successfully transitioned from chaotic to stable behavior, reinforcing
the robustness of the periodic pulse method.

Our results demonstrate that periodic pulse control is effective in suppressing chaos in small-
scale recurrent networks (2-3 neurons). The transition follows a typical chaos suppression
mechanism by stabilizing a fixed point, aligning with previous findings in chaos control theory
(Ott et al., 1990).

4.1 Comparison with Existing Studies
Our work contributes to the broader research on chaos control in dynamical systems. A

comparison with other established methods is summarized in Table 2:

Table 2 Comparison with Existing Studies

Study Method Used Key Findings

Ott, Grebogi, Yorke (1990) Delayed feedback control Stabilization of chaotic attractors with mini-
mal perturbations

Pecora & Carroll (1990) Chaotic synchronization Suppression of chaos through synchronous
coupling

Pasemann (2002) Chaos analysis in RNNs Examined chaos with sigmoid activation func-
tions

Our study Periodic pulse control Successfully suppressed chaos in RNNs with
sinusoidal activation

Unlike delayed feedback control, which perturbs the system continuously, periodic pulse
control is a minimally invasive approach, modifying system parameters only at specific inter-
vals. Compared to chaotic synchronization, our method does not require external coupling
mechanisms, making it simpler to implement in autonomous neural networks.

Moreover, Pasemann’s studies (2002) focused primarily on sigmoid activation functions,
while our work extends chaos control techniques to sinusoidal activation, which introduces
unique periodic properties and complex bifurcation behaviors.

4.2 Limitations and Future Directions
Despite these promising findings, several limitations must be considered:
(1) Generality of the Results: This study is limited to two- and three-neuron networks. The

next step is to test the method on larger architectures, including deep RNNs, LSTMs, and
Reservoir Computing models.

(2) Sensitivity Analysis: The impact of different synaptic weight values on the stability of
the network remains unexplored. A broader parameter sweep would provide deeper insight into
the method’s robustness.

(3) Comparison with Other Control Methods: Our study does not directly compare periodic
pulse control with other chaos suppression strategies, such as delayed feedback control or
chaotic synchronization. Future studies should perform a quantitative analysis of these different
approaches.

Research on Intelligent Manufacturing and Assembly • SyncSci Publishing 177 of 179

https://www.syncsci.com/journal/RIMA
https://www.syncsci.com


Volume 4 Issue 1, 2025 Franci Zara Manantsoa, Hery Zo Randrianandraina, Minoson Sendrahasina Rakotomalala, et al.

4.3 Potential Applications
(1) Computational Neuroscience: Understanding how the brain naturally regulates chaotic

states could have implications for neuromodulation techniques and biological neural network
modelling.

(2) Artificial Intelligence: 1) Controlling chaos in RNNs may enhance training stability in
machine learning algorithms and deep learning architectures. 2) Avoiding chaotic behavior
in networks like LSTMs and Transformers could improve their ability to learn and generalize
efficiently.

5 Conclusion
In this study, we explored the application of the periodic pulse method for chaos control in

recurrent neural networks (RNNs) with a sinusoidal activation function. The primary objective
was to determine whether this approach could stabilize a chaotic neural system by applying
targeted periodic perturbations.

The results demonstrated that periodic pulses effectively suppress chaotic behavior in both
two-neuron and three-neuron recurrent networks. Before control was applied, the system
exhibited chaotic dynamics, characterized by unpredictable trajectories and high sensitivity to
initial conditions. After introducing periodic pulses, the network transitioned to a stable state,
confirmed through time series analysis and eigenvalue spectrum calculations. Specifically, the
Lyapunov exponent, a key indicator of chaos, shifted from a positive value to a negative or
near-zero value, validating the stabilization of the system.

6 Key Findings and Contributions
(1) Validation of Periodic Pulse Control for Sinusoidal Activation Functions: While previous

studies on chaos in RNNs primarily focused on sigmoid or ReLU activation functions, our work
extends the applicability of chaos control techniques to sinusoidal activation, which exhibits
unique periodic properties.

(2) Robustness of the Method: Our numerical simulations confirmed that the periodic pulse
method effectively suppresses chaos across different parameter configurations (e.g., varying
weight values from w11 = 2.5 to w11 = 42).

(3) Minimal Invasiveness Compared to Other Methods: Unlike delayed feedback control,
which modifies the system continuously, periodic pulses only apply perturbations at specific
intervals, reducing computational complexity and energy consumption.

7 Limitations of the Study
Despite these promising results, several limitations must be addressed:
(1) Scalability to Large-Scale Networks: This study focused on small networks (2–3 neurons).

The effectiveness of periodic pulse control for large-scale architectures (e.g., deep RNNs,
LSTMs, or Reservoir Computing models) remains an open question.

(2) Limited Range of Synaptic Weights: The simulations were performed using fixed synaptic
weight values. Future research should conduct a systematic sensitivity analysis to explore the
method’s robustness across a broader range of parameters.

(3) Lack of Direct Comparison with Other Chaos Control Methods: While we discussed
alternative approaches such as delayed feedback control and chaotic synchronization, our study
did not provide a direct experimental comparison. Future studies should quantitatively evaluate
the relative efficiency of these methods.

8 Future Perspectives
This work paves the way for several promising research directions:
(1) Application to More Complex Networks: Testing periodic pulse control on deep recurrent

networks (LSTMs, GRUs) could reveal new insights into controlling chaotic dynamics in
practical machine learning models.

(2) Experimental Validation in Computational Neuroscience: Investigating whether external
stimulation – similar to periodic pulses – can influence neural activity in biological models
could provide insights into cognitive flexibility and neural adaptation.

(3) Integration with Hybrid Chaos Control Techniques: Combining periodic pulses with other
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control strategies (e.g., adaptive algorithms or delayed feedback methods) could enhance both
the efficiency and flexibility of chaos suppression techniques.

9 Final Remarks
In conclusion, this study demonstrated that the periodic pulse method is a promising technique

for chaos control in recurrent neural networks. While further investigations are necessary to
confirm its applicability to larger-scale and real-world systems, the findings contribute to the
growing body of research on nonlinear dynamics, neurodynamic, and artificial intelligence.
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Leading manufacturers have significantly advanced pacemaker technology, integrating inno-
vations such as leadless designs, smart device connectivity, and enhanced battery longevity to
improve patient outcomes [8]. Comparative studies have demonstrated that leadless pacemakers
reduce complication rates compared to traditional transvenous devices, highlighting their poten-
tial for improved safety and reliability [9]. However, despite these technological advancements,
the lack of standardized reporting formats across manufacturers complicates data interpretation
and clinical decision-making [10]. Pacemaker interrogation reports provide essential insights
into battery longevity, lead performance, and pacing thresholds, enabling proactive device man-
agement, yet differences in data presentation and proprietary formats create challenges for direct
comparisons [11]. Addressing these disparities through standardized reporting and improved
interoperability could enhance clinical assessment and optimize pacemaker management.

This study aims to address this gap by presenting a structured comparison of pacemaker
interrogation reports from the three leading manufacturers, with a focus on diagnostic data,
lead impedance, pacing thresholds, and battery longevity. From the performance data, this
research seeks to uncover patterns in battery efficiency, pacing effectiveness, and device durabil-
ity. A deeper understanding of these factors can enhance clinical decision-making, enabling
personalized device selection based on patient-specific needs. Furthermore, this study may help
identify the strengths and limitations of specific device, contributing to future advancements in
pacemaker technology.

Ultimately, the findings of this research will provide valuable insights for the medical commu-
nity, aiding in informed decision-making regarding pacemaker management and selection. By
expanding our understanding of long-term pacemaker performance, this study seeks to improve
patient outcomes and contribute to the ongoing discourse on optimizing pacemaker technology.

Through a comprehensive analysis of interrogation reports, this research underscores the
importance of standardized reporting practices and highlights the potential for innovation in
device monitoring and management.

1.1 Materials in Pacemaker
The biomaterials needed for the implantable pacemaker are alloplastic, that is, not biological

in origin [12]. They include metals, ceramics or glasses, and polymers. From a physical point
of view, the main difference between these groups of materials is the type of chemical bond
which holds the materials together [13].

1.2 The Pathophysiological Understanding
A pulse generator and one or more transvenous or epicardial leads that link the generator to the

myocardium make up the pacing system [14]. While actual pulse generator failure is extremely
uncommon, pacing system malfunction does happen from time to time. A malfunctioning lead,
electrode-tissue interface, or pulse generator can cause a malfunctioning pacing system. When
a lead malfunctions, more issues arise than when a pulse generator malfunctions [15].

The majority of these issues can be fixed with simple device reprogramming. In actuality,
most malfunctions are caused by the pacemaker’s normal programmed function. Correct
diagnosis and treatment of malfunctions depend critically on having a good understanding of
their cause [16].

1.3 Etiology
The following categories apply to causes of pacing system malfunctions [17]:
(1) Sensing (under sensing or oversensing)
(2) Pacing (loss of capture, loss of output, failure to output)
(3) Rate (inappropriate rate, pacemaker-mediated tachycardia)
(4) Inappropriate lead position
(5) Inappropriate mode
(6) Extracardiac stimulation
(7) True pulse generator failure
(8) Pacemaker syndrome
(9) Twiddler syndrome

1.4 Key Parts of Pacemaker
Pulse Generator: The pulse generator forms the main component of the pacemaker. It

contains functions, electronic circuitry, and a battery that powers the device. The pacemaker

Research on Intelligent Manufacturing and Assembly • SyncSci Publishing 145 of 167

https://www.syncsci.com/journal/RIMA
https://www.syncsci.com


Volume 4 Issue 1, 2025 Samikshya Neupane and Tarun Goswami

operates on battery power, which is supplied by the battery [18].

Leads: Built-in leads are used to connect the heart muscle to the pulse generator. Electrical
impulses are transmitted from the ganglion to regulate the rhythms of the heart [19]. The
implants can be inserted into the ventricles, atria, or both, depending on the type of pacemaker.

Electrodes: Electrodes touch the heart muscles directly. They appear at the edge of the front.
They enable the heart and pacemaker to conduct the electricity, which helps the heart beat faster.

Sensors: Some pacemaker come with sensors to monitor body activity levels and adjust the
pacing rate of the pacemaker accordingly. Rate responsiveness is a characteristic that allows the
pacemaker to adapt to the physiological requirements of the patient [20].

1.5 Potential Failure Modes
There are many ways a pacemaker can malfunction, including hardware problems, software

errors, lead errors, and low battery levels [21]. Understanding the specific failure mechanisms is
important for a failure focused analysis [22]. For example, if the battery runs out, the machine
may stop moving, and if the copper breaks, the electrical stimulator may stop working.

Battery Depletion: Pacemakers have limited battery life; It usually lasts between five and
fifteen years, depending on usage. One common failure condition that causes loss of pacing
output is battery loss.

Lead Malfunction: Over time, lead insulation can crack, leak or cause insulation to fail.
Lead defects can interfere with electrical output, causing pacing problems [19].

Software Faults: For optimal performance, pacemakers have complex software algorithms
built into them. While rare, malfunctions can occur due to software errors preventing the device
from operating.

Hardware Issues: Hardware problems can occur in the electronic circuits or connections
that are part of the pulse generator. These can cause irregular pacing or other problems.

Understanding these potential failure factors is important for a comprehensive assessment of
pacemaker deficiencies, as each component is essential for the device to effectively control the
heart rhythm [17].

2 Literature review
A comprehensive literature search was conducted to evaluate the performance, management,

and clinical implications of cardiac implantable electronic devices (CIEDs), including pacemak-
ers, implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT)
devices. The review focused on key aspects such as quality of life (QoL) impact, technological
advancements, battery longevity, lead performance, pacing modes, arrhythmia management,
and device interrogation practices. The study also examined variations in reporting formats,
diagnostic capabilities, and clinical usability across leading manufacturers, highlighting the need
for standardized practices to enhance data consistency and patient outcomes. By synthesizing
findings from multiple studies, this review aims to provide insights into optimizing CIED
management, improving device reliability, and addressing gaps in current research to guide
future advancements in cardiac care. (see Table 1)

This table provides a comprehensive overview of various aspects related to cardiac im-
plantable electronic devices (CIEDs), including pacemakers, ICDs, and CRT devices. It high-
lights key findings, clinical implications, and recommendations for improving patient outcomes,
such as the importance of QoL assessments, advancements in device technology, and strategies
for optimizing battery life and device management. However, the table also underscores signifi-
cant gaps in the literature, such as the lack of long-term data on device performance, patient
outcomes, and the broader application of emerging technologies. These limitations highlight
the need for more extensive research, standardized reporting, and real-world evidence to guide
clinical decision- making and enhance the safety and efficacy of CIEDs.

3 Methods
3.1 Data Collection

The data for this study were collected from pacemaker interrogation reports from three
manufacturers. These interrogation reports included critical performance metrics such as:
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Table 1 Summary of Literature review on Pacemaker Performance, Management and Clinical Implications

Aspect What This Paper Provides What This Paper Does Not Provide Recommendations Clinical Implications

QoL Impact [23] Shows significant QoL improvement with pacemakers, LVADs,
and ICDs.

Lacks long-term QoL data across differ-
ent patient groups.

Study QoL variations by device type, manu-
facturer, and demographics.

Emphasizes the need for QoL assessments in device
selection and patient counseling.

Pacemaker
Development [24]

Reviews the evolution of pacemakers, from external devices
to leadless, MRI-compatible pacemakers, and highlights key
technological milestones.

Lacks detailed discussion on recent ex-
perimental pacemaker technologies or
long-term clinical outcomes.

Incorporate more case studies and long-term
performance data to enhance understanding
of newer pacemaker technologies.

Provides historical context and future insights, as-
sisting clinicians in understanding the trajectory of
pacemaker technology and its potential impact on pa-
tient care.

Pacemaker Programming
History [25]

Traces the evolution of pacemaker programming from invasive
methods to non-invasive techniques like magnetic programming
and RF communication, culminating in bidirectional telemetry
and multiprogrammable devices.

Does not provide current or future ad-
vancements in pacemaker programming
beyond the 1970s.

Explore recent innovations in pacemaker pro-
gramming and their real-world applications.

Highlights the transformative impact of programming
advances, which has shaped modern pacemaker man-
agement and personalized patient care.

Pacemaker Implantation
& Management [26]

Discusses patient selection, complex pacing modes (MVP,
CRT), procedural risks, and post-implant care including in-
fection prevention, troubleshooting, and remote monitoring.

Does not delve into specific patient out-
comes or long-term follow-up data on
device performance

Include long-term patient outcome data and
case studies to guide clinicians in decision-
making.

Highlights the importance of individualized care
through vigilant monitoring, optimal device program-
ming, and infection prevention to enhance patient
outcomes and reduce complications.

Pacemaker Battery
Life [6]

Examines factors affecting battery life, such as pacing rate,
pulse duration, voltage, lead impedance, and the impact of high-
impedance leads on current drain.

Does not provide extensive data on the
real-world impact of pacing reductions
or algorithm optimizations over time.

Explore more extensive clinical data on the
long- term effects of pacing reductions and
device algorithm optimizations.

Emphasizes the importance of optimizing pacing
parameters and device algorithms to enhance bat-
tery longevity, helping clinicians improve device effi-
ciency and patient outcomes.

Battery Depletion
Prediction [27]

Explains methods for predicting battery depletion in pacemak-
ers using an oscilloscope to study impulse curves, enabling
extended pacemaker lifespan.

Does not provide data on the impact of
these methods in modern pacemaker de-
signs or technologies.

Investigate the application of these predictive
methods in current pacemaker technologies
and explore improvements in battery manage-
ment.

Highlights the value of active battery management in
extending pacemaker lifespan and reducing prema-
ture replacements, optimizing device efficiency and
patient care.

Variability in CIED
Durability [28]

Highlights significant differences (up to 44%) in battery dura-
tion among pacemakers, ICDs, and CRT-Ds, with factors like
battery chemistry, capacity, and current drainage influencing
device longevity.

Does not provide data on the specific
factors that influence these differences
across individual manufacturers.

Encourage the development of standardized
industry reporting on device durability and
features to improve transparency and in-
formed decision- making.

Emphasizes the importance of standardized reporting
to guide clinicians in selecting devices, ensuring bet-
ter long- term patient outcomes, and reducing health-
care costs.

Postmortem CIED
Interrogation [29]

Describes a 15-year study on postmortem interrogation of pace-
makers, defibrillators, and loop recorders, revealing a 98.5%
success rate for retrieving useful data on device malfunction,
cause of death, time of death, and patient identification.

Does not explore the broader applica-
tion of postmortem CIED interrogation
across different patient populations or de-
vice types.

Advocate for the routine use of postmortem
CIED interrogation to enhance both clinical
knowledge and forensic investigations.

Highlights the value of postmortem CIED interroga-
tion in identifying device- related failures and improv-
ing both clinical outcomes and forensic investigations.

Pacemaker Battery
Depletion and
Diagnosis [30]

The paper emphasizes the gradual depletion of pacemaker bat-
teries and its potential to cause serious morbidity, particularly
in the Elective Replacement Indication (ERI) and End of Life
(EOL) stages. It presents two case studies: one of pacemaker
syndrome triggered by automatic reprogramming during ERI,
and another of torsade de pointes and complete atrioventricular
block due to complete battery depletion. The paper introduces
the “Rules of Ten” as an ECG-based method for early detection
of battery depletion.

The paper does not explore in- depth
pathophysiology behind battery deple-
tion or provide specific management pro-
tocols for patients. It also doesn’t com-
pare the “Rules of Ten” with other ECG
methods.

Regular monitoring and follow-up for pace-
maker patients, especially at the ERI and EOL
stages, to prevent delayed diagnoses. The
“Rules of Ten” ECG-based method can be im-
plemented as a practical diagnostic tool for
early detection of battery depletion.

Delayed diagnosis of pacemaker battery depletion can
result in serious conditions like pacemaker syndrome
and torsade de pointes. Regular monitoring and
timely intervention using the “Rules of Ten” method
can improve patient outcomes by detecting battery
depletion early, preventing life- threatening arrhyth-
mias, and ensuring better management of pacemaker
patients.

Objective [31]
Investigates longevity of VVI-pacemakers, with CPI Microlith
605 showing median lifespan of 19.2 years, one lasting 26.3
years.

Does not consider patient- specific fac-
tors (e.g., age or health conditions), pac-
ing frequency, electrode-lead combina-
tions, or dual-chamber pacemakers.

Future studies should include factors such
as pacing frequency, patient demographics,
electrode-lead combinations, dual- chamber
pacemakers, and clinical outcomes.

Findings suggest using pacemakers with longer bat-
tery lives, such as CPI Microlith 605, for patients
requiring extended therapy, reducing frequent replace-
ments and improving care.

Study Objective [32] Investigates the incidence and outcomes of premature battery
depletion (PBD) in Abbott ICDs and CRT devices.

Does not investigate non- Abbott devices
or long-term battery life beyond the ad-
visory period.

Further studies needed to evaluate PBD rates
in non- Abbott devices and long-term follow-
up beyond advisory period.

Provides insights into the reliability of Abbott devices
and the potential risks of premature battery depletion.

Premature Battery
Depletion in Abbott
Pacemakers: A Case
Report [33]

Detailed case reports of premature battery depletion in Abbott
pacemakers (models PM1152, PM1160, PM1172, PM1240,
PM1272, PM2152, PM2160, PM2172, PM2240, PM2260,
PM2272). (1) FDA Class I recall advisory and its clinical
relevance. (2) Evidence of failure due to loss of radiofrequency
transmitting capabilities. (3) Clinical presentation, diagnosis,
and intervention for affected patients. (4) Highlights the failure
of remote monitoring systems in detecting sudden pacemaker
failures.

Specific numerical data on pacemaker
battery life for all affected models. - In-
depth statistical analysis of the recall’s
broader impact.

Close monitoring and prophylactic genera-
tor replacement for pacemaker- dependent pa-
tients. - Proactive generator changes should
be considered for patients with affected de-
vices, particularly those who are pacemaker-
dependent.

Failure of remote monitoring systems calls for en-
hanced patient safety measures and more robust pro-
tocols. - Immediate generator replacement should
be considered to avoid complications, especially for
older patients.

CIED management [34]

It provides methods for identifying CIED type and manufac-
turer, guidance on interpreting ECGs for pacemaker status, and
recommendations for using a “doughnut magnet” to ensure
asynchronous pacing.

It does not provide detailed device pro-
gramming instructions or long-term care
protocols for CIED patients during the
pandemic.

The paper recommends using remote CIED
monitoring when available, applying ECG in-
terpretation rules like the “Rules of Ten” to as-
sess battery depletion or reset, and consulting
with electrophysiologist s for urgent device
reprogramming or surgery.

The paper highlights the importance of timely identifi-
cation and management of CIED issues, ensuring that
urgent consultations and interventions are conducted
despite limited resources during a healthcare crisis.

ED staff performing
device interrogation for
cardiac implants [35]

It shows that ED staff can perform cardiac device interrogations
faster than traditional methods while maintaining safety.

It does not discuss long- term outcomes
or broader impacts on patient manage-
ment beyond the ED.

ED staff should be trained to perform cardiac
device interrogations in emergency settings to
improve efficiency.

This study suggests that ED staff can safely and effi-
ciently conduct cardiac device interrogations, poten-
tially improving emergency care workflows.

Diagnostic Yield of
Pacemaker Interrogation
Reports [36]

A retrospective analysis of 88 patients with implanted pacemak-
ers or ICDs to assess the diagnostic yield of device interrogation
in unexplained syncope cases.

Definitive evidence supporting the rou-
tine use of device interrogation as a pri-
mary diagnostic tool for syncope in pa-
tients with previously implanted pace-
makers or ICDs.

Device interrogation should not be routinely
performed in all cases of unexplained syncope
unless supported by concerning exam findings,
telemetry, or ECG abnormalities.

The study highlights that patient history and ortho-
static vital signs provide higher diagnostic value than
device interrogation, suggesting a more targeted ap-
proach to evaluating syncope in these patients.

PMT diagnosis and
management [37]

A detailed case report on the identification and treatment of
PMT using pacemaker interrogation/programming in the emer-
gency department.

In-depth exploration of alternative treat-
ment options for PMT or other arrhyth-
mias in pacemaker patients.

Incorporating pacemaker interrogation as a
standard part of ED management for patients
with pacemaker-related arrhythmias.

Demonstrates the effectiveness of pacemaker interro-
gation/programming in ensuring patient stability in
the ED. resolving PMT and

Electromagne tic
interruption [38]

A case report on EMI interference between a Micra VR leadless
pacemaker and an LVAD after conversion from HeartMate II to
HeartMate 3.

A generalized solution applicable to all
cases of EMI between LVADs and lead-
less pacemakers.

Positioning the programmer head on the pa-
tient’s back can facilitate successful pace-
maker interrogation when EMI is present.

Awareness of potential EMI issues during LVAD con-
version is crucial, and alternative interrogation strate-
gies should be considered to ensure proper device
function.

CIED Management [39] Overview of Boston Scientific pacemakers, CRT devices, ICDs,
programming, and perioperative care

No direct comparison with other manu-
facturers, lacks step-by- step program-
ming guidance, and omits rare surgical
scenarios

Training on interrogation, programming,
emergency management, and institutional ed-
ucation

Improves clinician expertise in device management,
optimizing perioperative safety and cardiac function

Pacemaker Safety
Mode [40]

It provides a detailed case study of a pacemaker failure due to
Safety Mode activation and battery impedance.

It does not provide definitive solutions
for preventing pacing inhibition during
Safety Mode activation.

The paper recommends considering early
pacemaker replacement for pacemaker- de-
pendent patients at risk of Safety Mode com-
plications.

Clinically, it emphasizes the importance of evaluat-
ing pacemaker function and considering preventive
replacement to avoid risks of pacing inhibition in
pacemaker- dependent patients.

Pacemaker replacement
rates based on device
longevity, patient
survival, and
demographic factors [41]

Estimates of pacemaker replacement rates by age, gender, and
primary indication, along with cost implications of device
longevity changes.

Real-world long- term data on device
longevity or replacement rates beyond
projections and simulations.

Focus on optimizing device longevity for
younger patients and consider demographic
factors when selecting pacemaker models.

Longer device longevity reduces replacement surg-
eries, complications, and healthcare costs, particularly
for older patients.

Survival and failure rates
of implantable
defibrillator leads [42]

Comparative analysis of lead survival and failure rates across
manufacturers, impact of recalled leads, and predictors of lead
failure.

Mechanisms of death in patients with re-
called leads or long- term follow-up be-
yond 2011.

Focus on lead construction improvements,
avoid recalled leads, and consider patient-
specific factors in lead selection.

Boston Scientific and St. Jude Medical leads outper-
form Medtronic leads; recalled leads are associated
with higher failure rates and increased mortality, em-
phasizing the need for careful lead selection and mon-
itoring.
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Battery Status: Remaining battery capacity, voltage levels, and predicted replacement dates.

Lead Impedance: Electrical resistance measured across the leads to monitor their integrity.

Pacing Thresholds: The minimum electrical stimulus required to consistently elicit a cardiac
response.

Arrhythmia Detection Logs: Information on the detection and management of arrhythmias.

Event Logs: Records of pacing events, lead failures, software anomalies, and other notable
occurrences.

The interrogation data were obtained from clinical settings where pacemaker devices were
retrieved posthumously. Data was anonymized to protect patient identity, and all reports were de-
identified prior to analysis to comply with ethical standards and patient confidentiality protocols.

3.2 Data Processing
Anonymization: All patient-identifiable information was removed to comply with ethical

guidelines and privacy standards.

Standardization: The reports from the three manufacturers had varying formats. These were
standardized into a unified format for comparative analysis.

Data Cleaning: Outliers, incomplete records, and erroneous data were identified and removed
using threshold-based filtering and domain expertise.

3.3 Key Metrics for Comparison
The key metrics evaluated in this analysis included:

Battery performance: Comparison of remaining battery life estimates from each manufac-
turer.

Lead performance: Lead impedance, pacing thresholds, and capture thresholds.

Pacing Modes and Rates: Comparison of pacing strategies, including pacing modes, pacing
rates, and the pacemaker’s ability to adapt to arrhythmias and varying physiological demands
across different manufacturers.

Interrogation report layout: Comparison of the structure and presentation of pacemaker
interrogation data, including how manufacturers organize and display key metrics like battery
status, lead performance, pacing rates, and arrhythmia management.

4 Data Analysis
4.1 Categorization of Metrics

The interrogation reports were categorized based on several performance parameters:

Battery Status: Classified as “Optimal”, “Monitor”, and “Replace Soon” based on remaining
battery life.

Lead Impedance: Analyzed to identify any degradation or failure patterns.

Pacing Thresholds: Analyzed over time to detect increasing trends, which might indicate
lead issues or increased energy consumption.

Arrhythmia Events: Reviewed to evaluate device response accuracy and consistency.

Data were further categorized by device age, type, patient demographics, and specific device
settings (such as pacing modes) to provide context for performance comparisons.

4.2 Device Specific Comparisons
Each manufacturer’s pacemaker models were compared based on: 1) Battery Longevity; 2)

Lead Performance; 3) Pacing Mode Efficiency; 4) Report layout.

Differences in proprietary technologies, such as adaptive pacing modes or algorithms, were
taken into account when interpreting the results. Manufacturer-specific innovations were noted
to assess their impact on device reliability and patient outcomes. This methodology ensures a
rigorous comparative analysis of pacemaker performance, allowing for the identification of key
strengths and weaknesses across different manufacturers and their devices.
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5 Results
5.1 Battery Performance

5.1.1 Voltage Behavior and Remaining Life
The battery performance of pacemakers from three leading manufacturers A, B, and C was

evaluated based on the key factors such as Elective Replacement Indication (ERI) thresholds,
voltage ranges, magnet rates, battery longevity, End of Service (EOS) indicators, Recommended
Replacement Time (RRT), and remaining life estimates. The findings are summarized in Table 2.

Table 2 Battery Performance Compariso

Factor Manufacturer A Manufacturer B Manufacturer C

ERI Threshold 2.60 V Not provided 2.83 V

Voltage range 2.45 V – 2.90 V Indirectly inferred from time
to explant 2.63 V – 2.94 V

Magnet Rate 8.6 ppm – 98.1 ppm 90 ppm (shorter life), 100 ppm
(longer life) Not provided

Battery Longevity Near ERI 2.60 V Shorter life at 90 ppm, longer
life at 100 ppm

Approaching ERI
(2.83 V)

EOS and RRT Close to ERI 2.60 V Indirectly suggested via re-
maining life estimates

EOS at 2.82 V, RRT
at 2.83 V

Remaining Life Not directly provided Shorter life at 90 ppm, longer
life at 100 ppm

8 months - 8.6 years
(varying stages)

(1) Manufacturer A:

A. Voltage range: 2.45 V to 2.90 V; voltage approaches ERI (2.60 V).
B. The pacemaker is nearing the end of life, especially with 2.45 V approaching the 2.60 V

ERI threshold.
C. Remaining life isn’t explicitly stated, but it can be inferred that the pacemaker is getting

close to requiring replacement as its voltage dips closer to the ERI. (see Figure 1)

Figure 1 Voltage trend (Manufacturer A)

This report includes a waveform that represents the voltage and impedance levels of the
pacemaker battery. Monitoring these parameters ensures timely replacement or maintenance
of the device. A stable voltage curve indicates a healthy battery status, while a declining trend
suggests that the battery is nearing the end of its life, requiring predictive maintenance to avoid
interruptions in device performance.

(2) Manufacturer B:
A. Voltage is not provided but inferred from magnet rate and time to explant.
B. 90 ppm generally correlates with a shorter remaining life (e.g., 0.25 years to < 3 months).
C. 100 ppm correlates with a longer remaining life (e.g., 6.5 years to 14.5 years).

In this report, battery performance trends are inferred from static data points and associated
metrics, as direct battery voltage trend graphs are not provided. Instead, the performance
is evaluated using static voltage values at interrogation, such as those related to Elective
Replacement Indicator (ERI) and pacing thresholds, which are influenced by battery status.
Additional insights are derived from the magnet rate, where a 90-ppm rate correlates with a
shorter battery life (< 3 months) and 100 ppm indicates longer battery life (up to 14.5 years).

(3) Manufacturer C:
A. Voltage range: 2.63 V to 2.94 V.
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B. 2.83 V is marked as ERI, and 2.82 V as EOS (End of Service).
C. Remaining life varies from 8 months to 8.6 years, depending on the stage of the battery

life:
a. At 2.88 V, the remaining life is 8 months.
b. At 2.82 V (EOS), the pacemaker is near replacement.
c. 2.63 V indicates a longer remaining life (8.6 years), suggesting that the pacemaker is still

functional and needs some time before replacement.

In this report, battery performance trends can be inferred from specific data points and alerts
related to battery voltage, remaining longevity, and battery-related thresholds—though there’s
no direct battery voltage trend graph. Instead, battery performance is evaluated through static
voltage values at key points, such as Elective Replacement Indicator (ERI) and End of Service
(EOS), alongside calculated longevity estimates

5.1.2 Magnet Rate and Battery Longevity
Manufacturer A: Magnet rates vary between 78.6 ppm to 98.1 ppm, with 78.6 ppm observed

at 2.45 V, suggesting reduced performance as the battery approaches end-of-life.

Manufacturer B: 90 ppm correlates with shorter battery life, while 100 ppm suggests a
longer battery life.

Manufacturer C: No magnet rate data provided, but the battery voltage can be used to infer
the remaining life.

5.1.3 Remaining Life and Replacement Timing
(1) A Devices:
A. The battery is nearing the end of its useful life based on the voltage approaching ERI.
B. Exact remaining life isn’t directly provided but inferred from voltage.

(2) B Devices:
Magnet rate data allows an estimate of remaining life: A. 100 ppm correlates with a long life

(e.g., 6.5 years, 14.5 years).
B. 90 ppm correlates with a short life (e.g, 0.25 years, < 3 months).

(3) C Devices:
Remaining life varies significantly based on voltage:
A. At 2.88 V, the pacemaker is expected to last 8 months.
B. At 2.94 V, the remaining life is 3 years.
C. At 2.63 V, the pacemaker can last up to 8.6 years, indicating it is still in a relatively healthy

state.
D. At 2.82 V (EOS), it needs to be replaced immediately.

Key Insights:

(1) Voltage
A. A Devices typically show voltages near 2.60 V (ERI threshold), indicating that their

batteries are near the end of life.
B. B Devices doesn’t provide specific voltage data, but their magnet rate correlates with

battery life: 90 ppm indicates a shorter battery life, and 100 ppm indicates a longer battery life.
C. C Devices has a higher ERI threshold (2.83 V), and their battery voltages are higher,

suggesting longer remaining life in some cases (up to 8.6 years).

Remaining Life:
Manufacturer A: Battery is nearing the end of its life, and replacement is imminent based

on voltage approaching the ERI threshold.
Manufacturer B: The magnet rate is a reliable indicator, with 90 ppm showing shorter

remaining life and 100 ppm showing longer life.
Manufacturer C: Remaining life can range from 8 months to 8.6 years, depending on the

battery’s voltage, with 2.63 V showing the longest remaining life.

Summary:
A. A Devices show a low voltage range, with many readings approaching the ERI, signaling

imminent replacement.
B. B Devices uses magnet rate and time to explant as proxies for battery life, with 90 ppm

indicating shorter remaining life and 100 ppm indicating longer life.
C. C Devices have more detailed data on voltage and remaining life, with 2.82 V marking the

EOS and 2.63 V indicating a longer lifespan.
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5.2 Lead Performance
The lead performance of pacemakers from three leading manufacturers was evaluated based

on key parameters such as lead impedance, capture thresholds, sensing issues, pacing impedance,
battery voltage, remaining life, and overall lead integrity monitoring. The findings are summa-
rized in Table 3.

Table 3 Lead Performance Comparison

Parameter Manufacturer A Manufacturer B Manufacturer C

Lead Impedance
High lead impedance warnings, partic-
ularly for RV and Atrial leads for more
than 3000 ohms.

High pacing impedance warnings for
more than 3000 ohms, less frequent
than Manufacturer C.

Frequent warnings for unipolar lead and
bipolar lead impedance. High impedance
and polarity switches noted for more than
3000 ohms as per interrogation report.

Capture Threshold High capture thresholds observed, simi-
lar to Manufacturer C.

Lower capture thresholds, but warn-
ings still issued for high thresholds.

High capture thresholds frequently ob-
served, indicating poor lead performance.

Sensing Issues Reports of sensing issues, but fewer com-
pared to Manufacturer C.

Short V-V intervals and sensing issues,
similar to Manufacturer C, but fewer
reported incidents.

Frequent reports of short V-V intervals,
lead fractures, and double- counted R-
waves.

Pacing Impedance
High pacing impedance alerts for more
than 3000 ohms as per interrogation re-
port., similar to Manufacturer C.

High pacing impedance and perfor-
mance issues indicated with lead
degradation.

High pacing impedance warnings for
more than 3000 ohms as per interrogation
report., indicating potential lead failure.

Battery Voltage &
Remaining Life

Battery voltage monitored with remain-
ing life alerts, but typically provides
more lead-time before replacement rec-
ommendation.

Battery voltage monitored, but pro-
vides longer timelines for device re-
placement.

Battery voltage monitored with warnings
on low voltage affecting pacing perfor-
mance. Remaining life alerts provided.

Lead Integrity & Alerts
Fewer lead integrity issues reported,
but still some impedance and threshold
alerts.

Less frequent lead impedance alerts;
focuses more on pacing efficiency and
therapy success.

More detailed and frequent lead
impedance and capture threshold alerts.

Overall Lead
Performance Monitoring

Good monitoring of lead integrity,
though fewer detailed alerts.

Monitors lead performance well, but
may give less frequent warnings than
Manufacturer C.

Proactive with detailed warnings about
lead issues and battery life.

5.2.1 Lead Impedance
(1) A Devices:
A Devices also report lead impedance values, with similar warnings like “high lead impedance”

or “lead impedance low” indicating potential issues. Lead impedance warnings, particularly
related to the RV lead and Atrial lead, signal possible electrical contact issues or lead misposi-
tioning, similar to what we observe in Manufacturer C’s systems.

(2) B Devices:
B Devices’ report impedance data too, although the specifics of the impedance threshold

warnings may vary slightly. In their data, high impedance values also suggest lead dysfunctions,
but Manufacturer B tends to have more specific guidance for interpreting impedance values
(e.g., “high pacing impedance”, which indicates lead degradation or failure).

(3) C Devices:
A. Impedance values in C devices can show warnings when impedance values are too high

or abnormal, which suggests potential issues like lead fractures or poor contact. For example,
C devices have specific logs for unipolar lead impedance warning and bipolar lead impedance
warning (e.g., RV unipolar lead impedance warning), which are critical for identifying lead
performance problems.

B. Impedance warnings across different periods (e.g., “RV polarity switch”, “high RV
threshold”) provide a clear signal of degraded lead performance. Manufacturer C data indicates
high and fluctuating lead impedance as a warning sign.

5.2.2 Capture Threshold
(1) Manufacturer A:
These devices monitor capture thresholds too, with alerts when thresholds exceed expected

levels. High thresholds can also be an issue in Manufacturer A devices, similar to Manufacturer
C, and could indicate ineffective pacing due to lead-related issues.

(2) Manufacturer B:
These devices monitor and alert when capture thresholds become too high, although these
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thresholds are generally lower compared to the other manufacturers, meaning the pacing function
might degrade at lower energy levels.

(3) Manufacturer C:
These devices generally have high capture thresholds as a warning indicator. This indicates

that the device might be unable to consistently stimulate the heart at lower energy levels, possibly
due to lead issues such as dislodgement or insulation damage. For example, Manufacturer C
reports high RV thresholds on several patients, suggesting potential lead or electrode issues.

5.2.3 Sensing Issues
(1) A Devices:
These devices also report sensing issues, although they tend to have fewer reported problems.

However, sensing issues still include high thresholds and improper lead contact.

(2) B Devices:
These devices include sensing alerts for issues like short V-V intervals, and the device

often recommends troubleshooting for lead integrity and electrical noise interference. Like
Manufacturer C, sensing issues are primarily linked to lead problems or device malfunction.

(3) C Devices:
These devices report a range of sensing issues, including short V-V intervals and irregularities

in signal detection (e.g., double-counted R waves). These issues can arise due to lead fractures,
poor contact, or signal interference. For example, sensing issues were reported in Manufacturer
C data for multiple patients, leading to recommendations to check for lead fractures or loose set
screws.

5.2.4 Pacing Impedance
(1) Manufacturer A:
These devices also report pacing impedance, with high values similarly indicating lead

dysfunction. Manufacturer A devices provide alerts when pacing impedance is abnormally high,
suggesting an issue with the lead or electrode.

(2) Manufacturer B:
These devices also report pacing impedance and provide warnings when it exceeds acceptable

thresholds, indicating a possible lead problem.

(3) Manufacturer C:
These devices report pacing impedance, and high values in this parameter suggest poor

pacing lead performance. For instance, high pacing impedance in Manufacturer C data can
indicate problems like lead dislodgement, fracture, or insulation damage.

5.2.5 Battery Voltage and Remaining life
(1) A Devices:
These devices similarly monitor battery health, and remaining life is critical for ensuring

pacing continuity. Low battery levels can affect lead performance, though Manufacturer A tends
to give more lead-time warnings before a replace device recommendation.

(2) B Devices:
These devices also track battery voltage, but battery alerts are less frequent, often giving

longer timelines for device replacement. Low battery voltage in Manufacturer B devices can
sometimes result in pacing failures if it affects lead functionality.

(3) C Devices:
These devices report battery voltage and remaining life, which are crucial for lead perfor-

mance. As the battery voltage decreases, it can affect the device’s ability to properly power the
leads and maintain effective pacing. A low battery voltage is often linked to lead degradation or
the need for device replacement.

In the Manufacturer C pacemaker reports, lead performance is evaluated primarily through
written data points, without direct waveform analysis. The reports indicate frequent warnings
for unipolar and bipolar lead impedance, which could suggest issues such as poor contact
or lead degradation. Additionally, the reports highlight high capture thresholds, which are
frequently observed and may indicate suboptimal lead function. These high thresholds suggest
that more energy is needed to achieve effective pacing, potentially due to poor lead performance.
Furthermore, C devices report document sensing issues such as short V-V intervals, lead
fractures, and double-counted R-waves. These issues could affect the accuracy and effectiveness
of pacing, leading to potential therapy interruptions. The reports also provide high pacing
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impedance warnings, which may indicate lead failure or degradation, thereby affecting the
efficiency of the pacing system. While no waveform data is provided, these written metrics
serve as the primary means of assessing lead performance, offering insights into both immediate
and potential issues that may require attention.

Manufacturer A provide detailed analyses of lead performance through metrics like the Atrial
Capture Test, Atrial Sense Test, and Atrial Sense Amplitude Trend. (see Figure 2)

Figure 2 Atrial Sense Amplitude Trend (Manufacturer A)

Atrial Capture Test
Atrial Capture Test tests the energy threshold needed for the pacemaker to stimulate the

atrium effectively and achieve capture. This guides programming of the atrial pacing output,
ensuring reliable atrial activation while conserving battery life.

Atrial Sense Test and Amplitude Trend
Atrial Sense Test measures the pacemaker’s sensitivity to natural atrial electrical activity

and monitors changes in detected signal amplitude over time and ensures the pacemaker
accurately detects atrial signals, avoiding misinterpretation that could lead to unnecessary
pacing (oversensing) or missed pacing opportunities (under sensing). (see Figure 3)

Figure 3 Lead Impedance trend (Manufacturer A)

Atrial Lead Impedance
Atrial lead Impedance measures the electrical resistance of the atrial lead to check its integrity

and function and detects potential lead problems, such as dislodgement, insulation damage, or
fracture, ensuring uninterrupted and effective pacing.

Ventricular Capture Test, Sense Test, and Auto Capture Trend
These test tests the pacemaker’s ability to stimulate and sense ventricular activity while

optimizing pacing output through auto-capture technology and guarantees effective ventricular
pacing with minimal energy consumption and verifies that natural ventricular activity is being
detected accurately. (see Figure 4, 5 and 6)

Figure 4 Ventricular Capture test (Manufacturer A)

B devices reports focus on specific metrics like P Wave Amplitude and Impedance Trends,
which track the electrical signal from the atrium to assess lead performance and identify potential
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Figure 5 Auto Capture Trend (Manufacturer A)

Figure 6 Ventricular Lead Monitoring (1 year trend) (Manufacturer A)

issues such as insulation damage or poor contact. Similarly, the R Wave Amplitude and Ven-
tricular Pacing Threshold measure ventricular signal strength and pacing energy requirements,
balancing effective capture with energy efficiency to extend battery life.

P Wave Amplitude and Impedance Trends
Tracks the electrical signal from the atrium and the performance of the atrial lead. It ensures

effective sensing and pacing while identifying potential lead-related issues.

R Wave Amplitude and Ventricular Pacing Threshold
Measures the electrical signal from the ventricles and the energy needed for consistent pacing.

It balances effective ventricular capture with energy efficiency, extending the device’s longevity.
(see Figure 7)

Figure 7 Amplitude and Impedance trend (Manufacturer B)

5.3 Pacing Modes and Rates
(1) A Devices:
Predominantly DDD (dual-chamber pacing) modes, with a few operating in DDI or DDDR.

The base rates range from 50–70 bpm, and maximum sensor rates range from 120–140 bpm.
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(2) B Devices:
Devices support various pacing modes (VVIR, DDD, DDDR) with lower rate limits around 60

ppm and upper sensor rates between 110-130 ppm. These settings are standard for maintaining
optimal heart rates based on patient activity.

(3) C Devices:
Modes vary significantly, with AAIR, DDDR, VVIR, and VVI configurations. Some devices

have mode switching capabilities (e.g., AAIR<=>DDDR). Base rates generally range from
60–70 bpm, with upper sensor rates reaching 130 bpm. Manufacturer C might also utilize
adaptive rates to adjust based on activity

Summary: All manufacturers offer comparable pacing modes and rate limits, although
individual device models and patient needs lead to variations in the programmed rates.

(1) Manufacturer A
Manufacturer A reports focus on AT/AF Burden, displaying the duration of atrial arrhythmias

and the corresponding ventricular response. This metric evaluates the pacemaker’s ability to
manage arrhythmias effectively and maintain safe ventricular rates, thereby reducing the risk of
complications like stroke or tachycardia.

AT/AF Burden with v rated during AT/AF (see Figure 8)

Figure 8 AT/AF Burden with V rated in Manufacturer A

AT/AF Summary (see Figure 9)

Figure 9 AT/AF summary in Manufacturer A

The waveform displays the duration the patient experiences atrial arrhythmias (AT/AF) and
how the ventricles respond (paced or intrinsic). Here it is 0% AT/AT burden. This evaluates the
pacemaker’s ability to manage arrhythmias and maintain a safe ventricular rate, reducing risks
like stroke or tachycardia.

Heart Rate Histogram with atrial and ventricular waveforms (see Figure 10)

Figure 10 HR Histograms in Manufacturer A

The histogram tracks heart rates, distinguishing between intrinsic cardiac beats and those
paced by the device in both atrial and ventricular chambers. This ensures the pacemaker
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is appropriately pacing when needed, monitoring the patient’s natural cardiac activity and
determining how often pacing support is required.

(2) Manufacturer B
These devices integrate additional features like AT/AF Burden and Mode Switch, which

monitor arrhythmia episodes and adapt pacing modes accordingly to prevent rapid ventricular
pacing during atrial arrhythmias. (see Figure 11)

Figure 11 Trends in Manufacturer B

Other notable metrics include:
A. Pacing Percent indicates the proportion of time the pacemaker actively paces the atrial

or ventricular chambers. It helps evaluate dependency on the pacemaker and informs whether
therapy adjustments are needed, such as reducing unnecessary pacing.

B. Respiratory Rate uses thoracic impedance monitoring to estimate the patient’s breathing
rate. It provides additional physiological data for rate-responsive pacing, where the pacemaker
adjusts heart rate based on physical activity or breathing patterns. (see Figure 12)

Figure 12 Pacing and Respiratory rate in Manufacturer B

Histograms

ATR Mode Switch, V detection (see Figure 13)

Heart rate variability waveform measures the variability in the time intervals between heart-
beats (R-R intervals). Heart rate variability (HRV) is a key indicator of autonomic nervous
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Figure 13 ATR mode switch and V detection in Manufacturer B

system activity and cardiac health. It is used for assessing stress, recovery, and potential arrhyth-
mias. Low HRV may indicate an increased risk of cardiac events, while high HRV is generally
a sign of good health. (see Figure 14)

(3) Manufacturer C
These devices leverage Cardiac Compass Trends to monitor pacing performance andphysio-

logical adaptability.

This section provides daily or monthly trends for various parameters, such as:
A. AT/AF episodes per day: Graphs show time spent in atrial fibrillation or atrial tachycardia,

which reflects how well the pacemaker manages arrhythmias over time. (see Figure 15)

B. Patient Activity and Heart Rate Variability: These trends track the patient’s daily activity
level and heart rate variability, which relate to how the pacemaker adjusts to changing physical
demands. By analyzing the patient activity graph, adaptive rate functionality across different
devices can be discussed. (see Figure 16)

Rate Histograms:

The histograms summarize the distribution of atrial and ventricular pacing rates. For example:
Atrial and Ventricular Rate Distribution: This histogram shows the frequency of different heart
rates, which helps assess the consistency and efficacy of the device’s pacing under various
conditions.
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Figure 14 HR variability in Manufacturer B

Figure 15 Trends in Manufacturer C
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Figure 16 Patient activity and HR variability in Manufacturer C

Time in AT/AF: There are also pacing distributions specific to time spent in arrhythmia states
like AT/AF, which can be used to evaluate the device’s efficiency in maintaining normal sinus
rhythm compared to other brands. (see Figure 17)

Figure 17 Rate Histograms in Manufacturer C

This comparison highlights the strengths and unique diagnostic tools each manufacturer offers
for evaluating battery performance, lead functionality, and pacing modes. While Manufacturer
C provides detailed trend-based diagnostics, Manufacturer A emphasizes reliable real-time
performance monitoring, and Manufacturer B focuses on patient adaptability and long-term
stability.

5.4 Interrogation report
When comparing pacemaker interrogation reports from the three manufacturers we should

look at several aspects of these reports that affect clinical usability, data clarity, and comprehen-
siveness. Here’s an in-depth comparison of these reports:

5.4.1 Report Layout and Readability
A Devices: These reports are designed with an intuitive layout that’s relatively easy to

follow, though they may not be as data-heavy as Manufacturer C’s. Manufacturer A focuses on
presenting critical information in a straightforward way, often including trend lines but with
less detail in each section compared to Manufacturer C. Manufacturer A’s reports are known for
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real-time data visibility, prioritizing recent events.

B Devices: These reports are concise and straightforward, which can benefit clinicians
looking for a quick overview. They offer key metrics on battery life, pacing activity, and any
recent arrhythmia events, although they may not have as many detailed graphical elements as
Manufacturer C’s. The reports are easy to read, with well-highlighted alerts and action items.

C Devices: These interrogation reports are well-organized and tend to be comprehensive,
covering a broad range of data points. The layout is generally modular, allowing clinicians to
view sections on battery life, lead performance, and arrhythmia episodes independently. The
reports are known for including graphical trends and tables, making it easier for clinicians to
spot changes over time.

5.4.2 Battery Status and Longevity Tracking
Manufacturer A: These reports provide accurate battery status with a remaining life estima-

tion based on recent usage. The report may not be as granular in terms of predictive analytics
compared to Manufacturer C but gives reliable information for typical clinical needs.

Manufacturer B: Known for strong battery management, These reports also include an
estimated time until replacement but focus more on efficiency metrics, such as battery drain
trends. Their reports provide a clear view of battery life expectancy but may lack the intricate
projections seen in C Devices.

Manufacturer C: These reports provide detailed battery status information, including an
estimated time until replacement that adjusts based on device usage. They use data-driven
projections to predict battery depletion, which helps in planning replacement procedures. This
section is typically detailed, with clear warnings when the battery approaches its end-of-life.

5.4.3 Lead Performance Monitoring
A Devices: These reports cover essential lead parameters, including pacing thresholds and

impedance measurements, but with a greater focus on real-time diagnostics. The reports include
alerts if the leads show signs of performance degradation, though trend analysis may be less
detailed than in Manufacturer C reports.

B Devices: These reports also emphasize lead performance, providing data on lead impedance
and pacing thresholds. They include historical data on lead status, which is valuable for tracking
long-term stability, but might offer fewer real-time alerts compared to Manufacturer A.

C Devices: These reports provide detailed lead diagnostics, including impedance measure-
ments, sensing thresholds, and pacing thresholds. Their reports often include trend graphs
showing lead impedance over time, which is critical for early detection of lead issues like
fractures or insulation breaches.

5.4.4 Arrhythmia Detection and Event Logging
Manufacturer A: These reports also monitor arrhythmias, with a focus on frequency and

type of episodes. The reports provide a summary of recent arrhythmia events and may include
some real-time data if the patient is enrolled in remote monitoring. However, Manufacturer A
may not provide as extensive historical trend data as Manufacturer C.

Manufacturer B: These reports provide event logging for arrhythmias, with concise details
on episode frequency and duration. Their focus is more on actionable insights, flagging
significant arrhythmia events rather than providing exhaustive historical data.

Manufacturer C: These reports are particularly robust in terms of arrhythmia monitoring.
They include a detailed history of arrhythmia episodes, categorized by type (e.g., atrial fibril-
lation, ventricular tachycardia), with timestamps, episode durations, and treatment provided
(like ATP). The reports also feature algorithms for trend analysis, allowing clinicians to identify
patterns.

5.4.5 Remote Monitoring Capabilities
A Devices: Manufacturer A’s Merlin.net remote monitoring platform is known for its user-

friendly interface and effective remote data transmission. Interrogation reports from Merlin.net
provide real-time insights, particularly useful for tracking recent changes. However, the data in
Manufacturer A reports might be slightly more simplified compared to Manufacturer C.

B Devices: The LATITUDE platform by Manufacturer B offers remote monitoring but
is often praised for simplicity rather than depth. LATITUDE can provide alerts and event
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notifications, but reports might be more condensed, focusing on high-level information rather
than exhaustive details.

C Devices: Manufacturer C’s CareLink network is highly integrated with their interrogation
reports. CareLink enables continuous remote monitoring, automatically updating clinicians on
device status, arrhythmias, and lead performance. Reports pulled from CareLink are usually
detailed and updated with the latest patient data, which is beneficial for proactive management.

5.4.6 Customization and User Controls
Manufacturer A: These reports are straightforward with minimal customization options.

Their goal is simplicity and speed, providing clinicians with essential information without a lot
of user-specific tailoring.

Manufacturer B: These reports provide limited customization but do allow clinicians to
filter alerts and focus on key metrics. While customization options may not be as detailed as
Manufacturer C’s, they still offer enough to make the reports useful in varied clinical contexts.

Manufacturer C: These reports are highly customizable, allowing clinicians to prioritize
sections based on specific needs. This flexibility is advantageous in situations where certain
metrics, such as arrhythmia episode logs or battery life, are more relevant to the patient’s
condition.

5.4.7 Alerts and Notifications
A Devices: These devices provide effective alerts in their reports, particularly for battery

status and lead performance. Their alerts are well-placed and make use of color-coding or
symbols to quickly draw attention to any urgent issues.

B Devices: These reports include alerts, but they focus on critical issues only, providing a
streamlined experience. This approach makes the reports easy to read, though some clinicians
may find the alerts less frequent or detailed than those in Manufacturer C reports.

C Devices: These reports contain robust alert systems that flag issues like low battery,
abnormal lead impedance, and arrhythmia episodes. Their reports often highlight warnings
prominently, making them hard to miss for clinicians.

The interrogation reports from three leading manufacturers: Manufacturer A, Manufacturer
B, and Manufacturer C were evaluated based on key aspects such as report layout, battery status,
lead performance, arrhythmia detection, remote monitoring capabilities, customization options,
and alert systems. The findings are summarized in Table 4.

Table 4 Fornell-Lecker criterion

Aspect Manufacturer A Manufacturer B Manufacturer C

Report Layout Intuitive, real-time focus Concise, action- oriented Modular, detailed,
graphical

Battery Status Accurate, reliable
estimations

Focus on efficiency,
basic projections

Predictive, data- driven
projections

Lead Performance Real-time monitoring Emphasis on long- term
stability

In-depth diagnostics,
trend analysis

Arrhythmia
Detection Recent episode summary Focused on actionable

events
Detailed episode history,
trends

Remote Monitoring Simple and effective
(Merlin.net)

Efficient and streamlined
(LATITUDE)

Advanced, real-time
updates (CareLink)

Customization Limited customization Moderate customization Highly customizable

Alerts and
Notifications Clear, real-time alerts Minimal but essential

alerts
Prominent alerts,
comprehensive

5.5 Visualization Report
The graphs developed for A, B, and C devices display a comparative analysis of different

parameters such as voltage, battery life, pulse amplitude, lead impedance, and sensor rates
between different models of pacemakers. A bar is taken for every parameter for a given device
so that an easy comparison of how devices of these companies compare on different parameters
can be done. The data is also presented in a long format, where each parameter is plotted along
the y-axis and the device model along the x-axis. The difference in hue between each parameter
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simplifies the identification and comparison of values for all the pacemaker devices. With this
analysis, the varying performance and nature of pacemakers by the three major manufacturers
are made evident. (see Figure 18, 19 and 20)

Figure 18 Comparison of different parameters for Manufacturer A devices

Figure 19 Comparison of different parameters for Manufacturer B devices

Figure 20 Comparison of different parameters for Manufacturer C devices
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6 Discussion
The performance, reliability, and usability of cardiac implantable electronic devices (CIEDs)

can be well evaluated on the basis of an analysis of pacemaker interrogation reports of three com-
panies. The reports have structured data, focusing on key aspects such as battery performance,
lead diagnostics, pacing modes, arrhythmia monitoring, and usability. However, differences in
data presentation and reporting structures reflect distinct clinical decision-making approaches,
highlighting the necessity for standardized practices to ensure consistency and optimize patient
management [43].

6.1 Battery Performance
Manufacturer C’s reporting is better in highlighting voltage trends and forecast analysis so

that clinicians can plan and prepare battery replacements. Devices A likes real-time efficiency
metrics with true battery status notifications but lacks a predictive function. B focuses more on
simple battery life estimation, where efficiency metrics are the priority, possibly at the expense
of using it for long-term planning. These variations highlight the need for uniform battery
life estimation methodologies across manufacturers to ensure reliability in clinical decision-
making [44, 45]. Standardized reporting of device longevity is essential to facilitate accurate
comparisons and prevent premature or delayed replacements [46].

6.2 Lead Performance
Lead diagnostics play a crucial role in ensuring effective pacing and minimizing complica-

tions. C Devices leads the way in lead performance monitoring with full diagnostics including
impedance measurements, sensing thresholds, and pacing thresholds, along with trend graphs to
review historically. Device A emphasizes more real-time lead diagnostics with instantaneous
alerts for likely problems. Manufacturer B emphasizes long-term stability by using historical
lead performance data but gives fewer instantaneous alerts. Integrating both real-time and
historical diagnostics into a standardized framework would improve lead monitoring strategies
across manufacturers [46, 47].

6.3 Pacing Modes and Arrhythmia Management
The approach to pacing and arrhythmia management varies across manufacturers. C Devices

provide in-depth pacing mode and arrhythmia control information through advanced diagnostics
and trend analysis of history. Manufacturer A prioritizes real-time arrhythmia detection and
pacing mode optimization with prompt clinical action alerts. B Devices prioritizes pacing
stability over the long term and arrhythmia trends, but its real-time monitoring capabilities are
less robust. These are clinical priority distinctions, wherein A and C Devices are best in real-time
data utilization, and B Devices is best for historic data in longitudinally managing patients. These
differences underscore the need for interoperable data sharing and harmonization of pacing and
arrhythmia diagnostics across different systems to enhance clinical decision-making [48, 49].

6.4 Report Layout and Usability
Variations in report design impact how clinicians interpret and utilize interrogation data. C

devices reports provide rich data on pacing modes and arrhythmia control with the assistance of
advanced diagnostics and historical trend monitoring. Manufacturer A highlights real-time de-
tection of arrhythmia and pacing mode optimization with timely clinical action alerts. B Devices
highlights long-term pacing stability and arrhythmia trends, though its real-time monitoring is
weaker. These are differences in clinical priorities, where Devices A and C lead in the utilization
of real-time data and B focuses on historical data for longitudinal patient management. These
differences in usability suggest that standardizing report structures while preserving critical
manufacturer- specific innovations could improve clinician workflow efficiency [50].

6.5 Remote Monitoring and Customization
Remote monitoring solutions further distinguish the three manufacturers. Manufacturer C’s

CareLink network merges remote monitoring and interrogation reports, providing predictive

analytics and easy data integration. Manufacturer A’s Merlin.net system emphasizes simplic-
ity of interface and real-time data transmission optimized. B’s LATITUDE system provides
remote monitoring optimized with a focus on operational efficiency. C Devices allows for
greater levels of customization, with the ability for reports to be specific to clinical needs,
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while A and B provide more standardized reporting systems. Standardizing remote monitoring
protocols while allowing some degree of customization could enhance patient management
without sacrificing clinical flexibility [43, 51].

Overall, the interrogation reports are all unique in terms of data presentation, usability,
and clinical usefulness. The variance in reporting design and functionality points to the need
for standardization of device reporting in order to provide consistency, efficiency in clinician
workflow, and optimal patient outcomes. Standardization of these reporting practices should be
the goal of future endeavors with the retention of the innovative elements that set each company
apart.

7 Conclusion
The research provides a comprehensive comparative evaluation of pacemaker interrogation

reports by the leading manufacturers in terms of key features of battery performance, lead
status, pacing modes, arrhythmia detection, and reportability. The research focuses on different
aspects of device management to benefit clinical decision-making. These differences in reporting
formats and diagnostic performance emphasize the potential advantages of adopting standardized
reporting practices, which would enhance data consistency, comparability, and clinical utility
across manufacturers.

In terms of battery performance, C Devices provides trend analysis and predictive insights,
Manufacturer A focuses on real-time efficiency metrics and notifications, B emphasizes straight-
forward battery life estimations with long-term stability, reflecting distinct priorities. For lead
performance, C Devices offers comprehensive diagnostics and historical trends, Manufacturer A
delivers real-time alerts, B prioritizes long-term stability with fewer immediate alerts, highlight-
ing the need for balanced monitoring. Regarding pacing modes and arrhythmia management, C
provides advanced diagnostics and historical trends, Device A focuses on real- time detection
and actionable alerts, and B emphasizes long-term pacing stability and trends, showcasing
differing clinical priorities. These variations underscore the importance of integrating diverse
functionalities to optimize patient care and outcomes.

Finally, pacemaker selection and its associated interrogation system must be resolved ac-
cording to the patient’s individual clinical needs and the practice environment of the healthcare
organization. By leveraging the unique strengths of each device reporting system and demanding
higher levels of standardization, clinicians can maximize the efficient utilization of pacemakers
and improve cardiac care and patient outcomes. This study focuses on the necessity of collab-
oration among manufacturers, clinicians, and regulators in creating standard reports that will
stimulate innovation.
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of the test data to its desired target value [6–8], the corresponding algorithm can be performed
as following, 

u(f) = 1, f = f0
u(f) = 1− (|f−f0|)

δ
, |f − f0| ≤ δ

u(f) = 0, |f − f0| > δ

(1)

In Eq. (1), u(f ) expresses the membership of experimental data f belonging the desired target
value f 0 of the attribute; δ is the pre-assigned data for the critical value of distance of f from f 0,
at which the value of u(f ) decreases to 0.

As to the condition of “desired target being best”, since the limit value of membership u(f ) of
an attribute response f belonging to f 0 is “1” only, i.e., a finite value instead of infinitely large
one, which is not exactly consistent with the essence of “the larger the better” type of index. So,
it seems improper to take membership u(f ) as a beneficial indicator to conduct this optimization
problem directly, since in the latter case the value of the attribute response has the possibility to
get a value of infinitely large instead of finite one.

Alternatively, a flexible measure could be introduced to use the “complement” η of the
membership value u(f ) as an indicator to perform the optimization. The definition of the
“complement” η of the membership value u(f ) is shown by Eq. (2).

η = 1− u (2)

Obviously, the lower limit value of η is 0, which corresponds to u taking its maximum value
of 1. Therefore, the optimization problem of u approaching its maximum value is equivalent to
η inclining to its minimum value of 0.

Furthermore, as to robustness assessment, since the inevitabilility of spreading of a set of
test data at the same experimental conditions due to the effects of external uncertain factors, the
evaluation of scattering of a set of test data must be taken into account surely [6–8].

In the light of Lin and Tu’s discussion [9], the scattering of a set of test data in term of
membership of fuzzy theory can be characterized by Eq. (3).

su = (η̄2 + σ2
u)

0.5 (3)

In Eq. (3), σu indicates the standard deviation of membership value u of a set of test data at
the same experimental conditions; η̄is the mean value of “complement” η of the membership
value u in the corresponding set, which is an unbeneficial index to join the assessment of the 1st

part of partial preferable probability; su is in fact the indicator of scattering of a set of test data
in term of membership with regard to the desired target value to participate the assessment of
the other part of partial preferable probability.

2.2 Assessment of Preferable Probability
Furthermore, the assessment of two parts Pη̄ and Psu of partial preferable probability can be

done by taking both η̄and su of an attribute as unbeneficial type of dual indexes [6–8]. As a
result, the partial preferable probability Pkl is the product of both two parts Pη̄ and Psuof an
attribute.

Subsequently, the overall preferable probability Pk of kth alternative candidate is the product
of its all partial preferable probability Pkl [6–8].

Pk =

b∏
l=1

Pkl, k = 1, 2, ..., a; l = 1, 2, ..., b (4)

Finally, the optimal option is the specific alternative candidate that has the largest overall
preferable probability.

3 Utilization Examples for Illustration
3.1 Parameter Design of Leaf Spring with Targeted Free Height

of 7.6 Inches
Montgomery mentioned the parameter design of leaf spring problem [10], which was once

originally discussed by Pignatiello Jr. et al. [11]. Their article studied the application of the
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parametric effect of five input variables on the free height of truck leaf springs. The parameters
included: furnace temperature - I1; heating time - I2; transfer time - I3; hold down time - I3,
and quench oil temperature - I4. Especially, the quench oil temperature was taken as the noise
variable.

Here it is restudied by using fuzzification regulation. The experimental result data are cited
in Table 1 [10]. The optimal design aims to option parameters so as to ensure the desired target
value of the free height around f 0 = 7.6 inches with possible smaller spreading [10].

Table 1 Experimental results of leaf spring free height

No.
Input parameter Value of free height in two noise levels, f (Inch)

I1 I2 I3 I4 I5+ I5−

1 - - - - 7.50 7.25 7.12 7.78 7.78 7.81
2 + - - + 7.88 7.88 7.44 8.15 8.18 7.88
3 - + - + 7.50 7.56 7.50 7.50 7.56 7.50
4 + + - - 7.63 7.75 7.56 7.59 7.56 7.75
5 - - + + 7.32 7.44 7.44 7.54 8.00 7.88
6 + - + - 7.56 7.69 7.62 7.69 8.09 8.06
7 - + + - 7.18 7.18 7.25 7.56 7.52 7.44
8 + + + + 7.81 7.50 7.59 7.56 7.81 7.69

As to fuzzification assessment, the membership value u of a free height f belonging to its
desired target value f 0 = 7.6 inches needs to be conducted by employing Eq. (1) first in principle.
In the assessment, if a pre-assign data of δ is given, for example δ = 0.6 inches, then it derives
the evaluation expression of membership belonging to its desired target value of 7.6 inches for
this problem according to Eq. (5).

u(f) = 1, f = 7.6;

u(f) = 1− (|f−7.6|)
0.6

, |f − 7.6| ≤ 0.6
u(f) = 0, |f − 7.6| > 0.6

(5)

Consequently, Table 2 represents the membership values u and the corresponding errors of
the free height values shown in Table 1.

Table 2 Membership function u and errors of each tested free height

No. Membership function u

I5+ I5− ū σu su

1 0.8333 0.4167 0.2000 0.7000 0.7000 0.6500 0.5833 0.2117 0.4674
2 0.5333 0.5333 0.7333 0.0833 0.0333 0.5333 0.4083 0.2578 0.6454
3 0.8333 0.9333 0.8333 0.8333 0.9333 0.8333 0.8667 0.0471 0.1414
4 0.9500 0.7500 0.9333 0.9833 0.9333 0.7500 0.8833 0.0957 0.1509
5 0.5333 0.7333 0.7333 0.9000 0.3333 0.5333 0.6278 0.1830 0.4148
6 0.9333 0.8500 0.9667 0.8500 0.1833 0.2333 0.6694 0.3291 0.4664
7 0.3000 0.3000 0.4167 0.9333 0.8667 0.7333 0.5917 0.2624 0.4854
8 0.6500 0.8333 0.9833 0.9333 0.6500 0.8500 0.8167 0.1280 0.2236

Furthermore, the evaluation results for preferable probability are conducted and presented in
Table 3, which indicates the alternative candidate No. 4 giving the largest overall preferable
probability, therefore optimum option of this optimal problem is the alternative candidate No. 4.

Table 3 Assessment results of preferable probability

No. η̄ = 1− µ̄ sµ Pη̄ Psµ Pt×102 Rank

1 0.4167 0.4674 0.0937 0.0968 0.9069 6
2 0.5917 0.6454 0.0375 0.0429 0.1606 8
3 0.1333 0.1414 0.1847 0.1956 3.6122 2
4 0.1167 0.1509 0.1900 0.1927 3.6622 1
5 0.3722 0.4148 0.1079 0.1128 1.2172 4
6 0.3306 0.4664 0.1213 0.0971 1.1782 5
7 0.4083 0.4854 0.0963 0.0914 0.8802 7
8 0.1833 0.2236 0.1686 0.1707 2.8781 3
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3.2 Robust Design of a Clamping Mechanism Stroking under Or-
thogonal Experimental Condition

Robust design of a clamping mechanism stroking under orthogonal experimental condition
was investigated by Wu et al. [12], the controllable input parameters include, x1, x2 and x3;
while the machining errors of x1, x2 and x3 are taken as the noise variables; the stroking’s
movement region f is the optimal attribute with robustness around its desired target value f 0 of
525.00 mm.

Table 4 cites the data of the design of controllable input parameters and machining errors.
Table 5 cites the simulated consequences by using ADAMS technique. The designs L4(23) and
L9(34) were used for outer table and inner table of orthogonal experimental condition in Wu’s
study, individually.

Table 4 Designed levels of input parameters

Level
Controllable variable Noise variable

x1/mm x2/mm x3/◦ ∆x1/mm ∆x2/mm ∆x3/◦

1 369 300 95 –0.02 –0.02 –0.10
2 379 311 98 0.02 0.02 0.10
3 389 320 100

Table 5 Simulated results with L4(23) and L9(34) for outer and inner variables

Variable Inner table L9(34)
Outer table L4(23)

No./Variable
1 2 3 4

No. 1 2 3 4 1 1 2 2 ∆x1

x1 x2 x3 ex
1 2 1 2 ∆x2
1 2 2 1 ∆x3

No. Consequence, f / mm

1 1 1 3 1 507.554 508.469 508.313 507.652
2 1 2 2 2 523.847 524.858 524.688 523.947
3 1 3 1 3 534.906 536.03 535.845 535.007
4 2 1 2 3 488.239 489.234 489.087 488.334
5 2 2 1 1 501.651 502.747 502.589 501.747
6 2 3 3 2 552.237 553.185 553.015 552.338
7 3 1 1 2 468.327 469.392 469.253 468.419
8 3 2 3 3 521.454 522.404 522.253 521.552
9 3 3 2 1 531.098 532.139 531.979 531.169

Table 6 presents the membership values u of the stroking movement region f belonging to its
desired target value f 0 = 525 mm in case of δ = 57 mm, and their mean value ū.

Table 6 Membership values µ and its mean value µ̄

No. µ µ̄

1 0.6939 0.7100 0.7072 0.6956 0.7017
2 0.9798 0.9975 0.9945 0.9815 0.9883
3 0.8262 0.8065 0.8097 0.8244 0.8167
4 0.3551 0.3725 0.3699 0.3567 0.3636
5 0.5904 0.6096 0.6068 0.5921 0.5997
6 0.5222 0.5055 0.5085 0.5204 0.5141
7 0.0057 0.0244 0.0220 0.0074 0.0149
8 0.9378 0.9545 0.9518 0.9395 0.9459
9 0.8930 0.8748 0.8776 0.8918 0.8843

Table 7 shows the evaluated results of η, s and values of partial and overall preferable
probabilities, which reflect that the alternative candidate No. 2 exhibiting largest overall
preferable probability, therefore alternative candidate No. 2 can be the primary selection of this
robust design.

Table 8 is the range analysis of this assessment by means of overall preferable probability.
The consequences in Table 8 reflect the optimal configuration bing x11, x22, x32, it is exactly
the alternative candidate No. 2., and impact order of input variables is x2 > x1 > x3.
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Table 7 Evaluated results of η, s and partial and overall preferable probabilities

No. σu η̄ = 1− ū Su Pη̄ Psu Pt×102 Rank

1 0.0070 0.2983 0.2984 0.1204 0.1205 1.4505 5
2 0.0078 0.0117 0.0140 0.1698 0.1693 2.8758 1
3 0.0087 0.1833 0.1835 0.1403 0.1402 1.9663 4
4 0.0077 0.6364 0.6365 0.0621 0.0623 0.3873 8
5 0.0086 0.4003 0.4004 0.1028 0.1029 1.0584 6
6 0.0072 0.4859 0.4859 0.0881 0.0882 0.7771 7
7 0.0084 0.9851 0.9852 0.0020 0.0024 0.0005 9
8 0.0073 0.0541 0.0546 0.1625 0.1623 2.6385 2
9 0.0082 0.1157 0.1160 0.1519 0.1518 2.3057 3

Table 8 Range analysis of the total preferable probability

Level x1 x2 x3

1 2.0975 0.6128 1.008
2 0.7409 2.1909 1.986
3 1.6482 1.6830 1.553
Range 1.3566 1.5781 0.9778
Impact 2 1 3
Optimal conf. 1 2 2

4 Conclusion
This study indicates that the combination of PMOO with fuzzification is effective; the

introduction of “complement” of the membership value is a proper indicator to perform the
assessment of robust design in condition of “desired target being best”; all these procedures
consist of the regulation of fuzzification measure reasonably.
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