Open Access Peer-reviewed Review

From Fruit Flies to Genomics: Seventy-Five Years of Unraveling Spaceflight’s Impact on Life

Main Article Content

Aikaterini A. Tsiara
Vanessa Farsadaki corresponding author

Abstract

Over the past 75 years, studies on the biological effects of spaceflight has advanced from pioneering organism survival experiments to analyses integrating multi-omics technologies. This review adopts a historical perspective to synthesize these findings, with two core objectives: identifying recurrent mechanistic themes of space-induced biological alterations and evaluating strategies for preserving genomic stability during future deep-space exploration. The synergistic effects of weightlessness and ionizing radiation are primary drivers of heritable mutations, DNA damage clustering, and impaired repair fidelity. Longitudinal monitoring of astronauts, including twin-based comparative studies, has uncovered persistent molecular signatures such as altered methylation patterns, telomere dynamics changes, and immune regulation shifts. Targeted countermeasures developed include antioxidant supplementation, radioprotective pharmacology, genome editing, and synthetic biology-based therapeutics. Advances in portable sequencing and in-flight biomarker assessment enable real-time risk evaluation and adaptive health management during missions. As exploration extends to prolonged deep-space travel, ethical considerations like genetic data privacy and potential selection criteria gain prominence. This review integrates seven decades of cumulative discoveries, clarifying key targets and pathways for genomic stability protection. It provides a scientific foundation for personalized genomic monitoring, mechanistic risk assessment, and integrated prevention strategies, offering a roadmap for safeguarding biological integrity in future interplanetary expeditions.

Keywords
oxidative stress, telomere dynamics, DNA repair pathways, epigenetic regulation, genomic countermeasures, astronaut health, deep-space missions

Article Details

How to Cite
Tsiara, A. A., & Farsadaki, V. (2025). From Fruit Flies to Genomics: Seventy-Five Years of Unraveling Spaceflight’s Impact on Life. Journal of Molecular Astrobiology and Space Medicine Research, 1(1), 8-19. https://doi.org/10.25082/JMASMR.2025.01.002

References

  1. Aliyev, A. A., Mekhti-Zade, E. R., Mashinskiy, A. L., & Alekperov, U. K. (1986). Modification of cytogenetic and physiological effects of space flight factors by biologically active compounds (No. NASA-TM-87987). https://ntrs.nasa.gov/citations/19860019152
  2. Allen, R. G., Tresini, M., & McCready, S. (1995). Oxidative DNA base damage in hamster kidney cells cultured in microgravity. Journal of Cellular Physiology, 163(3), 419–425. https://doi.org/10.1002/jcp.1041630201
  3. Babu, B., Pawar, S., Mittal, A., Kolanthai, E., Neal, C. J., Coathup, M., & Seal, S. (2023). Nanotechnology enabled radioprotectants to reduce space radiation‐induced reactive oxidative species. WIREs Nanomedicine and Nanobiotechnology, 15(5). Portico. https://doi.org/10.1002/wnan.1896
  4. Beheshti, A., Cekanaviciute, E., Smith, D. J., & Costes, S. V. (2018). Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22613-1
  5. Canova, S., Fiorasi, F., Mognato, M., Grifalconi, M., Reddi, E., Russo, A., & Celotti, L. (2005). “Modeled Microgravity” Affects Cell Response to Ionizing Radiation and Increases Genomic Damage. Radiation Research, 163(2), 191–199. https://doi.org/10.1667/rr3304
  6. Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H., McIntyre, A. B. R., Dworkin, J. P., Lupisella, M. L., Smith, D. J., Botkin, D. J., Stephenson, T. A., Juul, S., Turner, D. J., Izquierdo, F., Federman, S., Stryke, D., Somasekar, S., Alexander, N., Yu, G., … Burton, A. S. (2017). Nanopore DNA Sequencing and Genome Assembly on the International Space Station. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-18364-0
  7. Chancellor, J., Scott, G., & Sutton, J. (2014). Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life, 4(3), 491–510. https://doi.org/10.3390/life4030491
  8. Cogoli, A. (1981). The effect of hypogravity on human lymphocyte activation. Aviation, Space, and Environmental Medicine, 52(1), 47–50.
  9. Cogoli, A. (1987). Fertilization of Xenopus laevis eggs in Space. In D. Moore & A. Cogoli (Eds.), Gravitational and Space biology at the cellular level (pp. 1–106). https://doi.org/10.1007/978-3-642-61099-8_1
  10. Bevelacqua, J. J., & Mortazavi, S. M. J. (2018). Commentary: Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02024
  11. Cucinotta, F. A., & Durante, M. (2006). Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. The Lancet Oncology, 7(5), 431–435. https://doi.org/10.1016/s1470-2045(06)70695-7
  12. Cucinotta, F. A., Schimmerling, W., Wilson, J. W., Peterson, L. E., Badhwar, G. D., Saganti, P. B., & Dicello, J. F. (2001). Space Radiation Cancer Risks and Uncertainties for Mars Missions. Radiation Research, 156(5), 682–688. https://doi.org/10.1667/0033-7587(2001)156[0682:srcrau]2.0.co;2
  13. da Silveira, W. A., Fazelinia, H., Rosenthal, S. B., Laiakis, E. C., Kim, M. S., Meydan, C., Kidane, Y., Rathi, K. S., Smith, S. M., Stear, B., Ying, Y., Zhang, Y., Foox, J., Zanello, S., Crucian, B., Wang, D., Nugent, A., Costa, H. A., Zwart, S. R., … Beheshti, A. (2020). Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell, 183(5), 1185-1201.e20. https://doi.org/10.1016/j.cell.2020.11.002
  14. Derobertmasure, A., Toh, L. S., Wotring, V. E., Williams, P. M., Morbidelli, L., Stingl, J. C., Vinken, M., Ramadan, R., Chhun, S., & Boutouyrie, P. (2025). Pharmacological countermeasures for long-duration space missions: addressing cardiovascular challenges and advancing space-adapted healthcare. European Journal of Pharmaceutical Sciences, 209, 107063. https://doi.org/10.1016/j.ejps.2025.107063
  15. Dieriks, B., De Vos, W., Meesen, G., Van Oostveldt, K., De Meyer, T., Ghardi, M., Baatout, S., & Van Oostveldt, P. (2009). High Content Analysis of Human Fibroblast Cell Cultures after Exposure to Space Radiation. Radiation Research, 172(4), 423–436. https://doi.org/10.1667/rr1682.1
  16. Durante, M., & Cucinotta, F. A. (2008). Heavy ion carcinogenesis and human space exploration. Nature Reviews Cancer, 8(6), 465–472. https://doi.org/10.1038/nrc2391
  17. Durante, M., Furusawa, Y., George, K., Gialanella, G., Greco, O., Grossi, G., ... Yang, T. C. (1996). Chromosomal aberrations in CHO cells during spaceflight. Radiation Research, 146(3), 314-318.
  18. Garrett-Bakelman, F. E., Darshi, M., Green, S. J., Gur, R. C., Lin, L., Macias, B. R., McKenna, M. J., Meydan, C., Mishra, T., Nasrini, J., Piening, B. D., Rizzardi, L. F., Sharma, K., Siamwala, J. H., Taylor, L., Vitaterna, M. H., Afkarian, M., Afshinnekoo, E., Ahadi, S., … Turek, F. W. (2019). The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 364(6436). https://doi.org/10.1126/science.aau8650
  19. Goodhead, D. T. (1994). Initial Events in the Cellular Effects of Ionizing Radiations: Clustered Damage in DNA. International Journal of Radiation Biology, 65(1), 7–17. https://doi.org/10.1080/09553009414550021
  20. Hellweg, C. E., & Baumstark-Khan, C. (2007). Getting ready for the manned mission to Mars: the astronauts’ risk from space radiation. Naturwissenschaften, 94(7), 517–526. https://doi.org/10.1007/s00114-006-0204-0
  21. Hollander, J., Gore, M., Fiebig, R., Mazzeo, R., Ohishi, S., Ohno, H., & Ji, L. L. (1998). Spaceflight Downregulates Antioxidant Defense Systems in Rat Liver. Free Radical Biology and Medicine, 24(2), 385–390. https://doi.org/10.1016/s0891-5849(97)00278-5
  22. Horneck, G., Rettberg, P., Kozubek, S., Baumstark-Khan, C., Rink, H., Schäfer, M., Schmitz, C., & Schafer, M. (1997). The Influence of Microgravity on Repair of Radiation-Induced DNA Damage in Bacteria and Human Fibroblasts. Radiation Research, 147(3), 376. https://doi.org/10.2307/3579347
  23. Indo, H. P., Majima, H. J., Terada, M., Suenaga, S., Tomita, K., Yamada, S., Higashibata, A., Ishioka, N., Kanekura, T., Nonaka, I., Hawkins, C. L., Davies, M. J., Clair, D. K. S., & Mukai, C. (2016). Changes in mitochondrial homeostasis and redox status in astronauts following long stays in space. Scientific Reports, 6(1). https://doi.org/10.1038/srep39015
  24. Kranz, A. R. (1986). Genetic and physiological damage induced by cosmic radiation on dry plant seeds during space flight. Advances in Space Research, 6(12), 135–138. https://doi.org/10.1016/0273-1177(86)90076-1
  25. Lewis, M. L., Stroud, D. A., Sams, C. F., & Cucinotta, F. A. (2016). The effects of spaceflight on human cells: Molecular pathways and genetic stability. Cellular and Molecular Life Sciences, 73(11–12), 2245–2260. https://doi.org/10.1007/s00018-016-2256-6
  26. Luxton, J. J., McKenna, M. J., Taylor, L. E., George, K. A., Zwart, S. R., Crucian, B. E., Drel, V. R., Garrett-Bakelman, F. E., Mackay, M. J., Butler, D., Foox, J., Grigorev, K., Bezdan, D., Meydan, C., Smith, S. M., Sharma, K., Mason, C. E., & Bailey, S. M. (2020). Temporal Telomere and DNA Damage Responses in the Space Radiation Environment. Cell Reports, 33(10), 108435. https://doi.org/10.1016/j.celrep.2020.108435
  27. Luxton, J. J., McKenna, M. J., Lewis, A. M., Taylor, L. E., Jhavar, S. G., Swanson, G. P., & Bailey, S. M. (2021). Telomere Length Dynamics and Chromosomal Instability for Predicting Individual Radiosensitivity and Risk via Machine Learning. Journal of Personalized Medicine, 11(3), 188. https://doi.org/10.3390/jpm11030188
  28. McLaughlin, M. F., Donoviel, D. B., & Jones, J. A. (2017). Novel Indications for Commonly Used Medications as Radiation Protectants in Spaceflight. Aerospace Medicine and Human Performance, 88(7), 665–676. https://doi.org/10.3357/amhp.4735.2017
  29. Mehta, S. K., Crucian, B. E., Stowe, R. P., Simpson, R. J., Ott, C. M., Sams, C. F., & Pierson, D. L. (2013). Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine, 61(1), 205–209. https://doi.org/10.1016/j.cyto.2012.09.019
  30. Miller, R. C., Martin, S. G., Hanson, W. R., Marino, S. A., & Hall, E. J. (1998). Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions. Advances in Space Research, 22(12), 1719–1723. https://doi.org/10.1016/s0273-1177(99)00037-x
  31. Mosesso, P., Schuber, M., Seibt, D., Schmitz, C., Fiore, M., Schinoppi, A., Penna, S., & Palitti, F. (2001). X-ray-induced chromosome aberrations in human lymphocytes in vitro are potentiated under simulated microgravity conditions (Clinostat). Physica Medica: PM: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics (AIFB), 17(Suppl 1), 264–266. https://doi.org/10.1016/S1120-1797(01)80126-8
  32. Nickerson, C. A., Ott, C. M., Mister, S. J., Morrow, B. J., Burns-Keliher, L., & Pierson, D. L. (2000). Microgravity as a Novel Environmental Signal Affecting Salmonella enterica Serovar Typhimurium Virulence. Infection and Immunity, 68(6), 3147–3152. https://doi.org/10.1128/iai.68.6.3147-3152.2000
  33. Nikjoo, H., O’Neill, P., Wilson, W. E., & Goodhead, D. T. (2001). Computational Approach for Determining the Spectrum of DNA Damage Induced by Ionizing Radiation. Radiation Research, 156(5), 577–583. https://doi.org/10.1667/0033-7587(2001)156[0577:cafdts]2.0.co;2
  34. Onofri, S., Moeller, R., Billi, D., Balsamo, M., Becker, A., Benvenuto, E., Cassaro, A., Catanzaro, I., Cockell, C. S., Desiderio, A., Ellis, T., Gonzáles-Pastor, J. E., Hahn, C., Leys, N., Leo, P., Maurel, M.-C., Pacelli, C., Pavletic, B., Ripa, C., … Surdo, L. (2025). Synthetic biology for space exploration. Npj Microgravity, 11(1). https://doi.org/10.1038/s41526-025-00488-7
  35. Overbey, E. G., Kim, J., Tierney, B. T., Park, J., Houerbi, N., Lucaci, A. G., Garcia Medina, S., Damle, N., Najjar, D., Grigorev, K., Afshin, E. E., Ryon, K. A., Sienkiewicz, K., Patras, L., Klotz, R., Ortiz, V., MacKay, M., Schweickart, A., Chin, C. R., … Mason, C. E. (2024). The Space Omics and Medical Atlas (SOMA) and international astronaut biobank. Nature, 632(8027), 1145–1154. https://doi.org/10.1038/s41586-024-07639-y
  36. Patel, Z. S., Brunstetter, T. J., Tarver, W. J., Whitmire, A. M., Zwart, S. R., Smith, S. M., & Huff, J. L. (2020). Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. Npj Microgravity, 6(1). https://doi.org/10.1038/s41526-020-00124-6
  37. Seylani, A., Galsinh, A. S., Tasoula, A., I, A. R., Camera, A., Calleja-Agius, J., Borg, J., Goel, C., Kim, J., Clark, K. B., Das, S., Arif, S., Boerrigter, M., Coffey, C., Szewczyk, N., Mason, C. E., Manoli, M., Karouia, F., Schwertz, H., … Tulodziecki, D. (2024). Ethical considerations for the age of non-governmental space exploration. Nature Communications, 15(1). https://doi.org/10.1038/s41467-023-44357-x
  38. Sishc, B. J., Zawaski, J., Saha, J., Carnell, L. S., Fabre, K. M., & Elgart, S. R. (2022). The Need for Biological Countermeasures to Mitigate the Risk of Space Radiation-Induced Carcinogenesis, Cardiovascular Disease, and Central Nervous System Deficiencies. Life Sciences in Space Research, 35, 4–8. https://doi.org/10.1016/j.lssr.2022.06.003
  39. Suwanprakorn, N., Shin, K.-J., Tran, P. H., Truong, N. T., Kim, K.-S., Yoo, H. J., & Yang, S.-G. (2024). Transcriptomic analysis of embryonic mouse hypothalamic N38 cells exposed to high-energy protons and/or simulated microgravity. Heliyon, 10(20), e39533. https://doi.org/10.1016/j.heliyon.2024.e39533
  40. Thirsk, R., Kuipers, A., Mukai, C., & Williams, D. (2009). The space-flight environment: the International Space Station and beyond. Canadian Medical Association Journal, 180(12), 1216–1220. https://doi.org/10.1503/cmaj.081125
  41. Vernós, I., González-Jurado, J., Calleja, M., & Marco, R. (1989). Microgravity effects on the oogenesis and development of embryos of Drosophila melanogaster laid in the Space Shuttle during the Biorack experiment (ESA). The International Journal of Developmental Biology, 33(2), 213–226. https://doi.org/10.1387/ijdb.89330213
  42. Wang, W., Yu, Z., & Su, W. (2008). textitIon irradiation induced direct damage to DNA [Preprint]. arXiv:0807.0079 [physics.bio-ph]. https://arxiv.org/abs/0807.0079
  43. Zeitlin, C., Hassler, D. M., Cucinotta, F. A., Ehresmann, B., Wimmer-Schweingruber, R. F., Brinza, D. E., Kang, S., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Posner, A., Rafkin, S., & Reitz, G. (2013). Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory. Science, 340(6136), 1080–1084. https://doi.org/10.1126/science.1235989