Open Access

Peer-reviewed

Research Article

Main Article Content

Lin Li
Huimin Ren
Bohui Wei
Hui Li
Chenzhong Yaocorresponding author

Abstract

Light rare earth (La, Ce, Pr) oxides with 3D superstructure are a kind of particularly interesting materials because of their unique optical, electronic, magnetic, and catalytic properties arising from the confinement of the 4f electrons. Here, we report a rapid and simple electrodeposition methodology for the assembly of three-dimensional (3D) superstructures of La2O3, CeO2, and Pr2O3 nanobelts using the nitrates based electrolytes with NH4Ac, and KCl as additives. The removal efficiencies of Congo red solution for La2O3, CeO2, and Pr2O3 nano superstructures can reach 68%, 76% and 71% in dark. But CeO2 show better removal efficiency than La2O3 and Pr2O3 under light irradiation.

Keywords
light rare earth oxide, superstructure, electrodeposition, waste water treatment

Article Details

How to Cite
Li, L., Ren, H., Wei, B., Li, H., & Yao, C. (2020). Controlled growth and waste water treatment of light rare earth (La, Ce, Pr) oxides with 3D superstructures. Chemical Reports, 2(1), 118-123. https://doi.org/10.25082/CR.2020.01.001

References

  1. Wei M, Gao L, Li J, et al., Activation of peroxymonosulfate by graphitic carbon nitride loadedon activated carbon for organic pollutants degradation. Journal of Hazardous Materials, 2016, 316: 60-68. https://doi.org/10.1016/j.jhazmat.2016.05.031
  2. Lu XH, Zheng DZ, Zhang P, et al. Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications. Chemical Communications, 2010, 46(41): 7721-7723. https://doi.org/10.1039/c0cc01854f
  3. Singh J, Roychoudhury A, Srivastava M, et al. A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection. JJournal of Materials Chemistry, 2013, 1(35): 4493-4503. https://doi.org/10.1039/c3tb20690d
  4. Yang ML and Song YM. Synthesis and investigation of water-soluble anticoagulant warfarin/ferulic acid grafted rare earth oxide nanoparticle materials, RSC Advances, 2015, 5(23): 17824-17833. https://doi.org/10.1039/C4RA14633F
  5. Chen HY, Hu J, Zhang J, et al. Separation of particles of rare earth oxides by dielectrophoresis, Journal of Materials Science, 2016, 852: 542-546. https://doi.org/10.4028/www.scientific.net/MSF.852.542
  6. Tsujimoto S, Masui T and Imanaka N. Fundamental aspects of rare earth oxides affecting direct NO decomposition catalysis. European Journal of Organic Chemistry, 2015, 2015(9): 1524-1528. https://doi.org/10.1002/ejic.201403061
  7. Zhang SB and Yao C. Controllable growth of Ni-La(OH)3 nanotube arrays and their application in wastewater treatment. Materials Letters, 2013, 94: 143-146. https://doi.org/10.1016/j.matlet.2012.12.040
  8. Gao Y and Tang ZY. Design and application of inorganic nanoparticle superstructures: current status and future challenges. Small, 2011, 7(15): 2133-2146. https://doi.org/10.1002/smll.201100474
  9. Han D, Song P, Zhang HH, et al. Flower-like In2O3 hierarchical nanostructures: synthesis, characterization, and gas sensing properties. RSC Advances, 2014, 4(91): 50241-50248. https://doi.org/10.1039/C4RA10497H
  10. Li W, Xie SL, Li MY, et al. CdS/CeOx heterostructured nanowires for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2013, 1(13): 4190-4193. https://doi.org/10.1039/c3ta10394c
  11. Azimi G, Dhiman R, Kwo HM, et al. Hydrophobicity of rare-earth oxide ceramics. Nature Materials, 2013, 12: 315-320. https://doi.org/10.1038/nmat3545
  12. Dong B, Cao BS, He YY, et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Advanced Materials, 2012, 24(15): 1987-1993. https://doi.org/10.1002/adma.201200431
  13. Yuan L, Huang KK, Hou CM, et al. Hydrothermal synthesis and magnetic properties of ReFe0:5Cr0:5O3 (RE = La, Tb, Ho, Er, Yb, Lu and Y) perovskite. New Journal of Chemistry, 2014, 38(3): 1168-1172. https://doi.org/10.1039/c3nj01046e
  14. Si R, Zhang YW, You LP, et al. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angewandte Chemie International Edition, 2005, 44(21): 3256-3260. https://doi.org/10.1002/anie.200462573
  15. Su LT, Ye J, Karuturi SK, et al. High index, reactive facet-controlled synthesis of one-dimensional single crystalline rare earth hydroxide nanobelts. CrystEngComm, 2011, 13(17): 5367-5373. https://doi.org/10.1039/c1ce05357d
  16. Nguyen TD. From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale, 2013, 5(20): 9455-9482. https://doi.org/10.1039/c3nr01810e
  17. Arurault L, Daffos B and Sauvage FX. Nanocrystallized ceria-based coatings prepared by electrochemistry on TA6V titanium alloy. Materials Research Bulletin, 2008, 43(4): 796-805. https://doi.org/10.1016/j.materresbull.2007.07.019
  18. Li GR, Qu DL, Yu XL, et al. Microstructural Evolution of CeO2 from Porous Structures to Clusters of Nanosheet Arrays Assisted by Gas Bubbles via Electrodeposition. Langmuir, 2008, 24(8): 4254-4259. https://doi.org/10.1021/la7037526
  19. Sivaraman KM, Ergenemana O, Pan S, et al. Electrodeposition of cobalt-yttrium hydroxide/oxide nanocomposite films from particlefree aqueous baths containing chloride salts. Electrochimica Acta, 2011, 56(14): 5142-5150. https://doi.org/10.1016/j.electacta.2011.03.058
  20. Li GR, Qu DL and Tong YX. Facile fabrication of magnetic single-crystalline ceria nanobelts. Electrochemistry Communications, 2008, 10(1): 80-84. https://doi.org/10.1016/j.elecom.2007.11.003
  21. Golden TD and Wang AQ. Anodic electrodeposition of cerium oxide thin films II. mechanism studies. Journal of The Electrochemical Society, 2003, 150(9): C621-624. https://doi.org/10.1149/1.1596165
  22. Li FB and Thompson GE. In situ atomic force microscopy studies of the deposition of cerium oxide films on regularly corrugated surfaces. Journal of The Electrochemical Society, 1999, 146(5): 1809-1815. https://doi.org/10.1149/1.1391848
  23. Cao G. Nanostructures and nanomaterials, Imperial college press, London, U.K. 2004.
  24. Guo CF, Cao S, Zhang J, et al. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks. Journal of the American Chemical Society, 2011, 133(21): 8211-8215. https://doi.org/10.1021/ja111000m
  25. Yao CZ, Li ZP, Wei BH, et al. Hydrogenated ceria nanorods and nanobelts for photoelectrochemical application. Journal of Power Sources, 2015, 283: 478-483. https://doi.org/10.1016/j.jpowsour.2015.02.146
  26. Zhang C, Zhang XY, Wang YC, et al. Facile electrochemical synthesis of CeO2 hierarchical nanorods and nanowires with excellent photocatalytic activities. New Journal of Chemistry, 2014, 38(6): 2581-2586. https://doi.org/10.1039/C4NJ00214H