Open Access

Peer-reviewed

Review

Main Article Content

Samar S. Elbaramawi
Mohamed E. El-Sadek
Mohamed M. Baraka
Lobna M. Abdel-Aziz
Mahmoud Mohammed Sebaiycorresponding author

Abstract

In this literature review, we will introduce most reported methods that have been developed for determination of certain anti-ulcer drugs such as Ranitidine hydrochloride, Famotidine, Omeprazole, Pantoprazole sodium, Tinidazole and Doxycycline hyclate in their pure form, combined form with other drugs, combined form with degradation products, and in biological samples.

Keywords
Ranitidine hydrochloride, Famotidine, Omeprazole, Pantoprazole sodium, Tinidazole, Doxycycline hyclate

Article Details

How to Cite
Elbaramawi, S., El-Sadek, M., Baraka, M., Abdel-Aziz, L., & Sebaiy, M. (2020). Instrumental analysis of some anti-ulcer drugs in different matrices. Chemical Reports, 2(1), 156-172. https://doi.org/10.25082/CR.2020.01.005

References

  1. Graham L. Patrick. An introduction to Medicinal Chemistry, 5th edition, 2013.
  2. The United States Pharmacopoeia, XXXII, The National Formulary, United States Pharmacopeial Convention, Inc, 2010.
  3. Sweetman SC. Martindale-The Complete Drug Reference, 37th edition, The Pharmaceutical Press, London. 2011.
  4. The British Pharmacopoeia, HM Stationery Office, London, 2011.
  5. Perez-Ruiz T, Martinez-Lozano C, Tomas V, et al. Flowinjection extraction-spectrophotometric method for the determination of ranitidine in pharmaceutical preparations. Journal of Pharmaceutical and biomedical analysis, 2001, 26(4): 609-615. https://doi.org/10.1016/S0731-7085(01)00489-7
  6. Kelani KM, Aziz AM, Hegazy MA, et al. Uvspectrophotometric stability indicating methods for the quantitative determination of cimetidine, famotidine, and ranitidine hydrochloride in the presence of their oxidative derivatives. Analytical Letters, 2002, 35(6): 1055-1073. https://doi.org/10.1081/AL-120004555
  7. Basavaiah K and Nagegowda P. Determination of ranitidine hydrochloride in pharmaceutical preparations by titrimetry and visible spectrophotometry using bromate and acid dyes. IL Farmaco, 2004, 59: 147-153. https://doi.org/10.1016/j.farmac.2003.11.012
  8. Basavaiah K and Nagegowda P. Determination of ranitidine using potassium iodate and dichlorofluorescein. Indian Journal of Chemical Technology, 2004, 11(1): 11-16.
  9. Basavaiah K, Nagegowda P and Ramakrishna V. Determination of drug content of pharmaceuticals containing ranitidine by titrimetry and spectrophotometry in nonaqueous medium. Science Asia, 2005, 31: 207-214. https://doi.org/10.2306/scienceasia1513-1874.2005.31.207
  10. Walash IM, Sharaf El-Din KM, Metwally EM, et al. Kinetic Spectrophotometric Determination of Ranitidine. Journal of the Chinese Chemical Society, 2013, 51(3): 523-530. https://doi.org/10.1002/jccs.200400079
  11. Basavaiah K and Somashekar BC. Quantitation of ranitidine in pharmaceuticals by titrimetry and spectrophotometry using potassium dichromate as the oxidimetric reagent. Journal of the Iranian Chemical Society, 2007, 4(1): 78-88. https://doi.org/10.1007/BF03245806
  12. Darwish AI, Hussein AS, Mahmoud A, et al. A sensitive spectrophotometric method for the determination of H2- receptor antagonists by means of N-bromosuccinimide and p-aminophenol. Acta Pharm, 2008, 58: 87-97. https://doi.org/10.2478/v10007-007-0047-z
  13. Narayana B, Ashwini K, Divya NS, et al. Spectrophotometric determination of ranitidine hydrochloride based on the reaction with p-dimethylaminobenzaldehyde. Eurasian Journal of Analytical Chemistry, 2010, 5(1): 63-72.
  14. Narayana B, Veena K and Divya NS. New reagents for the spectrophotometric determination of ranitidine hydrochloride. Ecletica Quimica, 2010, 35(3): 109-115. https://doi.org/10.1590/S0100-46702010000300010
  15. Khalil MM, Frag EY, Mohamed GG, et al. Spectrophotometric studies using ion-pair formations of Ranitidine hydrochloride in pure and in Pharmaceutical forms with some dyestuff reagents. Journal of Applied Pharmaceutical Science, 2013, 3(4): 92-98.
  16. Abdel Kader SA, Abdel Kawy M and Nebsen M. Spectrophotometric and Spectrofluorimetric Determination of Famotidine and Ranitidine Using 1,4-Benzoquinone Reagent. Analytical Letters, 1999, 32(7): 1403-1419. https://doi.org/10.1080/00032719908542906
  17. Ulu ST and Cakar MB. A sensitive spectrofluorimetric method for the determination of ranitidine hydrochloride in pharmaceutical preparation. Optics and spectroscopy, 2012, 113(2): 126-130. https://doi.org/10.1134/S0030400X12080164
  18. Ho C, Huang HM, Hsu SY, et al. Simultaneous highperformance liquid chromatographic analysis for famotidine, ranitidine HCl, cimetidine, and nizatidine in commercial products. Drug development and industrial pharmacy, 1999, 25(3): 379-385. https://doi.org/10.1081/DDC-100102186
  19. Novakovic J. High-performance thin-layer chromatography for the determination of ranitidine hydrochloride and famotidine in pharmaceuticals. Journal of Chromatography A, 1999, 846(1-2): 193-198. https://doi.org/10.1016/S0021-9673(99)00510-5
  20. Kelani MK, Aziz AM, Hegazy MA, et al. Determination of Cimetidine, Famotidine, and Ranitidine Hydrochloride in the Presence of Their Sulfoxide Derivatives in Pure and Dosage Forms by High-Performance Thin-Layer Chromatography and Scanning Densitometry. Journal of AOAC international, 2002, 85(5): 1015-1020. https://doi.org/10.1093/jaoac/85.5.1015
  21. Zendelovska D and Stafilov T. Development of an HPLC method for the determination of ranitidine and cimetidine in human plasma following SPE. Journal of Pharmaceuticals and biomedical analysis, 2003, 33(2): 165-173. https://doi.org/10.1016/S0731-7085(03)00265-6
  22. Nascimento TG, Oliveira Ede J and Macedo RO. Simultaneous determination of ranitidine and metronidazole in human plasma using high performance liquid chromatography with diode array detection. Journal of Pharmaceuticals and biomedical analysis, 2004, 37(4): 777-783. https://doi.org/10.1016/j.jpba.2004.11.042
  23. Kokoletsi MX, Kafkala S and Tsiaganis M. A novel gradient HPLC method for simultaneous determination of ranitidine, methylparaben and propylparaben in oral liquid pharmaceutical formulation. Journal of Pharmaceuticals and Biomedical analysis, 2005, 38(4): 763-767. https://doi.org/10.1016/j.jpba.2005.02.022
  24. Arayne SM, Sultana N, Zuberi HM, et al. Simultaneous Determination of Metformin, Cimetidine, Famotidine, and Ranitidine in Human Serum and Dosage Formulations Using HPLC with UV Detection. Journal of Chromatographic Science, 2010, 48(9): 721-725. https://doi.org/10.1093/chromsci/48.9.721
  25. Sharma N, Rao SS, Kumar DA, et al. A Validated Stability- Indicating Liquid-Chromatographic Method for Ranitidine Hydrochloride in Liquid Oral Dosage Form. Scientia Pharmaceutica, 2011, 79: 309-322. https://doi.org/10.3797/scipharm.1101-06
  26. Ulu ST and Tuncel M. A Sensitive and Rapid Determination of Ranitidine in Human Plasma by HPLC with Fluorescence Detection and its Application for a Pharmacokinetic Study. Journal of Chromatographic Science, 2012, 50(4): 301-306. https://doi.org/10.1093/chromsci/bms003
  27. Majidano AS and Khuhawar YM. GC Determination of Famotidine, Ranitidine, Cimetidine, and Metformin in Pharmaceutical Preparations and Serum Using Methylglyoxal as Derivatizing Reagent. Chromatographia, 2012, 75(21-22): 1311-1317. https://doi.org/10.1007/s10337-012-2321-6
  28. El-Bayoumi AE, El-Shanawany A, El-Sadek EM, et al. Stability indicating spectrodensitometric determination of ranitidine hydrochloride using linear and non-linear regression. Journal of Pharmaceutical and Biomedical Analysis, 1999, 21(4): 867-873. https://doi.org/10.1016/S0731-7085(99)00146-6
  29. Wu SM, Ho YH,Wu HL, et al. Simultaneous determination of cimetidine, famotidine, nizatidine, and ranitidine in tablets by capillary zone electrophoresis. Electrophoresis, 2001, 22(13): 2758-2761. https://doi.org/10.1002/1522-2683(200108)22:13h2758:: AID-ELPS2758i3.0.CO;2-P
  30. Issa YM, Badawy SS and Mutair AA. Ion-Selective Electrodes for Potentiometric Determination of Ranitidine Hydrochloride, Applying Batch and Flow Injection Analysis Techniques. Analytical Sciences, 2005, 21(12): 1443-1448. https://doi.org/10.2116/analsci.21.1443
  31. Tang YH,Wang NN, Xiong XY, et al. A new sensitive flowinjection chemiluminescence method for the determination of H(2)-receptor antagonists. Luminescence, 2007, 22(4): 343-348. https://doi.org/10.1002/bio.969
  32. Frag EY, Mohamed AM, Mohamed GG, et al. Construction and Performance Characterization of Ion Selective Electrodes for Potentiometric Determination of Ranitidine Hydrochloride in Pharmaceutical Preparations and Biological Fluids. International Journal of Electrochemical Science, 2011, 6: 3508-3524.
  33. Chang YX, Qiu YQ, Du LM, et al. Determination of ranitidine, nizatidine, and cimetidine by a sensitive fluorescent probe. Analyst, 2011, 136(20): 4168-4173. https://doi.org/10.1039/c1an15078b
  34. Mohamed GG, Khalilb MM, Frag EY, et al. Potentiometric determination of ranitidine hydrochloride utilizing modified carbon paste electrodes. International Journal of current Pharmaceutical Research, 2013, 5(2): 72-79.
  35. Chukwwurah BK and Ajali U. Quantitative determination of famotidine through charge-transfer complexation with chloranilic acid. Bollettino Chimico Farmaceutica, 2001, 140(5): 354-360.
  36. Al-Ghannam S. Spectrophotometric Determination of Three Anti-Ulcer Drugs Through Charge-Transfer Complexation. Journal of AOAC International, 2002, 85(5): 1003-1008. https://doi.org/10.1093/jaoac/85.5.1003
  37. Amin AS, Shama SA, Ahmed IS, et al. Spectrophotometric determination of famotidine through oxidation with nbromosuccinimide and cerric sulphate. Analytical Letters, 2002, 35(1): 1851-1862. https://doi.org/10.1081/AL-120013588
  38. Alazazy MS, Shalaby A, Elbolkiny MN, et al. Spectrophotometric determination of aciclovir, ceftazidime pentahydrate, famotidine and isoxsuprine hydrochloride by ternary complex formation with eosin and Cu (II). Chinese Pharmaceutical Journal, 2003, 55(6): 481-490.
  39. Nafisur R and Kashif M. Application of ninhydrin to spectrophotometric determination of famotidine in drug formuiations. IL Farmaco, 2003, 58(10): 1045-1050. https://doi.org/10.1016/S0014-827X(03)00184-8
  40. Ayad MM, Shalaby A, Abdellatef HE, et al. New colorimetric methods for the determination of trazodone HCl, famotidine, and diltiazem HCl in their pharmaceutical dosage forms. Analytical and Bioanalytical Chemistry, 2003, 376(5): 710-714. https://doi.org/10.1007/s00216-003-1954-6
  41. Koricanac Z, Jovanovic T, Petkovic J, et al. Spectrophotometric investigation of famotidine-Pd(II) complex and its analytical application in drug analysis. Journal of the Serbian Chemical Society, 2004, 69(6): 485-491. https://doi.org/10.2298/JSC0406485K
  42. Walash MI, Sharaf-El-Din MK, Metwally ME, et al. Kinetic Spectrophotometric Determination of Famotidine in Pharmaceutical Preparations. Journal of Chinese Society, 2005, 52: 71-76. https://doi.org/10.1002/jccs.200500011
  43. Reddy NR, Prabhavathi K, Bhaskar RY, et al. A new spectrophotometric determination of famotidine from tablets. Indian Journal of Pharmaceutical Science, 2006, 68: 645-647. https://doi.org/10.4103/0250-474X.29637
  44. Darwish IA, Hussein SA, Mohmoud AM, et al. Sensitive Indirect Spectrophotometric Method for Determination of H2- Receptor Antagonists in Pharmaceutical Formulations. International Journal of Biomedical Science, 2007, 3(2): 124- 131.
  45. Basavaih K and Zenita O. Spectrophotometric determination of famotidine using sulphonphthalein dyes. Quimica Nova, 2011, 34(5). https://doi.org/10.1590/S0100-40422011000500002
  46. Dipali DT, Sacchidanand RG, Aditi RS, et al. Spectrophotometric Simultaneous Determination of Famotidine and Domperidone in Combined Tablet Dosage Form by Ratio Derivative and Area under Curve Method. Der Pharmacia Sinica, 2011, 2(3): 60-66.
  47. Araujo L, Perdomo N, Montiel R, et al. Spectrophotometric methods for the determination of famotidine in drug formulations. International Journal of Advances in Pharmaceutical analysis, 2012, 2(1): 24-29. https://doi.org/10.7439/ijapa.v2i1.15
  48. Walash MI, El-Brashy A, El-Enany N, et al. Spectrofluorimetric Determination of Famotidine in Pharmaceutical Preparations and Biological Fluids through Ternary Complex Formation with Some Lanthanide Ions: Application to Stability Studies. International Journal of Biomedical Science, 2009, 5(2): 158-168.
  49. Walash MI, El-Brashy A, El-Enany N, et al. Spectrofluorimetric determination of famotidine in pharmaceutical preparations and biological fluids through reaction with 1,10 - phenanthraquinone. Application to stability studies. Journal of fluorescence, 2009, 19(2): 333-344. https://doi.org/10.1007/s10895-008-0421-3
  50. Dowling TC and Frye RF. Determination of famotidine in human plasma and urine by high-performance liquid chromatography. Journal of chromatography B: Biomedical sciences and Applications, 1999, 732(1): 239-243. https://doi.org/10.1016/S0378-4347(99)00269-8
  51. Zhong L, Eisenhandler R and Yeh KC. Determination of famotidine in low-volume human plasma by normal-phase liquid chromatography/tandem mass spectrometry. Journal of mass spectrometry, 2001, 36(7): 736-741. https://doi.org/10.1002/jms.176
  52. Eva A, Filipova K, Nobilis M, et al. Selective determination of famotidine in human plasma by high performance liquid chromatography in alkaline media with solid phase extraction. Journal of Separation Science, 2003, 26(8): 722-726. https://doi.org/10.1002/jssc.200301377
  53. Helali N, Darghouth F and Monser L. RP-HPLC Determination of Famotidine and its Potential Impurities in Pharmaceuticals. Chromatographia, 2004, 60(7-8): 455-460. https://doi.org/10.1365/s10337-004-0386-6
  54. Zarghi A, Shafaati A, Froutan SM, et al. Development of a rapid HPLC method for determination of famotidine in human plasma using a monolithic column. Journal of Pharamceutical and Biomedical analysis, 2005, 39(3-4): 677-680. https://doi.org/10.1016/j.jpba.2005.03.029
  55. Campbell AN and Sherma J. Determination of famotidine in acid reduction tablets by HPTLC and videodensitometry of fluorescence quenched zones. Journal of Liquid Chromatography and Related Technologies, 2003, 26(16): 2719-2727. https://doi.org/10.1081/JLC-120024542
  56. Reddy YR, Kumar KK, Reddy M, et al. RP-UPLC method development and validation for the simultaneous estimation of ibuprofen and famotidine in pharmaceutical dosage form. Pharmaceutical methods, 2012, 3(2): 57-61. https://doi.org/10.4103/2229-4708.103873
  57. Ayad MM, Shalaby A, Abdellatef HE, et al. Potentiometric determination of famotidine in pharmaceutical formulations. Journal of pharmaceutical and biomedical analysis, 2002, 29(1-2): 247-254. https://doi.org/10.1016/S0731-7085(02)00024-9
  58. Helali N, Adhoum N and Monser L. Flow injection kinetic spectrophotometric method for the determination of famotidine in pharmaceutical preparations. Journal of Flow Injection Analysis, 2005, 22(2): 129-133.
  59. Tiwari DC, Rajeev J and Gaurav S. Electrochemical behaviour of famotidine in pharmaceutical formulation at composite polymer membrane electrode. Indian Journal of Chemical Technology, 2008, 15: 472-475.
  60. El-Kousy NM and Bebawy LI. Stability-indicating methods for determining omeprazole and octylonium bromide in the presence of their degradation products. Journal of AOAC International, 1999, 82(3): 599-606. https://doi.org/10.1093/jaoac/82.3.599
  61. Wahbi AA, Abdel-Razak O, Gazy AA, et al. Spectrophotometric determination of omeprazole, lansoprazole and pantoprazole in pharmaceutical formulations. Journal of Pharmaceutical and biomedical analysis, 2002, 30(4): 1133- 1142. https://doi.org/10.1016/S0731-7085(02)00464-8
  62. Salama F, El-Abasawy N, Abdel-Razeq SA, et al. Validation of the spectrophotometric determination of omeprazole and pantoprazole sodium via their metal chelates. Journal of Pharmaceutical and biomedical analysis, 2003, 33(3): 411- 421. https://doi.org/10.1016/S0731-7085(03)00233-4
  63. Karljikovic-Rajic K, Novovic D, Marinkovic V, et al. Firstorder UV-derivative spectrophotometry in the analysis of omeprazole and pantoprazole sodium salt and corresponding impurities. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32(4-5): 1019-1027. https://doi.org/10.1016/S0731-7085(03)00204-8
  64. Syed AA and Syeda A. Spectrophotometric determination of certain benzimidazole proton pump inhibitors. Indian Pharmaceutical Sciences, 2008, 70: 507-510. https://doi.org/10.4103/0250-474X.44605
  65. Ahmed SS, Santosh RK, Simpi CC, et al. Visible spectrophotometric methods for the estimation of losartan potassium and omeprazole in single component pharmaceutical formulations. International Journal of Pharm Tech Research, 2009, 1(4): 1247-1250.
  66. Bhandage A, Bhosale A, Kasture A, et al. Extractive Spectrophotometric Determination of Omeprazole in Pharmaceutical Preparations. Tropical Journal of Pharmaceutical Research, 2009, 8(5): 449-454. https://doi.org/10.4314/tjpr.v8i5.48089
  67. Mahmoud AM. New Sensitive Kinetic Spectrophotometric Methods forDetermination of Omeprazole in Dosage Forms. International Journal of Analytical Chemistry, 2009, Article ID 307045. https://doi.org/10.1155/2009/307045
  68. Bhuva SD and Patel MM. Spectrophotometric simultaneous estimation of Omeprazole and Cinitapride in bulk and formulation. Asian Journal of Pharmaceutical and Clinical Research, 2012, 5(4): 40-42.
  69. Lotfy HM and Abdel-Monem HM. Comparative study of novel spectrophotometric methods manipulating ratio spectra: an application on pharmaceutical ternary mixture of omeprazole, tinidazole and clarithromycin. Spectrochimica Acta. Part A, Molecular and Bimolecular spectroscopy, 2012, 96: 259-270. https://doi.org/10.1016/j.saa.2012.04.095
  70. Ashour S and Bayram R. Validated Spectrophotometric Method for Determination of Some Benzimidazole Derivatives in Pharmaceutical Formulations Using 1,2- naphthoquinone-4-sulphonate. International research journal of Pure and Applied chemistry, 2013, 3(2): 118-132. https://doi.org/10.9734/IRJPAC/2013/3160
  71. Shaghaghi M, Manzoori JL and Jouyban A. Indirect spectrofluorimetric determination of omeprazole by its quenching effect on the fluorescence of Tb3+-1,10-phenanthroline complex in presence of bis (2-ethylhexyl) sulfosuccinate sodium in caps. DARU Journal of Pharmaceutical Sciences, 2008, 16(4): 256-262.
  72. Sluggett GW, Stong JD, Adams JH, et al. Omeprazole determination using HPLC with coulometric detection. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25(3-4): 357-361. https://doi.org/10.1016/S0731-7085(00)00519-7
  73. El-sherif ZA, Mohamed OA, El-Bardicy MG, et al. Reversed-Phase High Performance Liquid Chromatographic Method for the Determination of Lansoprazole, Omeprazole and Pantoprazole Sodium Sesquihydrate in Presence of Their Acid-Induced Degradation Products. Chemical Pharmaceutical Bulletin, 2006, 54(6): 814-818. https://doi.org/10.1248/cpb.54.814
  74. Murakami FS, Cruz AP, Pereira RN, et al. Development and validation of a RP-HPLC method to quantify omeprazole in delayed release tablets. Journal of Liquid Chromatography and related Technologies, 2007, 30(1): 113-121. https://doi.org/10.1080/10826070601034485
  75. Raval PB, Puraik M, Wadher SJ, et al. A validated HPTLC method for determination of ondansetron in combination with omeprazole or rabeprazole in solid dosage form. Indian Journal of Pharmaceutical Sciences, 2008, 70(3): 386-390. https://doi.org/10.4103/0250-474X.43011
  76. Dedania Z, Dedania R, Karkhanis V, et al. RP-HPLC method for simultaneous estimation of omeprazole and ondansetron in combined dosage forms. Asian Journal of Research Chemistry, 2009, 2(2): 108-111.
  77. Rezk NL, Briwn KC and Kashuba AM. A simple and sensitive bioanalytical assay for simultaneous determination of omeprazole and its three major metabolites in human blood plasma using RP-HPLC after a simple liquid-liquid extraction procedure. Journal of Chromatography B, 2006, 844: 314-321. https://doi.org/10.1016/j.jchromb.2006.07.047
  78. Nahar K, Joti J, Ullah MA, et al. A simple RPHPLC method for the determination of omeprazole in human serum and urine: Validation and application in pharmacokinetic study. Journal of Pharmaceutical Sciences, 2009, 8(2): 123-130. https://doi.org/10.3329/dujps.v8i2.6026
  79. Borges KB, Duran-Patron R, Sanchez AJ, et al. Fast HPLC Analysis of Omeprazole, 5-Hydroxyomeprazole and Omeprazole Sulfone in Liquid Culture Medium using a Monolithic Column for Application in Biotransformation Studies with Fungi. Journal of Brazalian Chemical Society, 2011, 22(6): 1140-1149. https://doi.org/10.1590/S0103-50532011000600020
  80. Darwish KM, Salama I, Mostafa S, et al. RP-HPLC/precolumn derivatization for analysis of omeprazole, tinidazole, doxycycline and clarithromycin. Journal of Chromatographic Science, 2012, 51(6): 566-576. https://doi.org/10.1093/chromsci/bms167
  81. Walash MI, Ibrahim F and Abo El-Abass S. Isocratic RPHPLC method for separation and simultaneous determination of ternary mixture of omeprazole, tinidazole and doxycycline in their raw materials and combined capsules. Analytical methods, 2013, 5(19): 5105-5111. https://doi.org/10.1039/c3ay41029c
  82. Radi A. Anodic voltammetric assay of lansoprazole and omeprazole on a carbon paste electrode. Journal of pharmceutical and Biomedical Analysis, 2003, 31(7): 1007-1012. https://doi.org/10.1016/S0731-7085(02)00707-0
  83. Yan JL. Electrochemical behavior and the determination of omeprazole using glassy carbon electrode. Journal of Applied Sciences, 2006, 6(7): 1625-1627. https://doi.org/10.3923/jas.2006.1625.1627
  84. Qaisi AM, Tutunji MF and Tutunji LF. Acid decomposition of omeprazole in the absence of thiol: a differential pulse polarographic study at the static mercury drop electrode (SMDE). Journal of Pharmaceutical Sciences, 2006, 95(2): 384-391. https://doi.org/10.1002/jps.20546
  85. Nevado JB, Penalvo GC and Dorado RR. Method development and validation for the separation and determination of omeprazole enantiomers in pharmaceutical preparations by capillary electrophoresis. Analytica Chimica Acta, 2005, 533(2): 127-133. https://doi.org/10.1016/j.aca.2004.11.018
  86. Perez-Ruiz T, Martinez-Lozano C, Sanz A, et al. Determination of omeprazole, hydroxyomeprazole and omeprazole sulfone using automated solid phase extraction and micellar electrokinetic capillary chromatography. Journal of pharmaceutical and Biomedical Analysis, 2006, 42(1): 100-106. https://doi.org/10.1016/j.jpba.2005.09.029
  87. Shu-hua H. Determination of Omeprazole by Flow Injection Combined with Chemiluminescence. Journal of Analytical Sciences, 2007, 23(1): 51-53.
  88. Fiqueiras A, Sarraquca JM, Pais AA, et al. The role of L-arginine in inclusion complexes of omeprazole with cyclodextrins. AAPS Pharm SciTech, 2010, 11(1): 233-240. https://doi.org/10.1208/s12249-009-9375-2
  89. Moustafa AA. Spectrophotometric methods for the determination of lansoprazole and pantoprazole sodium sesquihydrate. Journal of Pharmaceutical and Biomedical Analysis, 2000, 22: 45-48. https://doi.org/10.1016/S0731-7085(99)00275-7
  90. Basavaiah K, Anilkumar UR and Tharpa K. Spectrophotometric Determination of Pantoprazole Sodium in Pharmaceuticals Using N-Bromosuccinimide, Methyl Orange and Indigo Carmine as Reagents. Iranian Journal of Chemistry and Chemical engineering, 2009, 28(1): 31-36.
  91. Basavaiah K, Rajendraprasad N, Tharpa K, et al. Titrimetric and spectrophotometric assay of pantoprazole in pharmaceuticals using permanganate. Journal of Mexican Chemical Society, 2009, 53(1): 34-40. https://doi.org/10.29356/jmcs.v53i1.1015
  92. Devi OZ and Basavaiah K. Validated spectrophotometric determination of pantoprazole sodium in pharmaceuticals using ferric chloride and two chelating agents. International Journal of Chem Tech Research, 2010, 2(1): 624-632. https://doi.org/10.2298/CICEQ090617005B
  93. Cass QB, Degani AL, Cassiano NM, et al. Enantiomeric determination of pantoprazole in human plasma by multidimensional high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 766(1): 153-160. https://doi.org/10.1016/S0378-4347(01)00472-8
  94. Patel BH, Suhagia BN, Patel MM, et al. Determination of pantoprazole, rabeprazole, esomeprazole, domperidone and itopride in pharmaceutical products by reversed phase liquid chromatography using single mobile phase. Chromatographia, 2007, 65: 743-748. https://doi.org/10.1365/s10337-007-0220-z
  95. Reddy PB, Jayaprakash M, Sivaji K, et al. Determination of pantoprazole sodium and lansoprazole in individual dosage form tablets by rp-hplc using single mobile phase. International Journal of Applied Biology and Pharmaceutical Technology, 2010, 1(2): 683-688.
  96. Letica J, Markovic S, Zirojevic J, et al. High-Performance Liquid Chromatographic Determination of Pantoprazole and Its Main Impurities in Pharmaceuticals. Journal of AOAC International, 2010, 93(4): 1121-1128. https://doi.org/10.1093/jaoac/93.4.1121
  97. Hegazy MA, Yehia AM and Mostafa AA. Stability- Indicating Chromatographic Methods for Simultaneous Determination of Mosapride and Pantoprazole in Pharmaceutical Dosage Form and Plasma Samples. Chromatographia, 2011, 74: 839-845. https://doi.org/10.1007/s10337-011-2144-x
  98. Varsha J and Jitendra P. Simultaneous Estimation Of Cinitapride And Pantoprazole Sodium By Rp-Hplc In Their Marketed Formulation. International Journal of Chem Tech Research, 2012, 4(4): 1396-1401.
  99. Pandy S, Pandey P, Mishra D, et al. A validated stability indicating HPLC method for the determination of processrelated impurities in pantoprazole bulk drug and formulations. Brazilian Journal of Pharmaceutical Sciences, 2013, 49(1): 175-184. https://doi.org/10.1590/S1984-82502013000100019
  100. Erk N. Differential pulse anodic voltammetric determination of pantoprazole in pharmaceutical dosage forms and human plasma using glassy carbon electrode. Analytical Biochemistry, 2003, 323(1): 48-53. https://doi.org/10.1016/j.ab.2003.08.023
  101. Castro SL, Neto OD, Santos SR, et al. A flow-injection biamperometric method for determination of pantoprazole in pharmaceutical tablets. Journal of AOAC international, 2005, 88(4): 1064-1068. https://doi.org/10.1093/jaoac/88.4.1064
  102. Adegokea O, Umoha O and Soyinkab J. Spectrophotometric determination of metronidazole and tinidazole via charge transfer complexation using chloranilic acid. Journal of Iranian Chemical Society, 2010, 7(2): 359-370. https://doi.org/10.1007/BF03246021
  103. Kamel M, Barsoum B and Sayed R. Determination of some important antibacterial drugs using alizarins and thymol blue UV - Visible spectrophotometry. Journal of Applied Science, 2009, 5(7): 880-886.
  104. Nandipura D, Padmarajiah N and Kanchugar R. A Sensitive Spectrophotometric Assay for Tinidazole and Metronidazole Using a Pd-C and Formic Acid Reduction System. Turkish Journal of Chemistry, 2004, 28: 335-343.
  105. Nagaraja P, Sunitha K, Vasanta R, et al. Spectrophotometric determination of metronidazole and tinidazole in pharmaceutical preparations. Journal of Pharmceutical and biomedical Analysis, 2002, 28(3-4): 527-535. https://doi.org/10.1016/S0731-7085(01)00685-9
  106. Adegoke OA and Umoh OE. A new approach to the spectrophotometric determination of metronidazole and tinidazole using p-dimethylaminobenzaldehyde. Acta Pharmaceutica, 2009, 59(4): 407-419. https://doi.org/10.2478/v10007-009-0039-2
  107. Sinhg L and Nanda S. Method for Determination of Tinidazole using Direct UV-Visible Spectrophotometry and Differential Spectrophotometry in Pure and Tablet Dosage Forms. East and Central African Journal of Pharmaceutical Sciences, 2011, 14: 75-80.
  108. Abou-Taleb NH, El-Sherbiny DT, El-Wasseef DR, et al. Simultaneous determination of norfloxacin and tinidazole binary mixture by difference spectroscopy. International Journal of Biomedical Science, 2011, 7(2): 137-144.
  109. Alhemiary NA and Saleh MH. Spectrophotometric Determination of Tinidazole Using Promethazine and Ethyl Vanillin Reagents in Pharmaceutical Preparations. Der Pharma Chemica, 2012, 4(6): 2152-2160.
  110. Zheltvai OI, Zheltvai II, Spinul VV, et al. Spectrophotometry determination of metronidazole and tinidazole by their complexation with copper(II). Journal of Analytical Chemistry, 2013, 68(7): 600-605. https://doi.org/10.1134/S1061934813050171
  111. Sebaiy MM, Hassan WS and Elhennawy ME. Developing a High Performance Liquid Chromatography (HPLC) Method for Simultaneous Determination of Oxytetracycline, Tinidazole and Esomeprazole in Human Plasma. Journal of Chromatographic Sciences, 2019, 57(8): 724-729. https://doi.org/10.1093/chromsci/bmz046
  112. Sebaiy MM, Hassan WS, Saad MZ, et al. Developing a Highly Validated and Sensitive HPLC Method for Simultaneous Estimation of Oxytetracycline, Tinidazole and Esomeprazole in Their Dosage Forms. Austin Journal of Analytical and Pharmaceutical Chemistry, 2019, 6(1): 1112.
  113. Sebaiy MM, El-Shanawany AA, El-Adl SM, et al. Rapid RP-HPLC Method for Simultaneous Estimation of Norfloxacin and Tinidazole in Tablet Dosage Form. Asian Journal of Pharmaceutical Analysis. 2011, 1(4): 79-84.
  114. Sebaiy MM, El-Shanawany AA, El-Adl SM, et al. Rapid RP-HPLC Method for Simultaneous Estimation of Sparfloxacin, Gatifloxacin, Metronidazole and Tinidazole. Asian Journal of Pharmaceutical Research. 2011, 1(4): 119- 125.
  115. Pai PN, Rao GK, Srinivas B, et al. RPLC Determination of Tinidazole and Diloxanide Furoate in Tablets. Indian Journal of Pharmaceutical Sciences, 2008, 70(5): 670-672. https://doi.org/10.4103/0250-474X.45415
  116. Pasha K, Ali A, Bana S, et al. Reverse phase - HPLC method for the analysis of Tinidazole in pharmaceutical dosage form & bulk drug. International Journal of Pharmacy and Pharmaceutical Sciences, 2010, 2(2): 46-47.
  117. Sneha JK, Nirav PB, Parag PR, et al. Development and validation of stability indicating method for simultaneous estimation of Ciprofloxacin hydrochloride and Tinidazole using RP-HPLC method. IOSR Journal of Pharmacy, 2012, 2(5): 12-19. https://doi.org/10.9790/3013-25401219
  118. Kasnia V, Kumar MS and Mahadevan N. Simultaneous Estimation Of Amoxicillin, Tinidazole And Omeprazole In Microsphere Formulation By RP-HPLC. International Journal of recent Advances in Pharmaceutical Researches, 2012, 2(2): 78-83.
  119. Jiang XY, Chen XQ, Dong Z, et al. The application of resonance light scattering technique for the determination of tinidazole in drugs. Journal of Automated Methods and Management in Chemistry, 2007, Article ID 86857. https://doi.org/10.1155/2007/86857
  120. Alnajjar A, Abuseada HHnand Idris AM. Capillary electrophoresis for the determination of norfloxacin and tinidazole in pharmaceuticals with multi-response optimization. Talanta, 2007, 72(2): 824-846. https://doi.org/10.1016/j.talanta.2006.11.025
  121. Guzm´an-Mar JL, Hinojoza-Reyes L, Hernandez-Ramirez A, et al. Automatic multisyringe flow injection system for the spectrophotometric determination of tinidazole in pharmaceutical preparations. Journal of the Chilean Chemical Society, 2010, 55(2): 215-218. https://doi.org/10.4067/S0717-97072010000200015
  122. Ramesh PJ, Basavaiah K and Rajendraprasad N. Sensitive and selective spectrophotometric assay of doxycycline hyclate in pharmaceuticals using Folin-Ciocalteu reagent. Acta Pharmaceutica, 2010, 60(4): 445-454. https://doi.org/10.2478/v10007-010-0032-9
  123. Rufino JL, Fernandes FC, Ruy MS, et al. A simple spectrophotometric method for the determination of tetracycline and doxycycline in pharmaceutical formulations using chloramine-t. Ecletica Quimica, 2010, 35(4): 139-146. https://doi.org/10.1590/S0100-46702010000400018
  124. Saber AL and Amin AS. Utility of Ion-Pair and Charge Transfer Complexation for Spectrophotometric Determination of Domperidone and Doxycycline in Bulk and Pharmaceutical Formulations. Journal of Analytical and Bioanalytical Techniques, 2011, 1: 113. https://doi.org/10.4172/2155-9872.1000113
  125. Li-Wei Z, Chong-Qiu J and Jing-Min S. Spectrofluorimetric determination of trace doxycycline with diethyl-O- cyclodextrin-doxycycline-Eu3+ system. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1547-1550.
  126. Attia MS, Mahmoud WH, Ramsis MN, et al. Spectrofluorimetric assessment of doxycycline hydrochloride in pharmaceutical tablets and serum sample based on the enhancement of the luminescence intensity of the optical sensor Sm3+ ion. Journal of Fluorescence, 2011, 21(4): 1739-1748. https://doi.org/10.1007/s10895-011-0869-4
  127. Axisa B, Naylor AR and Bell PR, Thompson M. Simple and reliable method of doxycycline determination in human plasma and biological tissues. Journal of Chromatography B: Biomedical Sciences and Applications, 2000, 744(2): 359-365. https://doi.org/10.1016/S0378-4347(00)00261-9
  128. Zarghi A, Kebriaeezadeh A and Ahmadkaniha R. Rapid high-performance liquid chromatographic method for determination of doxycycline in human plasma. Bollettino Chimico Farmaceutico, 2001, 140(2): 112-114.
  129. Ruz N, Zabala M, Kramer M, et al. Rapid and simple determination of doxycycline in serum by high-performance liquid chromatography - Application to particulate drug delivery systems. Journal of Chromatography A, 2004, 1031(1- 2): 295-301. https://doi.org/10.1016/j.chroma.2003.12.028
  130. Skulason S, Ingolfsson E and Kristmundsdottir T. Development of a simple HPLC method for separation of doxycycline and its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(4): 667-672. https://doi.org/10.1016/S0731-7085(03)00316-9
  131. Injac R, Djordjevic-Milic V and Srdjenovic B. Thermostability Testing and Degradation Profiles of Doxycycline in Bulk, Tablets, and Capsules by HPLC. Journal of Chromatographic Science, 2007, 45: 623-628. https://doi.org/10.1093/chromsci/45.9.623
  132. Mitic SS, Miletic GZ, Kostic DA, et al. A rapid and reliable determination of doxycycline hyclate by HPLC with UV detection in pharmaceutical samples. Journal of the Serbian Chemical Society, 2008, 73(6): 665-671. https://doi.org/10.2298/JSC0806665M
  133. Krishna AC, Sathiyaraj M, Saravanan RS, et al. A novel and rapid method to determine doxycycline in human plasma by liquid chromatography tandem mass spectrometry. Indian Journal of Pharmaceutical Sciences, 2012, 741(6): 541-548. https://doi.org/10.4103/0250-474X.110599
  134. Sulaiman ST and Abdul Razzak FH. Differential- Pulse Polarographic Determination of Doxycycline in Serum and Urine. Rafedain Journal Sciences, 2008, 19(1): 52-58.
  135. Al-Momani IF and Kanan SJ. Flow-Injection spectrophotometric and LC determination of doxycycline, oxytetracycline and chlortetracycline in biological fluids and pharmaceutical preparations. Journal of Flow Injection Analysis, 2008, 25(1): 29-34.
  136. Rufino JL, Weinert PL, Pezza HR, et al. Flow-injection spectrophotometric determination of tetracycline and doxycycline in pharmaceutical formulations using chloramine-T as oxidizing agent. Quimica Nova, 2009, 32(7): 1764-1769. https://doi.org/10.1590/S0100-40422009000700016
  137. Issa YM, Abdel-Fattah HM and Abdel-Moniem NB. Chemically Modified Carbon Paste Sensor for Potentiometric Determination of Doxycycline Hydrochloride in Batch and FIA Conditions. International Journal of Electrochemical Science, 2013, 8: 9578-9592.
  138. Gurler B, Ozkorucuklu SP and Kir E. Voltammetric behavior and determination of doxycycline in pharmaceuticals at molecularly imprinted and non-imprinted overoxidized polypyrrole electrodes. Journal of Pharmaceutical and Biomedical Analysis, 2013, 84: 263-268. https://doi.org/10.1016/j.jpba.2013.06.009