Open Access Peer-reviewed Research Article

Environmental and chemical determinants of contamination and survival of Vibrio cholerae in water sources in Bukavu in the Democratic Republic of the Congo

Main Article Content

Albert M. Mumbumbu
Zacharie K. Tsongo
Etienne A. Shindano
Théophile B. Kabesha
Stanis O. Wembonyama corresponding author

Abstract

Introduction: Cholera is endemo-epidemic in Bukavu. The aim of the study was to assess the environmental determinants of permanent contamination of spring and well water and to evaluate some of the chemical factors responsible for the persistence of Vibrio cholerae in water consumed by cholera patients.
Methods: Conducted in the Bukavu health district from September 2020 to September 2021, this was a cross-sectional. The potential of hydrogen (pH) of the water was evaluated before comparing it with the survival of Vibrio cholerae. A total of 641 latrines, 92 water sources, and wells were surveyed, with 298 samples analyzed in the laboratory.
Results: Out of the 641 latrines surveyed, 367 (57%) were found to be unsanitary; 54 (59%) of the water sources and wells were also deemed unsanitary. In total, 57% of the water samples were found to contain Vibrio cholerae, with 90% exhibiting an alkaline pH, of which 54% tested positive for the bacteria. Conversely, 10% of the samples had an acidic pH, with 80% of those containing Vibrio cholerae. The pH levels of the water remained alkaline both during the epidemic (95%) and post-epidemic (84%), thereby favoring the survival of Vibrio cholerae serotypes Ogawa and Inaba in these water sources. An acidic pH was observed to increase the likelihood of Vibrio cholerae survival in these waters by a factor of 3.39.
Conclusion: Spring and well water are consistently contaminated with Vibrio cholerae due to the unsanitary conditions of nearby latrines. The presence of Vibrio cholerae serotypes Inaba and Ogawa in these water sources is further influenced by the alkaline and acidic pH levels.

Keywords
contamination, Vibrio cholerae, endemic, Bukavu

Article Details

How to Cite
Mumbumbu, A. M., Tsongo, Z. K., Shindano, E. A., Kabesha, T. B., & Wembonyama, S. O. (2024). Environmental and chemical determinants of contamination and survival of Vibrio cholerae in water sources in Bukavu in the Democratic Republic of the Congo. Health and Environment, 5(1), 246-255. https://doi.org/10.25082/HE.2024.01.002

References

  1. Bwire G, Debes AK, Orach CG, et al. Environmental Surveillance of Vibrio cholerae O1/O139 in the Five African Great Lakes and Other Major Surface Water Sources in Uganda. Frontiers in Microbiology. 2018, 9. https://doi.org/10.3389/fmicb.2018.01560
  2. Organisation Mondiale de la Santé. Directives de qualité pour l’eau de boisson, troisième édition, volume 1 Recommandations. Genève: OMS, 2004.
  3. Tampol L, Ayah M, Kodom T, et al. Laboratoire de chimie des eaux (LCE), Faculté des Sciences, Université de Lomé. 2013. Available from: www.elewa.org.
  4. Derwich E, Benuabidete L, Ziau A, et al. Caractérisation physico-chimique des eaux de la nappe alluvial du haut Sebou en aval de sa confluence avec Ouest Fès. Larhyss Journal. 2010;8:101-112.
  5. Organisation Mondiale de la Santé. Préparation aux situations d’urgence de l’Organisation mondiale de la santé, Réponse: Choléra–Zimbabwe. Genève: OMS; 2023. Available from: http://www.who.int/csr/don/11-december-2017-cholera-kenya/en/. Accessed June 30, 2023.
  6. Organisation Mondiale de la Santé. Rapport sur les systèmes d’assainissement 2006, archives des Nations Unies. Genève: OMS, 2006.
  7. UNESCO. De l’eau propre pour un monde sain. Paris, France; 2010. https://unesdoc.unesco.org
  8. UNICEF. Eau potable pour tous les pays. New York, États-Unis, 2017. https://www.unicef.org
  9. UNESCO. De l’eau propre pour un monde sain. Paris, France; 2010. https://unesdoc.unesco.org
  10. EHA. Training module for water, hygiene and sanitation supervisors. 2021. https://www.unhcr.org
  11. UNEP: Drinking water issues in the DRC, challenges and technical opportunities, 2010.
  12. Organisation Mondiale de la Santé. Statistiques Sanitaires Mondiales. Genève: WHO, 2012. https://apps.who.int
  13. Zell R. Global climate change and the emergence/re-emergence of infectious diseases. International Journal of Medical Microbiology Supplements. 2004, 293: 16-26. https://doi.org/10.1016/s1433-1128(04)80005-6
  14. Mengel MA, Delrieu I, Heyerdahl L, et al. Cholera Outbreaks in Africa. Current Topics in Microbiology and Immunology. Published online 2014: 117-144. https://doi.org/10.1007/82_2014_369
  15. D’Mello-Guyett L, Gallandat K, Van den Bergh R, et al. Prevention and control of cholera with household and community water, sanitation and hygiene (WASH) interventions: A scoping review of current international guidelines. Azman AS, ed. PLOS ONE. 2020, 15(1): e0226549. https://doi.org/10.1371/journal.pone.0226549
  16. UNHCR. L’épidémie de choléra dans le camp de réfugiés de Dadaab au Kenya est contenue. UNHCR: 2009. https://www.unhcr.org
  17. Saraiva T, Schmidt L, Pato J. Lisbon Water regimes: Politics, Environment, Technology and Capital (1850-2010). Flux. 2015, N° 97-98(3): 60-79. https://doi.org/10.3917/flux.097.0060
  18. SCHWARTZ BS, KHAN AI, LUBY SP, et al. DIARRHEAL EPIDEMICS IN DHAKA, BANGLADESH, DURING THREE CONSECUTIVE FLOODS: 1988, 1998, AND 2004. The American Journal of Tropical Medicine and Hygiene. 2006, 74(6): 1067-1073. https://doi.org/10.4269/ajtmh.2006.74.1067
  19. Almagro-Moreno S, Taylor RK. Cholera: Environmental Reservoirs and Impact on Disease Transmission. Atlas RM, ed. Microbiology Spectrum. 2013, 1(2). https://doi.org/10.1128/microbiolspec.oh-0003-2012
  20. Rebaudet S, Sudre B, Faucher B, et al. Cholera in Coastal Africa: A Systematic Review of Its Heterogeneous Environmental Determinants. The Journal of Infectious Diseases. 2013, 208(suppl$_1$): S98-S106. https://doi.org/10.1093/infdis/jit202
  21. Tarantola A. Le choléra importé en France métropolitaine de 1973 à 2005. Bull Epidémiol Hebdomadaire. 2007, 34: 297-299.
  22. World Health Organization. Cholera 2014, Weekly epidemiological record. Geneva, WHO. 2015, 90(40): 517-544.
  23. World Health Organization. Cholera Annual Report 2020 Weekly Epidemiological Record. Geneva, WHO. 2021, 96(37): 445-460. http://apps.who.int
  24. Mumbumbu M, Shindano M. Facteurs favorisant le choléra dans le district sanitaire de Bukavu. Bull Études Sociales Humaines (BESH). 2015, 2: 34-38.
  25. Gwenzi W, Musiyiwa K, Mangori L. Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: A hotspot reservoir. Journal of Environmental Chemical Engineering. 2020, 8(1): 102220. https://doi.org/10.1016/j.jece.2018.02.028
  26. Osei FB, Duker AA, Augustijn EW, et al. Spatial dependency of cholera prevalence on potential cholera reservoirs in an urban area, Kumasi, Ghana. International Journal of Applied Earth Observation and Geoinformation. 2010, 12(5): 331-339. https://doi.org/10.1016/j.jag.2010.04.005
  27. Rebaudet S, Sudre B, Faucher B, et al. Environmental Determinants of Cholera Outbreaks in Inland Africa: A Systematic Review of Main Transmission Foci and Propagation Routes. The Journal of Infectious Diseases. 2013, 208(suppl$_1$1): S46-S54. https://doi.org/10.1093/infdis/jit195
  28. Mumbumbu M, Wembonyama O. Analyse bactériologique de l’eau des sources consommée par la population de la commune de Kadutu. Bulletin d’Études Sociales Humaines (BESH). 2014, 1: 45-51.
  29. Merrell DS, Butler SM, Qadri F, et al. Host-induced epidemic spread of the cholera bacterium. Nature. 2002, 417(6889): 642-645. https://doi.org/10.1038/nature00778
  30. Anyamba A, Linthicum KJ, Small JL, et al. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks. Zhou XN, ed. PLoS Neglected Tropical Diseases. 2012, 6(1): e1465. https://doi.org/10.1371/journal.pntd.0001465
  31. Mukandavire Z, Liao S, Wang J, et al. Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proceedings of the National Academy of Sciences. 2011, 108(21): 8767-8772. https://doi.org/10.1073/pnas.1019712108