Open Access

Peer-reviewed

Research Article

Main Article Content

Pierre Bricagecorresponding author

Abstract

The spatial and temporal structuring and functioning of living systems are associated with scaling independent qualitative characteristics (gauge invariance) and quantitative laws (power laws). This is allowed by the emergence of new blueprints through the systems merging into ‘Associations for the Reciprocal and Mutual Sharing of Advantages and Dis-Advantages’ (ARMSADA). The local actors become more and more mutually integrated into their new global Whole. Then they are more and more independent from their previous local situations of emergence. Reversely (systemic constructal law), the global Whole is more and more integrating local parceners. The relationship between actors within a living system was described using allometric laws, e.g. the metabolic rate of a lot of species was supposed to be proportional to its mass according to a 3/4 exponent power-law (Kleiber’s law). But, according to the gauge invariance paradigm, an other explanation of the invariant scaling of living systems is proposed with a 2/3 power-law. Whatever its level of organization, a living system, ‘system of systems’ emerging by embedments and juxtapositions of previous ones, effectively functions in 4 dimensions (VA: the Adult system Volume, and tg: the time of generation, the duration that is necessary to acquire the capacity of reproduction). Looking at the gauge invariance paradigm as a ‘factual’ system, from the quantum of Planck to the Universe as a Whole, a meta-analysis of a database of the systems internal (endophysiotope) and external (ecoexotope) interactions can allow to quantify 45×18 allometric relationships. This allows to evidence a ‘grammar’: 1. Invariant independent processes (power-laws with exponent € = 0); 2. Simultaneous limiting interactions regulation processes (€ = +1); 3:F eedback (€ = -1); 4. Competition between actors (€ = 1/2); 5. Optimal exchanges flow (€ = 2/3) processes. Brownian motion is the basic fundamental process that governs all functions. From the Monera to the ecosystem levels the increasing of regulation processes allows more and more autonomy of the endophysiotope from the ecoexotope dependence. From the point of view of matter and energy flows, living systems optimize the input and output exchanges at their interface. The greater diversity of regulation processes occurs for the endophysiotope throughput flows. Whatever the organization level, living systems optimize their survival by adjusting ‘the capacity to be hosted’ of their endophysiotope (HOSTED) to the changes of ‘the hosting capacity’ of their ecoexotope (HOSTING).

Keywords
living systems, allometric scaling, systemic constructal law, Power-Laws

Article Details

How to Cite
Bricage, P. (2019). Living systems allometric scaling laws. Resources and Environmental Economics, 1(2), 57-70. https://doi.org/10.25082/REE.2019.02.003

References

  1. Bricage P. Associations for the Reciprocal and Mutual Sharing of Advantages and DisAdvantages ARMSADA. The way, to be resilient and self-sustainable, the living systems are running through. In Governance for a Resilient Planet, ISSS, Waterloo, Canada, 2010, 12. http://journals.isss.org/index.php/proceedings54th/article/view/1491CC
  2. Bricage P. Living Networks of Networks: The Societal and Environmental Responsibility of Humanity in the Fight between Humans and the Wild. In, R.G. Dyck and M. Mulej, Eds., Social Responsibility Beyond Neoliberalism and Charity, vol. 3, Social Responsibility - Methods, Dilemmas and Hopes, 257-277, Bentham Science Publishers, Oak Park, USA, August 2014, online eBook (eISBN: 978-1-60805-906-5), ISBN: 978-1-60805-907-2. https://doi.org/10.2174/9781608059068114030016
  3. Bricage P. The Evolutionary Shuttle of the Living Systems. European Systems Science Congress, Hersonissos, Creta, Res-Systemica, 2002, 2: 6. http://www.afscet.asso.fr/resSystemica/Crete02/Bricage.pdf
  4. Bricage P. L es Caractéristiques des Organismes Vivants, Fac. Sciences, Univ. Pau, UPPA, APID., 1991, 44.
  5. Bricage P. The modelling of the time modularity of the living systems: the time delay, time duration, time lag and the rhythms. UES Congress, Paris, France, Res-Systemica, 2005, 5: 1-11. http://www.afscet.asso.fr/resSystemica/Paris05/bricage2.pdf
  6. Bricage P. Les systèmes agoantagonistes: l’origine endosyncénotique de la cellule. In, La Gouvernance dans les Systèmes. AFSCET, UES-EUS, Eds., Paris, Polimetrica, Milan, Italy, 2007: 67-72. http://www.afscet.asso.fr/resSystemica/Paris05/bricage.pdf
  7. Bricage PLiving systems: local and whole scale invariant laws. EUS-UES 9th Congress, Valencia, Spain, 15 Oct. 2014, 24. http://web.univ-pau.fr/bricagehttps://www.syncsci.com/files/bricage_s11-g-paper.pdf
  8. Banks-Leite C, Pardini R, Tambosi LR, et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science, 2014, 345(6200): 1041-1045. https://doi.org/10.1126/science.1255768
  9. Bricage P. Use of chronolithotherapy for better individual healthcare and welfare. Journal of Systems Science and Systems Engineering, 2017, 26: 336-358. https://doi.org/10.1007/s11518-017-5336-6
  10. Bejan A and Lorente S. The constructal law and the evolution of design in nature. Physics of Life Reviews, 2011, 8: 209-240. https://doi.org/10.1016/j.plrev.2011.05.010
  11. Bricage P. Pour survivre et se survivre, la vie est un flux, ergodique, fractal et contingent, vers des macro-états organisés de micro-états, à la suite de brisures de symétrie. Atelier AFSCET Systémique et Biologie, IIAP, Institut International Administration Publique, Paris, 2001: 11. http://www.afscet.asso.fr/ergodiqW.pdf
  12. Bricage P. Déterminisme et indéterminisme multi-échelle, invariants et variance des systèmes vivants. Journées AFSCET, La systémique face à la question du déterminisme, Andé, France, 2018: 38. http://afscet.asso.fr/Ande18/pbricage-Ande2018-powerLaws-texte.pdf
  13. Bricage P. The cell originated through successive outbreaks of net-working and homing into Associations for the Reciprocal and Mutual Sharing of Advantages and of DisAdvantages, between the partners. UES-EUS Congress, Paris, Res. Systemica, 2005, 5: 11.
  14. Bricage P. The Metamorphoses of Living Systems: The Associations for the Reciprocal and Mutual Sharing of Advantages and of Disadvantages. EUS-EUS, Paris, France, Res. Systemica, 2005, 5: 12. http://www.afscet.asso.fr/resSystemica/Paris05/bricage.pdf
  15. Capra F. The Web of Life. Anchor Academic Publishing, Knopf Doubleday Publishing Group, New York, USA, 1997: 368.
  16. Bricage P. Alive systems: local/whole and individual/collective competitions. EUS-UES 9th Congress, Valencia, Spain, 15 Oct 2014, 15. http://web.univ-pau.fr/~bricagehttps://www.syncsci.com/files/bricage_s02-5c-paper.pdf
  17. Lyon A. Teterministic probability: neither chance nor credence. Synthese, 2011, 182: 413-432. https://doi.org/10.1007/s11229-010-9750-2
  18. Bricage P. Time Management by Living Systems: Time Modularity, Rhythms and Conics Running Calendars. Methodology, Theory and Applications. Systems Research and Behavioral Science, 2013, 30(6): 677-692. https://doi.org/10.1002/sres.2237
  19. Bricage P. Education for sustainability: lessons from living systems governance. 3rd IASCYS international meeting Research Development and Education of Systems Science and Cybernetics, 28 p, Oct 2017, Chengdu, China. https://halshs.archives-ouvertes.fr/halshs-01705968
  20. Bricage P. Métamorphoses et phylotagmotaphologie du vivant. In, L’évolution du vivant a-t-elle une direction? Association Amis Pierre Teilhard de Chardin, Paris, France, 2009, 13: 109.
  21. Bricage P. Approche systémique de l’évolution du vivant. Teilhard Aujourd’hui, 2009, 33(16): 31-39. http://hal.archives-ouvertes.fr/docs/00/42/37/30/PDF/phylotagmotaphologie.pdf
  22. Kleiber M. Body Size and Metabolism. Hilgardia, 1932, 6: 315-353. https://doi.org/10.3733/hilg.v06n11p315
  23. West GB and Brown JH. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol, 2005, 208: 1575-1592. https://doi.org/10.1242/jeb.01589
  24. Moyes CD and Lemoine CMR. Control of muscle bioenergetic gene expression: implications for allometric scaling relationships of glycolytic and oxidative enzymes. J Exp Biol, 2005, 208: 1601-1610. https://doi.org/10.1242/jeb.01502
  25. Weibel ER and Hoppeler H. Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. The Journal of experimental biology, 2005, 208: 1635-1644. https://doi.org/10.1242/jeb.01548
  26. Bricage P. Survival Management by Living Systems. General System Theory of the Space-Time Modularity and Evolution of Living Systems: Associations for the Reciprocal and Mutual Sharing of Advantages and DisAdvantages ARMSADA. WCCS, Agadir, Morocco, 2014. https://hal.archives-ouvertes.fr/hal-01065974
  27. Bricage P. Loi puissance d’invariance spatiotemporelle des systèmes vivants. Revista Internacional de Sistemas, 2014, 19: 5-33. https://www.uv.es/sesgejd/RIS/19/2.Bricage.Loi_Puissance.pdf
  28. Di Rienzo CV, Piazza E, Gratton F, at al. Probing short-range protein Brownian motion in the cytoplasm of living cells. Nature Communications, 2014, 5(5891): 1-8. https://doi.org/10.1038/ncomms6891
  29. Perrin F. Étude mathématique du mouvement Brownien de rotation. Annales Scientifiques De L École Normale Supérieure, 1928, 3(45): 1-51. https://doi.org/10.24033/asens.782
  30. Bricage P. Sémiologique graphique de l’espace-temps-action du vivant. L’approche systémique des lois systémiques du vivant. Vers une nouvelle systémique. Journés AFSCET, Andé, 2010, 35. http://www.afscet.asso.fr/Ande10/pbETAvivant10.pdf
  31. West GB, Woodruff WH and Brown JH. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences, 2002, 99(Supplement 1): 2473-2478. https://doi.org/10.1073/pnas.012579799
  32. Bricage P. Héritage génétique, héritage épigénétique et héritage environnemental : de la bactérie à l’homme, le transformisme, une systémique du vivant. Évolution du vivant et du social: Analogies et différences, Journées internationales AFSCET, Andé, France, juin 2002, 28. http://www.afscet.asso.fr/heritage.pdf
  33. Bricage P. Modelling Space-Time-Action Modularity and Evolution of Living Systems. In, M. Nemiche and M. Essaaidi, Eds., Advances in Complex Societal, Environmental and Engineered Systems. Nonlinear Systems and Complexity, 2017, 18: 267-299. https://doi.org/10.1007/978-3-319-46164-9_13
  34. Azevedo RBR and Leroi AM. A power law for cells. Proceedings of the National Academy of Sciences, 2001, 98(10): 5699-5704. https://doi.org/10.1073/pnas.091485998
  35. Drew J and Abbot LF. Models and Properties of Power-Law Adaptation in Neural Systems. Journal of Neurophysiology, 2006, 96: 826-833. https://doi.org/10.1152/jn.00134.2006
  36. Ortman SG, Cabaniss AHF, Sturm JO, at al. Settlement scaling and increasing returns in an ancient society. Science Advances, 2015, 1(1): 1-8. https://doi.org/10.1126/sciadv.1400066
  37. Bricage P. Cancer is a breaking of the cell’s ARMSADA through an aggression that results in a lack of non-autonomy. Res Systemica, 2008, 6: 8, UES-EUS congress, APOCOSIS, Lisboa, Portugal, Dec. 2008,
  38. Bricage P. L’évolution créatrice : mt́amorphoses et phylotagmotaphologie
  39. Bricage P. La semi-autonomie du vivant: pour que l’un survive, il faut d’abord que l’autre survive, et rćiproquement. In, Crises et Rṕonses Systḿiques, UES-EUS, Bruxelles, Acta Europeana Systemica, 2011, 1(2b): 1-28. http://www.armsada.euhttps://www.syncsci.com/files/pbARMSADA.pdf
  40. Bricage P. Win-win not a solution. What next? In, Avant Garde. S. Blachfellner and T.M. Werner, Eds., BCSSS, Vienna, Austria, 2010, 6: 21-24.
  41. Bair J. Markov: les chaînes de l’espoir. Tangente, 2016, HS58: 76-79.
  42. Bricage P. Le langage du vivant: plurilinguisme, transfrontaliérité, associativité. ANLEA, Journées nationales, UPPA, Pau, France, 11 mars 2005, 9. http://www.armsada.euhttps://www.syncsci.com/files/ANLEA05PauPB.pdf
  43. Bricage P. La survie des organismes vivants. atelier AFSCET systémique et biologie, Fac. Médecine des Saints Pères, Paris, fév. 2000, 32. http://www.afscet.asso.fr/SURVIVRE.pdf
  44. Bricage P. Bio-systemics. In J F Gu and J P Xu, Eds, Teaching Systems and Cybernetic Sciences in Higher Education, IASCYS, Chengdu, Sichuan, P.R. China, 24 Oct. 2010, 1-14. http://www.armsada.euhttps://www.syncsci.com/files/pbricageChengdu2010txt.pdf
  45. Bricage P. An Approach of Organizations and Management: Systemic Ethics, Democracy and Sustainability. Associations for the Reciprocal and Mutual Sharing of Advantages and DisAdvantages. International Journal of Public and Private Management, 1: 90-113. http://www.intcpm.net/ojs/index.php/icpm2013/article/download/19/17