Open Access Peer-reviewed Research Article

Machine Learning Approaches to Predicting Pacemaker Battery Life

Main Article Content

Samikshya Neupane
Tarun Goswami corresponding author

Abstract

Accurate prediction of pacemaker battery life is critical to timely generator replacement and patient safety. We evaluated three regression approaches: multilayer perceptron Neural Networks (NN), Random Forests (RF), and Linear Regression (LR), using 42 real‑world interrogation reports spanning single, dual, and triple‑chamber Medtronic devices. Key electrical parameters (battery voltage/current, lead impedance, capture thresholds, pacing percentages, etc.) were modelled. Performance was quantified with mean absolute error (MAE), mean squared error (MSE), and coefficient of determination (R²). NNs achieved the highest accuracy (R² ≈ 1.0; MAE < 0.1 months), RF provided robust results (R² ≈ 0.85), whereas LR exhibited limited predictive fidelity (R²  ≤  0.41). “Monte‑Carlo simulations (n = 1000)” and 95 % prediction intervals characterized predictive uncertainty; residual and Q‑Q analyses verified statistical assumptions. Our findings indicate that a data‑driven NN framework can reliably forecast remaining battery longevity, enabling proactive replacement scheduling and reducing unexpected generator depletion. The methodology is compatible with different manufacturers and suitable to integration within remote device follow‑up systems to enhance longitudinal cardiac care.

Keywords
battery life prediction, machine learning models, neural networks, random forests regression, linear regression, Monte Carlo simulations

Article Details

How to Cite
Neupane, S., & Goswami, T. (2025). Machine Learning Approaches to Predicting Pacemaker Battery Life. Research on Intelligent Manufacturing and Assembly, 4(2), 219-238. https://doi.org/10.25082/RIMA.2025.02.001

References

  1. Di Cesare M, Perel P, Taylor S, et al. The Heart of the World. Global Heart. 2024, 19(1). https://doi.org/10.5334/gh.1288
  2. Murray JA. Pacemaker Therapy for Cardiac Arrhythmias. Archives of Internal Medicine. 1969, 123(4): 355. https://doi.org/10.1001/archinte.1969.00300140001001
  3. Bularga A. Modern pacemaker technology: enhancing heart rhythm management. Curr Trend Cardiol. 2024, 8(3): 258. https://doi.org/10.35841/aacc-8.3.258
  4. Burkhard S, Van Eif V, Garric L, et al. On the Evolution of the Cardiac Pacemaker. Journal of Cardiovascular Development and Disease. 2017, 4(2): 4. https://doi.org/10.3390/jcdd4020004
  5. Eagle KA, Mulley AG, Singer DE, et al. Single-Chamber and Dual-Chamber Cardiac Pacemakers. Annals of Internal Medicine. 1986, 105(2): 264-271. https://doi.org/10.7326/0003-4819-105-2-264
  6. Gould PA, Mariani JA, Kaye DM. Biventricular pacing in heart failure: a review. Expert Review of Cardiovascular Therapy. 2006, 4(1): 97-109. https://doi.org/10.1586/14779072.4.1.97
  7. Dretzke J, Toff WD, Lip GY, et al. Dual chamber versus single chamber ventricular pacemakers for sick sinus syndrome and atrioventricular block. Cochrane Database of Systematic Reviews. 2004, 2021(4). https://doi.org/10.1002/14651858.cd003710.pub2
  8. Pedersen A. Medtronic Gives Heart Docs Something to ‘MARVEL’ At. 2016. https://www.mddionline.com
  9. Connolly SJ, Kerr C, Gent M, et al. Dual-Chamber Versus Ventricular Pacing: Critical Appraisal of Current Data. Circulation. 1996, 94(3): 578-583. https://doi.org/10.1161/01.CIR.94.3.578
  10. Evera MRI TM SureScan ® ICD. http://spo.escardio.org
  11. Jaffe LM, Morin DP. Cardiac resynchronization therapy: history, present status, and future directions. Ochsner journal. 2014, 14(4): 596-607. https://www.ochsnerjournal.org
  12. Medical Product Outsourcing. CE Mark for Medtronic’s Next Generation CRT Pacemakers. February 24, 2017.
  13. Rosenthal LS, Mester S, Rakovec P, et al. Factors influencing pacemaker generator longevity: results from the complete automatic pacing threshold utilization recorded in the Capture trial. Pacing and clinical electrophysiology. 2010, 33(8): 1020-1030. https://doi.org/10.1111/j.1540-8159.2010.02809.x
  14. Cardiac Rhythm Disease Management Product Performance Report Important Patient Management Information for Physicians. https://www.CRDMPPR.medtronic.com
  15. Single Chamber Temporary PaceMaker (AAI/VVI) Technical Manual. 1981.
  16. Explant of Implantable Devices at End of Service CRM Technical Services Standard Letter, 2024. https://www.medtronic.com
  17. 5392 Dual Chamber Temporary External Pacemaker Technical Manual.
  18. Mallela VS, Ilankumaran V, Rao NS. Trends in cardiac pacemaker batteries. Indian Pacing and Electrophysiology Journal. 2004, 4(4): 201. https://pmc.ncbi.nlm.nih.gov/articles/PMC1502062
  19. Neupane S, Goswami T. Pacemaker Interrogation Reports: Comparing Diagnostics, Lead Impedance, Pacing Thresholds and Battery Performance. Research on Intelligent Manufacturing and Assembly. 2025, 4(1): 144-167. https://doi.org/10.25082/rima.2025.01.002
  20. Truong VT, Beyerbach D, Mazur W, et al. Machine learning method for predicting pacemaker implantation following transcatheter aortic valve replacement. Pacing and Clinical Electrophysiology. 2021, 44(2): 334-340. https://doi.org/10.1111/pace.14163
  21. Severson KA, Attia PM, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation. Nature Energy. 2019, 4(5): 383-391. https://doi.org/10.1038/s41560-019-0356-8
  22. Liao SH, Chu PH, Hsiao PY. Data mining techniques and applications – A decade review from 2000 to 2011. Expert Systems with Applications. 2012, 39(12): 11303-11311. https://doi.org/10.1016/j.eswa.2012.02.063
  23. Ellis CR, Dickerman DI, Orton JM, et al. Ampere Hour as a Predictor of Cardiac Resynchronization Defibrillator Pulse Generator Battery Longevity: A Multicenter Study. Pacing and Clinical Electrophysiology. 2016, 39(7): 658-668. https://doi.org/10.1111/pace.12831
  24. Boriani G, Merino J, Wright DJ, et al. Battery longevity of implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators: technical, clinical and economic aspects. An expert review paper from EHRA. EP Europace. 2018, 20(12): 1882-1897. https://doi.org/10.1093/europace/euy066
  25. Jimoh ST, Al-Juboori SS. Cyber-Securing Medical Devices Using Machine Learning: A Case Study of Pacemaker. Journal of Informatics and Web Engineering. 2024, 3(3): 271-289. https://doi.org/10.33093/jiwe.2024.3.3.17
  26. Pan H, Feng W, Ge J, et al. Prediction method of battery remaining life based on CEEMDAN-RF-SED-LSTM neural network. International Journal of Information and Communication Technology. 2024, 25(9): 1-21. https://doi.org/10.1504/ijict.2024.142816
  27. Kamul A, Hananda N, Harito C, et al. Machine Learning Application in Battery Prediction: A Systematic Literature Review and Bibliometric Study. Mursitama TN, Noerlina, Sitepu E, Basaria FT, eds. E3S Web of Conferences. 2023, 388: 01021. https://doi.org/10.1051/e3sconf/202338801021
  28. Papadopoulos CE, Yeung H. Uncertainty estimation and Monte Carlo simulation method. Flow Measurement and Instrumentation. 2001, 12(4): 291-298. https://doi.org/10.1016/s0955-5986(01)00015-2
  29. Velikova T, Mileva N, Naseva E. Method “Monte Carlo” in healthcare. World Journal of Methodology. 2024, 14(3). https://doi.org/10.5662/wjm.v14.i3.93930
  30. Crossley GH, Mason PK, Hansky B, et al. High predicted durability for the novel small-diameter OmniaSecure defibrillation lead. Heart Rhythm. 2025, 22(2): 302-310. https://doi.org/10.1016/j.hrthm.2024.09.005
  31. Verma N, Getenet S, Dann C, et al. Evaluating an Artificial Intelligence (AI) Model Designed for Education to Identify Its Accuracy: Establishing the Need for Continuous AI Model Updates. Education Sciences. 2025, 15(4): 403. https://doi.org/10.3390/educsci15040403
  32. Hodson TO. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development. 2022, 15(14): 5481-5487. https://doi.org/10.5194/gmd-15-5481-2022
  33. Willmott C, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research. 2005, 30: 79-82. https://doi.org/10.3354/cr030079
  34. Ujwal S. Regressing metrics using advance machine learning. 2024. https://www.irjet.net
  35. Wilk MB, Gnanadesikan R. Probability plotting methods for the analysis for the analysis of data. Biometrika. 1968, 55(1): 1-17. https://doi.org/10.1093/biomet/55.1.1
  36. Boylan GL, Cho BR. The Normal Probability Plot as a Tool for Understanding Data: A Shape Analysis from the Perspective of Skewness, Kurtosis, and Variability. Quality and Reliability Engineering International. 2011, 28(3): 249-264. https://doi.org/10.1002/qre.1241
  37. Larasati A, Hajji AM, Dwiastuti A. The relationship between data skewness and accuracy of Artificial Neural Network predictive model. IOP Conference Series: Materials Science and Engineering. 2019, 523(1): 012070. https://doi.org/10.1088/1757-899x/523/1/012070
  38. Barreñada L, Dhiman P, Timmerman D, et al. Understanding overfitting in random forest for probability estimation: a visualization and simulation study. Diagnostic and Prognostic Research. 2024, 8(1). https://doi.org/10.1186/s41512-024-00177-1
  39. Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Deutsches Ärzteblatt International. 2010, 107(44): 776.
  40. Solutions S. Statistics solutions: Advancement through clarity. 2018, 5. http://www.statisticssolutions.com
  41. Zhang Y, Wik T, Bergström J, et al. A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data. Journal of Power Sources. 2022, 526: 231110. https://doi.org/10.1016/j.jpowsour.2022.231110
  42. Hair Jr JF, Hult GTM, Ringle CM, et al. Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer Nature, 2021.
  43. Hüllermeier E, Waegeman W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Machine Learning. 2021, 110(3): 457-506. https://doi.org/10.1007/s10994-021-05946-3
  44. Gaudart J, Giusiano B, Huiart L. Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data. Computational Statistics & Data Analysis. 2004, 44(4): 547-570. https://doi.org/10.1016/s0167-9473(02)00257-8
  45. Reis I, Baron D, Shahaf S. Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets. The Astronomical Journal. 2018, 157(1): 16. https://doi.org/10.3847/1538-3881/aaf101
  46. Klusowski JM. Sharp analysis of a simple model for random forests, International Conference on Artificial Intelligence and Statistics. PMLR. 2021: 757-765. http://arxiv.org/abs/1805.02587