Open Access Peer-reviewed Research Article

Main Article Content

Yeinner Tarazona
María Neftalí Rojas-Valencia corresponding author
Juan Antonio Araiza-Aguilar

Abstract

The adsorption capacity of three eggshell bioadsorbents was evaluated to remove contaminants from raw leachate. Optimal conditions for the removal of suspended solids, color, and organic compounds, as COD, were achieved by batch experiments with three levels of pH and absorbent concentrations. Kinetic studies and isotherms were developed to understand the behavior of COD removal by the bioadsorbents. The chemical and physical characterizations indicate the leachate used in the present study had characteristics between mature and intermediate leachates. The optimal adsorption conditions were pH 2.0 and 1.0 gram (0.5 g/L) of adsorbent. Adsorbent M showed the best adsorption capacities, removing 99.06% (1446 NTU) of turbidity, 86.25% (4140 UPt-Co) of color and 54.56% of COD (1530mg/L). The data obtained through the kinetic and isothermal tests were better fitted to the pseudo first order and Langmuir models, with an equilibrium adsorption capacity (Qe) of 139 mg of COD/g of adsorbent and a specific speed of 1.51 min-1.

Keywords
bioadsorbent, biopolymers, leachates, organic waste

Article Details

How to Cite
Tarazona, Y., Rojas-Valencia, M. N., & Araiza-Aguilar, J. A. (2022). Evaluation of an adsorption process for the treatment of leachates using biopolymers extracted from organic waste obtained from the poultry industry. Chemical Reports, 4(1), 210-217. https://doi.org/10.25082/CR.2022.01.001

References

  1. Vandeginste V. Food waste eggshell valorization through development of new composites: A review. Sustainable Materials and Technologies, 2021, 29: e00317. https://doi.org/10.1016/j.susmat.2021.e00317
  2. Zhaoa S, Luoc F, Shena Y, et al. Removal of chlornitrofen pollutants from water by modified humic acid-based hydrophobic adsorbent. Desalination and Water Treatment, 2020, 175: 115-124. https://doi.org/10.5004/dwt.2020.24726
  3. Qiu X, Shen,Y, Yang R, et al. Adsorption of RE3+ from aqueous solutions by bayberry tannin immobilized on chitosan. Environmental technology, 2019, 40(2): 202-209. https://doi.org/10.1080/09593330.2017.1384072
  4. Shen YY, Yang RL, Liao Y, et al. Tannin modified aminated silica as effective absorbents for removal of light rare earth ions in aqueous solution. Desalination and water treatment, 2016, 57(39): 18529-18536. https://doi.org/10.1080/19443994.2015.1088479
  5. Smirnova A, Kalnina D and Locs J. Removal of Phosphates from Water Using Eggshell Bio Sorbents. Key Engineering Materials, 2017, 721: 149-153. https://doi.org/10.4028/www.scientific.net/KEM.721.149
  6. Zhang T, Tu Z, Lu G, et al. Research article: Removal of heavy metals from acid mine drainage using chicken eggshells in column mode. Journal of Environmental Management, 2017, 188: 1-8. https://doi.org/10.1016/j.jenvman.2016.11.076
  7. Nasir HM, Azmi A, Aris AZ, et al. Adsorption of iron by using hybrid Akar Putra and commercialized chicken eggshells as bio-sorbents from aqueous solution. Global Journal of Environmental Science and Management, 2016, 2(3): 257-264.
  8. Chowdhury S, Chakraborty S and Saha P. Removal of Crystal Violet from Aqueous Solution by Adsorption onto Eggshells: Equilibrium, Kinetics, Thermodynamics and Artificial Neural Network Modeling. Waste And Biomass Valorization, 2013, 4(3): 655-664. https://doi.org/10.1007/s12649-012-9139-1
  9. Hormaza A and Suárez García E. Estudio del proceso de biosorción de dos colorantes estructuralmente diferentes sobre residuos avícolas. Revista de la Sociedad Química del Perú, 2009, 75(3): 329-338.
  10. Tsai WT, Yang JM, Lai CW, et al. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresource technology, 2006, 97(3): 488-493. https://doi.org/10.1016/j.biortech.2005.02.050
  11. Kuh SE and Kim DS. Removal characteristics of cadmium ion by waste egg shell. Environmental technology, 2000, 21(8): 883-890. https://doi.org/10.1080/09593330.2000.9618973
  12. Palka K. Chemical and functional properties of food components. Chemical and Functional Properties of Food Components, 3rd Edn, ed Z. E. Sikorski (Boca Raton: CRC Press), 2006, 15-28. https://doi.org/10.1201/9781420009613.ch2
  13. Williams C. Gestión de residuos de aves de corral en los países en desarrollo. North Carolina State University, Department of Poultry Science, Raleigh, NC, Estados Unidos de América, 2013
  14. Pérez M and Villegas R. Procedimientos Para El Manejo De Residuos Orgánicos Avícolas. Manual Técnico. Medellín. Universidad De Antioquia, 2009.
  15. Abín Rueda R. Impactos ambientales de la producción de huevos: Análisis de Ciclo de Vida y Huella de Carbono, 2016.
  16. Baláž M, Boldyreva EV, Rybin D, et al. State-of-the-art of eggshell waste in materials science: recent advances in catalysis, pharmaceutical applications, and Mechanochemistry. Frontiers in Bioengineering and Biotechnology, 2021, 15: 22. https://doi.org/10.3389/fbioe.2020.612567
  17. Arcila HR and Peralta JJ. Agentes naturales como alternativa para el tratamiento del agua. Revista Facultad de Ciencias Básicas, 2016, 11(2): 136-153. https://doi.org/10.18359/rfcb.1303
  18. Montaño YT, Rojas-Valencia MN, Aguilar JA, et al. Evaluation of a coagulation-flocculation process for the treatment of leachates using a biopolymer extracted from organic waste from the Opuntia ficus industry. Transylvanian Review, 2019, 27(38): 9468-9475.
  19. Durán U, Coronado-Apodaca KG, Meza-Escalante ER, et al. Two combined mechanisms responsible to hexavalent chromium removal on active anaerobic granular consortium. Chemosphere, 2018, 198: 191-197. https://doi.org/10.1016/j.chemosphere.2018.01.024
  20. Lozada PT, Ho LEB, Ojeda C, et al. Influencia de la edad de lixiviados sobre su composición físico-química y su potencial de toxicidad. Revista UDCA Actualidad & Divulgación Científica, 2014, 17(1): 245-255. https://doi.org/10.31910/rudca.v17.n1.2014.960