Open Access Peer-reviewed Review

Progress of hollow materials in diagnosis of COVID-19

Main Article Content

Abid Hussain
Sonia Shabbir
Muhammad Faizan corresponding author
Muhammad Ali Tajwar

Abstract

Since the outbreak of COVID-19 in Wuhan, China, it has dramatically changed the global geopolitics, economics, and even society standard norms. The present world scenario is changed regarding business, traveling, and education. Rapid global dissemination and the high mortality rate of coronaviruses are the greatest challenges for drug developers. It will be moving forward toward the identification and treatment of emerging coronaviruses with the aid of nanotechnology. The COVID-19 pandemic raised the question of researchers’ capability to manage this dilemma in a short period. In the present review, we described how hallow material could be developed as a pro-drug that shows an excellent therapeutic effect. Hollow nanoparticles that exploration of antiviral or diagnostic agents against emerging coronaviruses. Hollow nanomaterials in vaccine development are essential because hollow nanocomposites are suitable for mimicking viral structures and antigen delivery. A biosensor that generates a signal from a transducer for comparing and analyzing biological conjugates such as cell receptors, antibodies, RNA, DNA, and nucleic acids. Different biosensors, such as graphene-based biosensors, nanoplasmonic sensor chips, nanomaterial biosensors, electrochemical biosensors, dual modality biosensors, and optical biosensors, have several advantages, characteristics, and a wide range of applications, most remarkably in medical treatment and are used for monitoring and diagnosis. This review focuses on modern experimental studies to identify intelligent and innovative bio/nanomaterials and matrices for developing targeted and controlled drug release systems, nanosensors and nanovaccines to combat pathogenic viruses.

Keywords
COVID-19, nanoparticles, hollow materials, diagnostic agents, nano/bio-sensors, pathogenic viruses

Article Details

How to Cite
Hussain, A., Shabbir, S., Faizan, M., & Tajwar, M. A. (2022). Progress of hollow materials in diagnosis of COVID-19. Chemical Reports, 4(1), 218-243. https://doi.org/10.25082/CR.2022.01.002

References

  1. Joshi VG, Vikas D, DimpalT, et al. Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. Indian Journal of Virology, 2013, 24(3): 312-320. https://doi.org/10.1007/s13337-013-0162-z
  2. Abbasi BH, Nazir M, Muhammad W, et al. A Comparative Evaluation of the Antiproliferative Activity against HepG2 Liver Carcinoma Cells of Plant-Derived Silver Nanoparticles from Basil Extracts with Contrasting Anthocyanin Contents. Biomolecules, 2019, 9(8): 320. https://doi.org/10.3390/biom9080320
  3. Gheibi Hayat SM and Darroudi M. Nanovaccine: A novel approach in immunization. Journal of Cellular Physiology, 2019, 234(8): 12530-12536. https://doi.org/10.1002/jcp.28120
  4. Yang X, Ma C, Zhao C, Zhang Y, et al. Preparation and mechanism of hydroxyapatite hollow microspheres with different surface charge by biomimetic method. Journal of Materials Science: Materials in Medicine, 2020, 31(5): 1-9. https://doi.org/10.1007/s10856-020-06385-7
  5. Nikaeen G, Abbaszadeh S and Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine, 2020, 15(15): 1501-1512. https://doi.org/10.2217/nnm-2020-0117
  6. Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16(1): 1-33. https://doi.org/10.1186/s12951-018-0392-8
  7. Ding J, Venkatesan R, Zhai Z, et al. Micro-and nanoparticles-based immunoregulation of macrophages for tissue repair and regeneration. Colloids and Surfaces B: Biointerfaces, 2020, 192: 111075. https://doi.org/10.1016/j.colsurfb.2020.111075
  8. Ogden N, Abdelmalik P and Pulliam J. Emerging Infections: Emerging infectious diseases: prediction and detection. Canada Communicable Disease Report, 2017, 43(10): 206. https://doi.org/10.14745/ccdr.v43i10a03
  9. Cojocaru FD, Botezat D, Gardikiotis I, et al. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics, 2020, 12(2): 171. https://doi.org/10.3390/pharmaceutics12020171
  10. Kanellos T, Sylvester ID, Howard CR, et al. DNA is as effective as protein at inducing antibody in fish. Vaccine, 1999, 17(7-8): 965-972. https://doi.org/10.1016/S0264-410X(98)00312-0
  11. Shin MD. COVID-19 vaccine development and a potential nanomaterial path forward. Nature nanotechnology, 2020, 15(8): 646-655. https://doi.org/10.1038/s41565-020-0737-y
  12. Singh A, misra R, Mohanty C, et al. Applications of nanotechnology in vaccine delivery. International Journal of Green Nanotechnology: Biomedicine, 2010, 2(1): 25-45.
  13. Vijayan V, mohapatra A, Uthaman S, et al. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics, 2019, 11(10): 534. https://doi.org/10.3390/pharmaceutics11100534
  14. Lin LC, Huang C, Yao B, et al. Viromimetic STING agonist loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus. Advanced functional materials, 2019, 29(28): 1807616. https://doi.org/10.1002/adfm.201807616
  15. Jiang J, Liu Y, Wu C, et al. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells. Drug Development & Industrial Pharmacy, 2017, 43(8): 1304-1313. https://doi.org/10.1080/03639045.2017.1318895
  16. Hasanzadeh A, Alamdaran m, Ahmedi S, et al. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. Journal of Controlled Release, 2021, 336: 354-374. https://doi.org/10.1016/j.jconrel.2021.06.036
  17. Ranjbar, S, Fatahi Y and Atyabi F. The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19? Journal of Drug Delivery Science and Technology, 2021, 67: 102899. https://doi.org/10.1016/j.jddst.2021.102899
  18. Lu R, zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet, 2020, 395(10224): 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  19. Organization WH. WHO-convened global study of origins of SARS-CoV-2: China part, 2021.
  20. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England journal of medicine, 2020, 382: 1199-1207. https://doi.org/10.1056/NEJMoa2001316
  21. Wrapp D, Wang N, Corbett K, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263. https://doi.org/10.1126/science.abb2507
  22. Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nature medicine, 2020, 26(4): 450-452. https://doi.org/10.1038/s41591-020-0820-9
  23. Wan Y, Shang G, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 2020, 94(7): e00127-20. https://doi.org/10.1128/JVI.00127-20
  24. Zhang J, Xie B and Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, Behavior, and Immunity, 2020, 87: 59-73. https://doi.org/10.1016/j.bbi.2020.04.046
  25. Letko M, Marzi A and Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol, 2020, 5: 562-9. https://doi.org/10.1038/s41564-020-0688-y
  26. Wan Y, Shang G, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 2020, 94(7): 1-9. https://doi.org/10.1128/JVI.00127-20
  27. Walls AC, park YJ, tortorici MJ, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2): 281-292. https://doi.org/10.1016/j.cell.2020.02.058
  28. Berry JD, Jone S, Derbot MA, et al. Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. Journal of virological methods, 2004, 120(1): 87-96. https://doi.org/10.1016/j.jviromet.2004.04.009
  29. Chacón-Torres JC, Reinoso C, Dainela G, et al. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to developing countries' needs in the detection and control of SARS-CoV-2. Scientific reports, 2020, 10(1): 1-10. https://doi.org/10.1038/s41598-020-75798-9
  30. Gorshkov K, Susumu K, Chen J, et al. Quantum dot-conjugated sars-cov-2 spike pseudo-virions enable tracking of angiotensin converting enzyme 2 binding and endocytosis. ACS nano, 2020, 14(9): 12234-12247. https://doi.org/10.1021/acsnano.0c05975
  31. Samson R, Navale GR and Dharne MS. Biosensors: Frontiers in rapid detection of COVID-19. Biotech, 2020, 10(9): 1-9. https://doi.org/10.1007/s13205-020-02369-0
  32. Wang B, Li R, Lu Z, et al. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY), 2020, 12(7): 6049. https://doi.org/10.18632/aging.103000
  33. Winichakoon P, Chaiwarith R, Salee P, et al. Negative nasopharyngeal and oropharyngeal swabs do not rule out COVID-19. Journal of clinical microbiology, 2020, 58(5): e00297-20. https://doi.org/10.1128/JCM.00297-20
  34. Pan Y, Li X, Yang G, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. Journal of Infection, 2020, 81(1): e28-e32. https://doi.org/10.1016/j.jinf.2020.03.051
  35. Lin D, Liu L, Zhang M, et al. Evaluations of the serological test in the diagnosis of 2019 novel coronavirus (SARS-CoV-2) infections during the COVID-19 outbreak. European Journal of Clinical Microbiology & Infectious Diseases, 2020, 39(12): 2271-2277. https://doi.org/10.1007/s10096-020-03978-6
  36. Lipsitch M, Swerdlow DL and Finelli L. Defining the epidemiology of Covid-19-studies needed. New England journal of medicine, 2020, 382(13): 1194-1196. https://doi.org/10.1056/NEJMp2002125
  37. Okba NM, Müller MA, Li W, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerging infectious diseases, 2020, 26(7): 1478-1488. https://doi.org/10.3201/eid2607.200841
  38. Shen Z, Xiao J, Kang L, et al. Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019. Clinical infectious diseases, 2020, 71(15): 713-720. https://doi.org/10.1093/cid/ciaa203
  39. Moitra P, Alafeef M, Dighe K, et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS nano, 2020, 14(6): 7617-7627. https://doi.org/10.1021/acsnano.0c03822
  40. Yan S, Sun H, Bu X ,et al. New strategy for COVID-19: an evolutionary role for RGD motif in SARS-CoV-2 and potential inhibitors for virus infection. Frontiers in Pharmacology, 2020, 11: 912. https://doi.org/10.3389/fphar.2020.00912
  41. Smith YR, Bhattacharyya D, Mohanty SK, et al. Anodic Functionalization of Titania Nanotube Arrays for the Electrochemical Detection of Tuberculosis Biomarker Vapors. Journal of The Electrochemical Society, 2016, 163(3): 83-89. https://doi.org/10.1149/2.0741603jes
  42. Hematian A , Sadeghifard N, Mohebi R, et al. Traditional and modern cell culture in virus diagnosis. Osong public health and research perspectives, 2016, 7(2): 77-82. https://doi.org/10.1016/j.phrp.2015.11.011
  43. Azmi A, Azman AA, Ibrahim S, et al. Techniques in Advancing the Capabilities of Various Nitrate Detection Methods: A Review. International Journal on Smart Sensing & Intelligent Systems, 2017, 10(2): 1-39. https://doi.org/10.21307/ijssis-2017-210
  44. Vadlamani BS, Uppal T, Verma SC, et al. Functionalized TiO2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Sensors, 2020, 20(20): 5871. https://doi.org/10.3390/s20205871
  45. Kumar N, Shetti NP, Jagannath, et al. Electrochemical sensors for the detection of SARS-CoV-2 virus. Chemical Engineering Journal, 2022, 430: 132966. https://doi.org/10.1016/j.cej.2021.132966
  46. Farzin L, Shamsipur M, Samandari L, et al. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta, 2020, 206: 120201. https://doi.org/10.1016/j.talanta.2019.120201
  47. Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano, 2020, 14(4): 5135-5142. https://doi.org/10.1021/acsnano.0c02823
  48. Ahmadivand A, Gerislioglu B, Ramezani Z, et al. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins. Biosensors and Bioelectronics, 2021, 177(42): 112971. https://doi.org/10.1016/j.bios.2021.112971
  49. Azzi L, Carcano G, Gianfagna F, et al. Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection, 2020, 81(1): e45-e50. https://doi.org/10.1016/j.jinf.2020.04.005
  50. Kevadiya BD, Machhi J, Herskovitz J, et al. Diagnostics for SARS-CoV-2 infections. Nature Materials, 2021, 20: 593-605. https://doi.org/10.1038/s41563-020-00906-z
  51. Fruncillo S, Su X, Liu H, et al. Lithographic Processes for the Scalable Fabrication of Micro-and Nanostructures for Biochips and Biosensors. ACS sensors, 2021, 6(6): 2002-2024. https://doi.org/10.1021/acssensors.0c02704
  52. Shan B, Broza YY, Li W, et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS nano, 2020, 14(9): 12125-12132. https://doi.org/10.1021/acsnano.0c05657
  53. Cheng N, Chen D, Lou B, et al. A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier. Biosensors and Bioelectronics, 2021, 186: 113246. https://doi.org/10.1016/j.bios.2021.113246
  54. Abduljalil JM, Laboratory diagnosis of SARS-CoV-2: available approaches and limitations. New microbes and new infections, 2020: 100713. https://doi.org/10.1016/j.nmni.2020.100713
  55. Kevadiya BD, Machhi J, Herskovitz J, et al. Diagnostics for SARS-CoV-2 infections. Nature materials, 2021, 20(5): 593-605. https://doi.org/10.1038/s41563-020-00906-z
  56. Shrotri M, Schalkwyk M, Post N, et al. T cell response to SARS-CoV-2 infection in humans: A systematic review. PLoS One, 2021, 16(1): e0245532. https://doi.org/10.1371/journal.pone.0245532
  57. Katrin Z, Weyh M, Krueger C, et al. Rapid detection of SARS-CoV-2 by pulse-controlled amplification (PCA). medRxiv, 2020, 36: 100713. 2020.07.29.20154104. https://doi.org/10.1101/2020.07.29.20154104
  58. Infantino M, Damiani A, Gobbi FL, et al. Serological assays for SARS-CoV-2 infectious disease: benefits, limitations and perspectives. Isr Med Assoc J, 2020, 22(4): 203-210.
  59. Dheda K., Ruhwald M, Theron G, et al. Point of care diagnosis of tuberculosis: Past, present and future. Respirology, 2013, 18(2): 217-232. https://doi.org/10.1111/resp.12022
  60. Shen M, Zhou Y, Yeet J, et al. Recent advances and perspectives of nucleic acid detection for coronavirus. Journal of Pharmaceutical Analysis, 2020, 10(2): 97-101. https://doi.org/10.1016/j.jpha.2020.02.010
  61. Qin L, Yang Y, Cao Q, et al. A predictive model and scoring system combining clinical and CT characteristics for the diagnosis of COVID-19. European radiology, 2020, 30(12): 6797-6807. https://doi.org/10.1007/s00330-020-07022-1
  62. Xu Y, Yang Y, Cao Q, et al. Current approaches in laboratory testing for SARS-CoV-2. 2020. 100: 7-9. https://doi.org/10.1016/j.ijid.2020.08.041
  63. D'Cruz RJ, Currier AW and Sampson VB. Laboratory testing methods for novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Frontiers in cell and developmental biology, 2020, 8: 468. https://doi.org/10.3389/fcell.2020.00468
  64. Qi J, Lai X, Wang J, et al. Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44(19): 6749-6773. https://doi.org/10.1039/C5CS00344J
  65. Long L, Liu X, Chen L, et al. A hollow CuO x/NiO y nanocomposite for amperometric and non-enzymatic sensing of glucose and hydrogen peroxide. Microchimica Acta, 2019, 186(2): 74. https://doi.org/10.1007/s00604-018-3183-x
  66. He G, Tian L, Cai, y et al. Sensitive nonenzymatic electrochemical glucose detection based on hollow porous NiO. Nanoscale research letters, 2018, 13(1): 1-10. https://doi.org/10.1186/s11671-017-2406-0
  67. Abunahla H, Mohammad B, Alazzam A, et al. MOMSense: metal-oxide-metal elementary glucose sensor. Scientific reports, 2019, 9(1): 1-10. https://doi.org/10.1038/s41598-019-41892-w
  68. Zhang J, Sun Y, Li X, et al. Fabrication of porous NiMn 2 O 4 nanosheet arrays on nickel foam as an advanced sensor material for non-enzymatic glucose detection. Scientific reports, 2019, 9(1): 1-13. https://doi.org/10.1038/s41598-019-54746-2
  69. Qian J, Wang Y, Pan J, et al. Non-enzymatic glucose sensor based on ZnO-CeO2 whiskers. Materials Chemistry and Physics, 2020, 239: 122051. https://doi.org/10.1016/j.matchemphys.2019.122051
  70. Gandhi M, Yokoe DS and Havlir DV. Asymptomatic Transmission, the Achilles' Heel of Current Strategies to Control Covid-19. New England Journal of Medicine, 2020, 382(22): 2158-2160. https://doi.org/10.1056/NEJMe2009758
  71. Muti M, Sharma S, Erdem A, et al. Electrochemical monitoring of nucleic acid hybridization by single‐use graphene oxide‐based sensor. Electroanalysis, 2011, 23(1): 272-279. https://doi.org/10.1002/elan.201000425
  72. Bi S, Zhao T and Luo B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chemical Communications, 2012, 48(1): 106-108. https://doi.org/10.1039/C1CC15443E
  73. Liu F, Xiang G, Zhang L ,et al. A novel label free long non-coding RNA electrochemical biosensor based on green L-cysteine electrodeposition and Au-Rh hollow nanospheres as tags. RSC advances, 2015, 5(64): 51990-51999. https://doi.org/10.1039/C5RA07904G
  74. Liu X, Cheng Z, Fan H, et al. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochimica Acta, 2011, 56(18): 6266-6270. https://doi.org/10.1016/j.electacta.2011.05.055
  75. Low SS, Tan MTT, Loh HS, et al. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor. Analytica chimica acta, 2016, 903: 131-141. https://doi.org/10.1016/j.aca.2015.11.006
  76. Łoczechin A, Séron K, Barras A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS applied materials & interfaces, 2019, 11(46): 42964-42974. https://doi.org/10.1021/acsami.9b15032
  77. Mao X, Liu S, Yang C, et al. Colorimetric detection of hepatitis B virus (HBV) DNA based on DNA-templated copper nanoclusters. Analytica chimica acta, 2016, 909: 101-108. https://doi.org/10.1016/j.aca.2016.01.009
  78. Chen X, Liu S, Yang C, et al. An ultrasensitive DNA biosensor based on enzyme-catalyzed deposition of cupric hexacyanoferrate nanoparticles. Biosensors and Bioelectronics, 2010, 25(6): 1420-1426. https://doi.org/10.1016/j.bios.2009.10.041
  79. Tsang NM, Chang KP, Lin SY, et al. Detection of Epstein‐Barr Virus-Derived Latent Membrane Protein‐1 Gene in Various Head and Neck Cancers: Is It Specific for Nasopharyngeal Carcinoma? The Laryngoscope, 2003, 113(6): 1050-1054. https://doi.org/10.1097/00005537-200306000-00025
  80. Riccò R, Meneghello A and Enrichi F. Signal enhancement in DNA microarray using dye doped silica nanoparticles: application to human papilloma virus (HPV) detection. Biosensors and Bioelectronics, 2011, 26(5): 2761-2765. https://doi.org/10.1016/j.bios.2010.10.024
  81. Tsang MK, Ye WW, Wang G, et al. Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. Acs Nano, 2016, 10(1): 598-605. https://doi.org/10.1021/acsnano.5b05622
  82. Chen CC, Lai ZL, Wang GJ, et al. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosensors and Bioelectronics, 2016, 77: 603-608. https://doi.org/10.1016/j.bios.2015.10.028
  83. Hyeon T, Piao Y and Park YI. Method of preparing iron oxide nanoparticles coated with hydrophilic material, and magnetic resonance imaging contrast agent using the same. Google Patents, 2016.
  84. Mashhadizadeh MH and Talemi RP. A highly sensitive and selective hepatitis B DNA biosensor using gold nanoparticle electrodeposition on an Au electrode and mercaptobenzaldehyde. Analytical Methods, 2014, 6(22): 8956-8964. https://doi.org/10.1039/C4AY01465K
  85. Ma C, Xie G, Zhang W, et al. Label-free sandwich type of immunosensor for hepatitis C virus core antigen based on the use of gold nanoparticles on a nanostructured metal oxide surface. Microchimica Acta, 2012, 178(3): 331-340. https://doi.org/10.1007/s00604-012-0842-1
  86. Sabela M, Balme S, Bechelany M, et al. A review of gold and silver nanoparticle‐based colorimetric sensing assays. Advanced Engineering Materials, 2017, 19(12): 1700270. https://doi.org/10.1002/adem.201700270
  87. Yu KH, Beam AL and Kohane ISJN. Artificial intelligence in healthcare. Nature Biomedical Engineering, 2018, 2(10): 719-731. https://doi.org/10.1038/s41551-018-0305-z
  88. Castillo HL, Acuña MB, Rojas Ac, et al. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. Sensors, 2020, 20(23): 6926. https://doi.org/10.3390/s20236926
  89. Rosén T, Hsiao BS and Söderberg LD. Elucidating the opportunities and challenges for nanocellulose spinning. Advanced Materials, 2021, 33(28): 2001238. https://doi.org/10.1002/adma.202001238
  90. Yockell-Lelièvre, H, Bukar N, Toulouse JL, et al. Naked-eye nanobiosensor for therapeutic drug monitoring of methotrexate. Analyst, 2016, 141(2): 697-703. https://doi.org/10.1039/C5AN00996K
  91. Jianrong C, Yuqing M, Nongyue H. et al. Nanotechnology and biosensors. Biotechnology advances, 2004, 22(7): 505-518. https://doi.org/10.1016/j.biotechadv.2004.03.004
  92. Socorro-Leránoz AB, Santano D, Villar ID, et al. Trends in the design of wavelength-based optical fibre biosensors (2008-2018). Biosensors and Bioelectronics, 2019, 1: 100015. https://doi.org/10.1016/j.biosx.2019.100015
  93. Mishra RK and Rajakumari R. Chapter 1 - Nanobiosensors for Biomedical Application: Present and Future Prospects, in Characterization and Biology of Nanomaterials for Drug Delivery, S.S. Mohapatra, et al. Editors. 2019, Elsevier. p. 1-23. https://doi.org/10.1016/B978-0-12-814031-4.00001-5
  94. Fu Z, Lu YC and Lai JJ. Recent Advances in Biosensors for Nucleic Acid and Exosome Detection. Chonnam Medical Journal, 2019, 55(2): 86-98. https://doi.org/10.4068/cmj.2019.55.2.86
  95. Veselinovic J, AlMashtoub S, Nagella S, et al. Interplay of effective surface area, mass transport, and electrochemical features in nanoporous nucleic acid sensors. Analytical chemistry, 2020, 92(15): 10751-10758. https://doi.org/10.1021/acs.analchem.0c02104
  96. Park CS, Lee C and Kwon OSJP. Conducting polymer based nanobiosensors. 2016. 8(7): 249. https://doi.org/10.3390/polym8070249
  97. Chamorro-Garcia A and Merkoçi AJN. Nanobiosensors in diagnostics. Nanobiosensors in diagnostics, 2016, 3: 1849543516663574. https://doi.org/10.1177/1849543516663574
  98. Harvey JD, Baker HA, Ortiz MV, et al. HIV detection via a carbon nanotube RNA sensor. ACS Sensors, 2019, 4(5): 1236-1244. https://doi.org/10.1021/acssensors.9b00025
  99. Lin Z, Wu G, Zhao L, et al. Carbon nanomaterial-based biosensors: a review of design and applications. IEEE Nanotechnology Magazine, 2019, 13(5): 4-14. https://doi.org/10.1109/MNANO.2019.2927774
  100. Pirzada M and Altintas Z. Nanomaterials for Healthcare Biosensing Applications. Sensors, 2019, 19(23): 5311. https://doi.org/10.3390/s19235311
  101. Shetti NP, Bukkitgar SD, Reddy KR,et al. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors and Bioelectronics, 2019, 141: 111417. https://doi.org/10.1016/j.bios.2019.111417
  102. Cevik M, Tate M, Lloyd O, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. The lancet microbe, 2021, 2(1): e13-e22. https://doi.org/10.1016/S2666-5247(20)30172-5
  103. Shetti NP, Bukkitgar SD, Reddy KR, et al. Nanostructured silver doped TiO2/CNTs hybrid as an efficient electrochemical sensor for detection of anti-inflammatory drug, cetirizine. Microchemical Journal, 2019, 150: 104124. https://doi.org/10.1016/j.microc.2019.104124
  104. Shetti NP, Bukkitgar SD, Reddy KR, et al. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Analytica chimica acta, 2019, 1051: 58-72. https://doi.org/10.1016/j.aca.2018.11.041
  105. Kumar S., Bukkitgar SD, Singh S, et al. Electrochemical Sensors and Biosensors Based on Graphene Functionalized with Metal Oxide Nanostructures for Healthcare Applications. ChemistrySelect, 2019, 4(18): 5322-5337. https://doi.org/10.1002/slct.201803871
  106. Yoon S and Kim HK. Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors. Surface and Coatings Technology, 2020, 384: 125308. https://doi.org/10.1016/j.surfcoat.2019.125308
  107. Guo W, Shim K and Kim YT. Ag layer deposited on Zn by physical vapor deposition with enhanced CO selectivity for electrochemical CO2 reduction. Applied Surface Science, 2020, 526: 146651. https://doi.org/10.1016/j.apsusc.2020.146651
  108. Shetti NP, Malode SJ, Bukkitgar SD, et al. Electro-oxidation and determination of nimesulide at nanosilica modified sensor. Materials Science for Energy Technologies, 2019, 2(3): 396-400. https://doi.org/10.1016/j.mset.2019.03.005
  109. Teng Z, Li W, Tang Y, et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31(38): 1707612. https://doi.org/10.1002/adma.201707612
  110. Tamayo-Velasco Á, Peñarrubia-Ponce MJ, Alveriz Fj, et al. Evaluation of cytokines as robust diagnostic biomarkers for COVID-19 detection. Journal of personalized medicine, 2021, 11(7): 681. https://doi.org/10.3390/jpm11070681
  111. Lee T, Park SY, Jang H, et al. Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. Materials Science and Engineering: C, 2019, 99: 511-519. https://doi.org/10.1016/j.msec.2019.02.001
  112. Shariati M, Ghorbani M, Sasanpour P et al. An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment. Analytica Chimica Acta, 2019, 1048: 31-41. https://doi.org/10.1016/j.aca.2018.09.062
  113. Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchimica Acta, 2012, 177(3): 245-270. https://doi.org/10.1007/s00604-011-0758-1
  114. Zhang Y, Li B, Wei X, et al. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework. Microchimica Acta, 2021, 188(8): 1-11. https://doi.org/10.1007/s00604-021-04912-z
  115. Masud MK, Umer M, Hossain MSA,et al. Nanoarchitecture frameworks for electrochemical miRNA detection. Trends in biochemical sciences, 2019, 44(5): 433-452. https://doi.org/10.1016/j.tibs.2018.11.012
  116. Rezaei B, Ghani M, Shoushtari AM, et al. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review. Biosensors and Bioelectronics, 2016, 78: 513-523. https://doi.org/10.1016/j.bios.2015.11.083
  117. Mahari S, Roberts A, Shahdeo D, et al. eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv, 2020. https://doi.org/10.1101/2020.04.24.059204
  118. Bhattacharyya D, Smith YR, Mohanty Sk, et al. Titania nanotube array sensor for electrochemical detection of four predominate tuberculosis volatile biomarkers. Journal of The Electrochemical Society, 2016, 163(6): B206. https://doi.org/10.1149/2.0221606jes
  119. Smith YR, Bhattacharyya D, Mohanty Sk, et al. Anodic functionalization of titania nanotube arrays for the electrochemical detection of tuberculosis biomarker vapors. Journal of the Electrochemical Society, 2015, 163(3): B83. https://doi.org/10.1149/2.0741603jes
  120. Kumar S, Bukkitgar SD, Singh S, et al. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect, 2019, 4(18): 5322-5337. https://doi.org/10.1002/slct.201803871
  121. Bukkitgar S and Shetti N. Fabrication of a TiO 2 and clay nanoparticle composite electrode as a sensor. Analytical methods, 2017, 9(30): 4387-4393. https://doi.org/10.1039/C7AY01068K
  122. Bukkitgar SD, Shetti NP and Kulkarni RM. Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sensors and Actuators B: Chemical, 2018, 255: 1462-1470. https://doi.org/10.1016/j.snb.2017.08.150
  123. Shikandar D, Shetti NP, Kulkarni RM, et al. Silver-doped titania modified carbon electrode for electrochemical studies of furantril. ECS Journal of Solid State Science and Technology, 2018, 7(7): Q3215. https://doi.org/10.1149/2.0321807jss
  124. Mishra A, Basu S, Shetti NP, et al. Photocatalysis of Graphene and Carbon Nitride-Based Functional Carbon Quantum Dots. Nanoscale Materials in Water Purification, 2019, 759-781. https://doi.org/10.1016/B978-0-12-813926-4.00035-5
  125. Mishra A, Basu S, Shetti NP, et al. Carbon cloth-based hybrid materials as flexible electrochemical supercapacitors. ChemElectroChem, 2019, 6(23): 5771-5786. https://doi.org/10.1002/celc.201901122
  126. Singh L, Kruger HG, Maguire GEM, et al. The role of nanotechnology in the treatment of viral infections. Therapeutic advances in infectious disease, 2017, 4(4): 105-131. https://doi.org/10.1177/2049936117713593
  127. Cho IH, Kim DH and Park S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomaterials research, 2020, 24(1): 1-12. https://doi.org/10.1186/s40824-019-0181-y
  128. Zhao F, Bai Y, Cao L, et al. New electrochemical DNA sensor based on nanoflowers of Cu3 (PO4) 2-BSA-GO for hepatitis B virus DNA detection. Journal of Electroanalytical Chemistry, 2020, 867: 114184. https://doi.org/10.1016/j.jelechem.2020.114184
  129. Khristunova E, Barek J, Kratochvil B, et al. Electrochemical immunoassay for the detection of antibodies to tick-borne encephalitis virus by using various types of bioconjugates based on silver nanoparticles. Bioelectrochemistry, 2020, 135: 107576. https://doi.org/10.1016/j.bioelechem.2020.107576
  130. Kwon J, Lee Y, Lee T, et al. Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Analytical chemistry, 2020, 92(7): 5524-5531. https://doi.org/10.1021/acs.analchem.0c00348
  131. Kaushik A, Yndart A, Kumar S, et al. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Scientific reports, 2018, 8(1): 1-5. https://doi.org/10.1038/s41598-018-28035-3
  132. Bandodkar AJ, Imani S, Nunez-Flores R, et al. Re-usable electrochemical glucose sensors integrated into a smartphone platform. Biosensors and Bioelectronics, 2018, 101: 181-187. https://doi.org/10.1016/j.bios.2017.10.019
  133. Walgama C, Nguyen MP, Boatner LM, et al. Hybrid paper and 3D-printed microfluidic device for electrochemical detection of Ag nanoparticle labels. Lab on a Chip, 2020, 20(9): 1648-1657. https://doi.org/10.1039/D0LC00276C
  134. McArdle H, Nguyen MP, Boatner LM, et al. Triangular silver nanoplates: Properties and ultrasensitive detection of miRNA. Electrochemistry Communications, 2017, 79: 23-27. https://doi.org/10.1016/j.elecom.2017.04.010
  135. Sheridan, C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol, 2020, 38(5): 515-8. https://doi.org/10.1038/d41587-020-00010-2
  136. Li X, Scida K and Crooks RM. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Analytical chemistry, 2015, 87(17): 9009-9015. https://doi.org/10.1021/acs.analchem.5b02210
  137. Zhang X, Tanner P, Graff A, et al. Mimicking the cell membrane with block copolymer membranes. Journal of polymer science part A: polymer chemistry, 2012, 50(12): 2293-2318. https://doi.org/10.1002/pola.26000
  138. de Eguilaz MR, Cumba LR and Forster RJ. Electrochemical detection of viruses and antibodies: A mini review. Electrochemistry communications, 2020, 116: 106762. https://doi.org/10.1016/j.elecom.2020.106762
  139. Dai Y and Liu CC. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems. Angewandte Chemie International Edition, 2019, 58(36): 12355-12368. https://doi.org/10.1002/anie.201901879
  140. Chen JHK, Yip CCY, Poon RWS, et al. Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. Emerging microbes & infections, 2020, 9(1): 1356-1359. https://doi.org/10.1080/22221751.2020.1775133
  141. Choi JR. Development of point-of-care biosensors for COVID-19. Frontiers in chemistry, 2020, 8: 517. https://doi.org/10.3389/fchem.2020.00517
  142. Lee JH, Park SJ and Choi JW. Electrical property of graphene and its application to electrochemical biosensing. Nanomaterials, 2019, 9(2): 297. https://doi.org/10.3390/nano9020297
  143. Chan C, Shi J, Fan Y, et al. A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sensors and Actuators B: Chemical, 2017, 251: 927-933. https://doi.org/10.1016/j.snb.2017.05.147
  144. OnoT, Oe T, Kanai Y, et al. Glycan-functionalized graphene-FETs toward selective detection of human-infectious avian influenza virus. Japanese Journal of Applied Physics, 2017, 56(3): 030302. https://doi.org/10.7567/JJAP.56.030302
  145. Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano, 2020, 14(4): 5135-5142. https://doi.org/10.1021/acsnano.0c02823
  146. Iravani, S. Nano-and biosensors for the detection of SARS-CoV-2: challenges and opportunities. Materials Advances, 2020, 1(9): 3092-3103. https://doi.org/10.1039/D0MA00702A
  147. Liu J, Chen X, Wang Q, et al. Ultrasensitive Monolayer MoS(2) Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett, 2019, 19(3): 1437-1444. https://doi.org/10.1021/acs.nanolett.8b03818
  148. Janissen R, Sahoo PK, Santos CA, et al. InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett, 2017, 17(10): 5938-5949. https://doi.org/10.1021/acs.nanolett.7b01803
  149. Layqah LA and Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchimica Acta, 2019, 186(4): 1-10. https://doi.org/10.1007/s00604-019-3345-5
  150. Wen F, He T, Liu H, et al. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy, 2020, 78: 105155. https://doi.org/10.1016/j.nanoen.2020.105155
  151. Ryvolová M, Macka M and Preisler J. Portable capillary-based (non-chip) capillary electrophoresis. TrAC Trends in Analytical Chemistry, 2010, 29(4): 339-353. https://doi.org/10.1016/j.trac.2009.12.010
  152. Ganganboina AB , Chowdhury AD, Khoris IM, et al. Hollow magnetic-fluorescent nanoparticles for dual-modality virus detection. Biosensors and Bioelectronics, 2020, 170: 112680. https://doi.org/10.1016/j.bios.2020.112680
  153. Chuon TT, Pallaoro A, Chaves Ca, et al. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals. Proceedings of the National Academy of Sciences, 2017, 114(34): 9056-9061. https://doi.org/10.1073/pnas.1700317114
  154. Park J, Jeong Y, Kim J, et al. Biopsy needle integrated with multi-modal physical/chemical sensor array. Biosensors and Bioelectronics, 2020, 148: 111822. https://doi.org/10.1016/j.bios.2019.111822
  155. Wu Z, Zeng T, Guo Wj ,et al. Digital Single Virus Immunoassay for Ultrasensitive Multiplex Avian Influenza Virus Detection Based on Fluorescent Magnetic Multifunctional Nanospheres. ACS Applied Materials & Interfaces, 2019, 11(6): 5762-5770. https://doi.org/10.1021/acsami.8b18898
  156. Shrivastava S, Trung TQ and Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chemical Society Reviews, 2020, 49(6): 1812-1866. https://doi.org/10.1039/C9CS00319C
  157. Guerrero-Martínez A, Pérez-Juste J and Liz-Marzán LM. Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced materials, 2010, 22(11): 1182-1195. https://doi.org/10.1002/adma.200901263
  158. Dutta CA, Ganganboina AB, Tsai Y, et al. Multifunctional GQDs-Concanavalin A@Fe(3)O(4) nanocomposites for cancer cells detection and targeted drug delivery. Anal Chim Acta, 2018, 1027: 109-120. https://doi.org/10.1016/j.aca.2018.04.029
  159. Song L, Wang Z, Liu J, et al. Tumor-Targeted DNA Bipyramid for in Vivo Dual-Modality Imaging. ACS Applied Bio Materials, 2020, 3(5): 2854-2860. https://doi.org/10.1021/acsabm.9b01096
  160. Wang R, Lin J, Lassiter K, et al. Evaluation study of a portable impedance biosensor for detection of avian influenza virus. Journal of Virological Methods, 2011, 178(1-2): 52-58. https://doi.org/10.1016/j.jviromet.2011.08.011
  161. Lake RJ, Yang Z, Zhang JJ, et al. DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions. Accounts of chemical research, 2019, 52(12): 3275-3286. https://doi.org/10.1021/acs.accounts.9b00419
  162. Medina CB, Mehrotra P, Arandjelov S, et al. Metabolites released from apoptotic cells act as tissue messengers. Nature, 2020, 580(7801): 130-135. https://doi.org/10.1038/s41586-020-2121-3
  163. Takemura K, Satoh J, Boonyakida J, et al. Electrochemical detection of white spot syndrome virus with a silicone rubber disposable electrode composed of graphene quantum dots and gold nanoparticle-embedded polyaniline nanowires. Journal of nanobiotechnology, 2020, 18(1): 1-12. https://doi.org/10.1186/s12951-020-00712-4
  164. Nasrin F, Chowdhury AD, Takemura K, et al. Fluorometric virus detection platform using quantum dots-gold nanocomposites optimizing the linker length variation. Analytica chimica acta, 2020, 1109: 148-157. https://doi.org/10.1016/j.aca.2020.02.039
  165. Chowdhury AD, Takemura k, Li TC, et al. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nature communications, 2019,10(1): 1-12. https://doi.org/10.1038/s41467-019-11644-5
  166. ZhouH, Zhang j, Li B, et al. Dual-Mode SERS and Electrochemical Detection of miRNA Based on Popcorn-like Gold Nanofilms and Toehold-Mediated Strand Displacement Amplification Reaction. Analytical chemistry, 2021, 93(15): 6120-6127. https://doi.org/10.1021/acs.analchem.0c05221
  167. Sathiyamoorthy K, Mohankumar VK and Murukeshan VM. Real time monitoring of fluorescent particles in micro-channels by high resolution dual modality probe imaging. Optics and Photonics Journal, 2011, 1(4): 197-203. https://doi.org/10.4236/opj.2011.14031
  168. Ali MA, Tabassum S, Wang Q, et al. Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal. Lab on a Chip, 2018, 18(5): 803-817. https://doi.org/10.1039/C7LC01211J
  169. Zhuang J, Yin J, Lv S,et al. Advanced ``lab-on-a-chip" to detect viruses-Current challenges and future perspectives. Biosensors and Bioelectronics, 2020, 163: 112291. https://doi.org/10.1016/j.bios.2020.112291
  170. Qiu G, Gai Z, Tao Y, et al. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano, 2020, 14(5): 5268-5277. https://doi.org/10.1021/acsnano.0c02439
  171. Damborský P, Švitel J and Katrlík J. Optical biosensors. Essays in biochemistry, 2016, 60(1): 91-100. https://doi.org/10.1042/EBC20150010
  172. Takemura K. Surface plasmon resonance (SPR)-and localized SPR (LSPR)-based virus sensing systems: Optical vibration of nano-and micro-metallic materials for the development of next-generation virus detection technology. Biosensors, 2021, 11(8): 250. https://doi.org/10.3390/bios11080250
  173. Nag P, Sadani K and Mukherji S. Optical fiber sensors for rapid screening of COVID-19. Transactions of the Indian National Academy of Engineering, 2020, 5(2): 233-236. https://doi.org/10.1007/s41403-020-00128-4
  174. Socorro-Leránoz AB, Santano D, Villar ID, et al. Trends in the design of wavelength-based optical fibre biosensors (2008-2018). Biosensors and Bioelectronics, 2019, 1: 100015. https://doi.org/10.1016/j.biosx.2019.100015
  175. Roh C and Jo SK. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. Journal of Chemical Technology & Biotechnology, 2011, 86(12): 1475-1479. https://doi.org/10.1002/jctb.2721
  176. Ye H, Liu Y, Zhan L, et al. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics, 2020, 10(10): 4359-4373. https://doi.org/10.7150/thno.44298
  177. Lung J, Lin YS, Yang YH, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. Journal of Medical Virology, 2020, 92(6): 693-697. https://doi.org/10.1002/jmv.25761
  178. Yu R, Chen L, Lan R, et al. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 2020, 56(2): 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
  179. Jauffred L, Samadi A, Klingberg H, et al. Plasmonic Heating of Nanostructures. Chemical Reviews, 2019, 119(13): 8087-8130. https://doi.org/10.1021/acs.chemrev.8b00738
  180. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 2020, 25(3): 2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
  181. Khalid K, Tan X, Mohd ZHF, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered, 2020, 11(1): 328-355. https://doi.org/10.1080/21655979.2020.1736240
  182. Bruinink A, Wang J and Wick P. Effect of particle agglomeration in nanotoxicology. Archives of toxicology, 2015, 89(5): 659-675. https://doi.org/10.1007/s00204-015-1460-6
  183. Cao J, Sun T and Grattan KT. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and actuators B: Chemical, 2014, 195: 332-351. https://doi.org/10.1016/j.snb.2014.01.056
  184. Zhang L, Mazouzi Y, Salmain M, et al. Antibody-gold nanoparticle bioconjugates for biosensors: synthesis, characterization and selected applications. Biosensors and Bioelectronics, 2020, 165: 112370. https://doi.org/10.1016/j.bios.2020.112370
  185. Qiu G, Yue Y, Tang J, et al. Total bioaerosol detection by a Succinimidyl-Ester-functionalized Plasmonic biosensor to reveal different characteristics at three locations in Switzerland. Environmental science & technology, 2020, 54(3): 1353-1362. https://doi.org/10.1021/acs.est.9b05184
  186. Turunc E, Binzet R, Gumus I, et al. Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb.(Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide. Materials Chemistry and Physics, 2017, 202: 310-319. https://doi.org/10.1016/j.matchemphys.2017.09.032
  187. Baghayer M, Alinezhad H, Tarahomi M, et al. A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Applied Surface Science, 2019, 478: 87-93. https://doi.org/10.1016/j.apsusc.2019.01.201
  188. Petryayeva E and Krull UJ. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review. Analytica chimica acta, 2011, 706(1): 8-24. https://doi.org/10.1016/j.aca.2011.08.020
  189. Funari R, Chu KY and Shen AQ. Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosensors and Bioelectronics, 2020, 169: 112578. https://doi.org/10.1016/j.bios.2020.112578
  190. Xia Y, Chen Y, Tang Y, et al. Smartphone-Based Point-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection. ACS Sensors, 2019, 4(12): 3298-3307. https://doi.org/10.1021/acssensors.9b01927
  191. Verma N, Badhe Y, Gupta R, et al. Interactions of Peptide Coated Gold Nanoparticles with Spike Protein of the SARS-CoV-2: A Basis for Design of a Simple and Rapid Detection Tool. 2020. https://doi.org/10.26434/chemrxiv.13341449
  192. Hussei HA, Hassan RYA, Chino M, et al. Point-of-care diagnostics of COVID-19: from current work to future perspectives. Sensors, 2020, 20(15): 4289. https://doi.org/10.3390/s20154289
  193. Pan Y, Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 2020, 20(4): 411-412. https://doi.org/10.1016/S1473-3099(20)30113-4
  194. Chen Z, Zhang Z, Zhai X, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Analytical chemistry, 2020, 92(10): 7226-7231. https://doi.org/10.1021/acs.analchem.0c00784
  195. Li Z, Yi Y, Luo X,et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. Journal of medical virology, 2020, 92(9): 1518-1524. https://doi.org/10.1002/jmv.25727
  196. Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807): 221-224. https://doi.org/10.1038/s41586-020-2179-y
  197. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine, 2020, 46(4): 586-590. https://doi.org/10.1007/s00134-020-05985-9
  198. Barnes CO, Jette CA, Abernathy ME, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 2020, 588(7839): 682-687. https://doi.org/10.1038/s41586-020-2852-1
  199. Thakur A, Sathyamurthy R, Ramalingam V, et al. A case study of SARS-CoV-2 transmission behavior in severe air-polluted city (Delhi, India) and potential usage of graphene based materials for filtering the air-pollutants and controlling/monitoring the COVID-19 pandemic. Environmental Science: Processes & Impacts, 2021. https://doi.org/10.1039/D1EM00034A
  200. Celina MC, Martinez E, Omana MA, et al. Extended use of face masks during the COVID-19 pandemic-Thermal conditioning and spray-on surface disinfection. Polymer Degradation and Stability, 2020, 179: 109251. https://doi.org/10.1016/j.polymdegradstab.2020.109251
  201. Rai NK, Ashok A and Akondi BR. Consequences of chemical impact of disinfectants: safe preventive measures against COVID-19. Critical Reviews in Toxicology, 2020, 50(6): 513-520. https://doi.org/10.1080/10408444.2020.1790499
  202. Egorova KS, Gordeev EG and Ananikov VP. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chemical Reviews, 2017, 117(10): 7132-7189. https://doi.org/10.1021/acs.chemrev.6b00562
  203. Klyachko NL, Manickam DS, Brynskikh AM, et al. Cross-linked antioxidant nanozymes for improved delivery to CNS. Nanomedicine Nanotechnology Biology & Medicine, 2012, 8(1): 119-129. https://doi.org/10.1016/j.nano.2011.05.010
  204. Yi X, Devika SM, Anna B, et al. Agile delivery of protein therapeutics to CNS. Journal of Controlled Release, 2014, 190: 637-663. https://doi.org/10.1016/j.jconrel.2014.06.017