Open Access Peer-reviewed Review

How antidepressants affect the cerebral ischemic injury and ischemic stroke

Main Article Content

Xiaohui Sun
Tian Wang
Lin Zhou
Yawen Yu
Zhaofeng Liu
Runchen Ma
Fenghua Fu corresponding author

Abstract

Ischemic stroke is the main cause of long-term disability and death worldwide. Studies have pointed out that antidepressants not only can be used to treat depression, but also promote nerve regeneration, nerve plasticity, and recovery of nerve function after stroke. Some evidences indicated that antidepressants have beneficial effects on ischemic stroke. At the same time, there are also risks in treatment process. The mechanisms of the effects of antidepressants on ischemic stroke are complicated and rarely reported. This review summarizes the roles of antidepressants in patients and animal models of stroke, the possible mechanisms of antidepressants against brain injury induced by stroke, and the risks and challenges of antidepressants treatment in patients with ischemia.

Keywords
ischemic stroke, antidepressants, brain protection

Article Details

Supporting Agencies
This study was supported by grants from the Taishan Scholar Project of Shandong Province.
How to Cite
Sun, X., Wang, T., Zhou, L., Yu, Y., Liu, Z., Ma, R., & Fu, F. (2023). How antidepressants affect the cerebral ischemic injury and ischemic stroke. Journal of Pharmaceutical and Biopharmaceutical Research, 4(2), 318-325. https://doi.org/10.25082/JPBR.2022.02.003

References

  1. Randolph SA. Ischemic Stroke. Workplace health & safety, 2016, 64(9): 444. https://doi.org/10.1177/2165079916665400
  2. Ginsberg MD. Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke, 2009, 40(3): 111-114. https://doi.org/10.1161/strokeaha.108.528877
  3. Jin Y, Lim CM, Kim SW, et al. Fluoxetine attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Brain research, 2009, 1281: 108-116. https://doi.org/10.1016/j.brainres.2009.04.053
  4. Ön BI, Vidal X, Berger U, et al. Antidepressant use and stroke or mortality risk in the elderly. European journal of neurology, 2022, 29(2): 469-477. https://doi.org/10.1111/ene.15137
  5. Mortensen JK and Andersen G. Pharmacological management of post-stroke depression: an update of the evidence and clinical guidance. Expert opinion on pharmacotherapy, 2021, 22(9): 1157-1166. https://doi.org/10.1080/14656566.2021.1880566
  6. Savadi Oskouie D, Sharifipour E, Sadeghi Bazargani H, et al. Efficacy of Citalopram on Acute Ischemic Stroke Outcome: A Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 2017, 31(7): 638-647. https://doi.org/10.1177/1545968317704902
  7. Chollet F, Acket B, Raposo N, et al. Use of antidepressant medications to improve outcomes after stroke. Current Neurology and Neuroscience Reports, 2013, 13(1): 318. https://doi.org/10.1007/s11910-012-0318-z
  8. Khouzam HR. A review of trazodone use in psychiatric and medical conditions. Postgraduate Medicine, 2017, 129(1): 140-148. https://doi.org/10.1080/00325481.2017.1249265
  9. Cao JX, Liu L, Sun YT, et al. Effects of the prophylactic use of escitalopram on the prognosis and the plasma copeptin level in patients with acute cerebral infarction. Brazilian Journal of Medical and Biological Research, 2020, 53(11): 8930. https://doi.org/10.1590/1414-431x20208930
  10. Lee JY, Lee HE, Kang SR, et al. Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption. Neuropharmacology, 2014, 79: 161-171. https://doi.org/10.1016/j.neuropharm.2013.11.011
  11. Hua Y, Li C, Hu J, et al. Fluoxetine adjunct to therapeutic exercise promotes motor recovery in rats with cerebral ischemia: Roles of nucleus accumbens. Brain Research Bulletin, 2019, 153: 1-7. https://doi.org/10.1016/j.brainresbull.2019.07.022
  12. Sheikholeslami MA, Ghafghazi S, Pouriran R, et al. Attenuating effect of paroxetine on memory impairment following cerebral ischemia-reperfusion injury in rat: The involvement of BDNF and antioxidant capacity. European Journal of Pharmacology, 2021, 893: 173821. https://doi.org/10.1016/j.ejphar.2020.173821
  13. Khawam EA, Laurencic G, Malone DA, et al. Side effects of antidepressants: an overview. Cleveland Clinic Journal of Medicine, 2006, 73(4): 351-356. https://doi.org/10.3949/ccjm.73.4.351
  14. Kumar A, Garg R, Gaur V, et al. Venlafaxine involves nitric oxide modulatory mechanism in experimental model of chronic behavior despair in mice. Brain Research, 2010, 1311: 73-80. https://doi.org/10.1016/j.brainres.2009.11.050
  15. Toda T, Yamamoto S, Umehara N, et al. Protective Effects of Duloxetine against Cerebral Ischemia-Reperfusion Injury via Transient Receptor Potential Melastatin 2 Inhibition. The Journal of Pharmacology and Experimental Therapeutics, 2019, 368(2): 246-254. https://doi.org/10.1124/jpet.118.253922
  16. Liu Y, Feng S, Subedi K, et al. Attenuation of Ischemic Stroke-Caused Brain Injury by a Monoamine Oxidase Inhibitor Involves Improved Proteostasis and Reduced Neuroinflammation. Molecular Neurobiology, 2020, 57(2): 937-948. https://doi.org/10.1007/s12035-019-01788-2
  17. Naoi M, Riederer P and Maruyama W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. Journal of Neural Transmission, 2016, 123(2): 91-106. https://doi.org/10.1007/s00702-014-1362-4
  18. Burns MM and Greenberg DA. Antidepressants in the treatment of stroke. Expert review of neurotherapeutics, 2010, 10(8): 1237-1241. https://doi.org/10.1586/ern.10.96
  19. Reeta K, Prabhakar P and Gupta YK. Anticonvulsant activity of the antidepressant drug, tianeptine, against pentylenetetrazole-induced seizures mitigates cognitive impairment in rats. Behavioural Pharmacology, 2016, 27(7): 623-632. https://doi.org/10.1097/fbp.0000000000000257
  20. Marinescu IP, Predescu A, Udriştoiu T, et al. Comparative study of neuroprotective effect of tricyclics vs. trazodone on animal model of depressive disorder. Romanian Journal of Morphology and Embryology, 2012, 53(2): 397-400.
  21. Settimo L and Taylor D. Evaluating the dose-dependent mechanism of action of trazodone by estimation of occupancies for different brain neurotransmitter targets. Journal of Psychopharmacology, 2018, 32(1): 96-104. https://doi.org/10.1177/0269881117742101
  22. Alkan T, Kahveci N, Buyukuysal L, et al. Neuroprotective effects of MK 801 and hypothermia used alone and in combination in hypoxic-ischemic brain injury in neonatal rats. Archives of Physiology and Biochemistry, 2001, 109(2): 135-144. https://doi.org/10.1076/apab.109.2.135.4271
  23. Siepmann T, Penzlin AI, Kepplinger J, et al. Selective serotonin reuptake inhibitors to improve outcome in acute ischemic stroke: possible mechanisms and clinical evidence. Brain and Behavior, 2015, 5(10): 00373. https://doi.org/10.1002/brb3.373
  24. Chung YC, Kim SR, Park JY, et al. Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology, 2011, 60(6): 963-974. https://doi.org/10.1016/j.neuropharm.2011.01.043
  25. Chen SD, Yang DI, Lin TK, et al. Roles of oxidative stress, apoptosis, PGC-1$alpha$ and mitochondrial biogenesis in cerebral ischemia. International Journal of Molecular Sciences, 2011, 12(10): 7199-7215. https://doi.org/10.3390/ijms12107199
  26. Lim CM, Kim SW, Park JY, et al. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. Journal of Neuroscience Research, 2009, 87(4): 1037-1045. https://doi.org/10.1002/jnr.21899
  27. Shariq AS, Brietzke E, Rosenblat JD, et al. Therapeutic potential of JAK/STAT pathway modulation in mood disorders. Reviews in the Neurosciences, 2018, 30(1): 1-7. https://doi.org/10.1515/revneuro-2018-0027
  28. Sacre S, Jaxa-Chamiec A, Low CMR, et al. Structural Modification of the Antidepressant Mianserin Suggests That Its Anti-inflammatory Activity May Be Independent of 5-Hydroxytryptamine Receptors. Frontiers in Immunology, 2019, 10: 1167. https://doi.org/10.3389/fimmu.2019.01167
  29. Li M, Liu J, Bi Y, et al. Potential Medications or Compounds Acting on Toll-like Receptors in Cerebral Ischemia. Current Neuropharmacology, 2018, 16(2): 160-175. https://doi.org/10.2174/1570159x15666170601125139
  30. Martín-Hernández D, Bris ÁG, MacDowell KS, et al. Modulation of the antioxidant nuclear factor (erythroid 2-derived)-like 2 pathway by antidepressants in rats. Neuropharmacology, 2016, 103: 79-91. https://doi.org/10.1016/j.neuropharm.2015.11.029
  31. Dhami KS, Churchward MA, Baker GB, et al. Fluoxetine and its metabolite norfluoxetine induce microglial apoptosis. Journal of Neurochemistry, 2019, 148(6): 761-778. https://doi.org/10.1111/jnc.14661
  32. Elmorsy E, Al-Ghafari A, Almutairi FM, et al. Antidepressants are cytotoxic to rat primary blood brain barrier endothelial cells at high therapeutic concentrations. Toxicology in Vitro, 2017, 44: 154-163. https://doi.org/10.1016/j.tiv.2017.07.011
  33. Paolucci S. Advances in antidepressants for treating post-stroke depression. Expert Opinion on Pharmacotherapy, 2017, 18(10): 1011-1017. https://doi.org/10.1080/14656566.2017.1334765
  34. Jun-O'Connell AH, Jayaraman DK, Henninger N, et al. Effects of Preexisting Psychotropic Medication Use on a Cohort of Patients with Ischemic Stroke Outcome. Stroke Research and Treatment, 2020, 2020: 9070486. https://doi.org/10.1155/2020/9070486
  35. Gaur V and Kumar A. Protective effect of desipramine, venlafaxine and trazodone against experimental animal model of transient global ischemia: possible involvement of NO-cGMP pathway. Brain Research, 2010, 1353: 204-212. https://doi.org/10.1016/j.brainres.2010.07.004
  36. Fang S, Yan B, Wang D, et al. Chronic effects of venlafaxine on synaptophysin and neuronal cell adhesion molecule in the hippocampus of cerebral ischemic mice. Biochemistry and Cell Biology, 2010, 88(4): 655-663. https://doi.org/10.1139/o10-015
  37. Robol E, Fiaschi A and Manganotti P. Effects of citalopram on the excitability of the human motor cortex: a paired magnetic stimulation study. Journal of the Neurological Sciences, 2004, 221(1-2): 41-46. https://doi.org/10.1016/j.jns.2004.03.007
  38. Li X and Morton SM. Effects of chronic antidepressant use on neurophysiological responses to tDCS post-stroke. Neuroscience Letters, 2020, 717: 134723. https://doi.org/10.1016/j.neulet.2019.134723
  39. Ilic TV, Korchounov A and Ziemann U. Complex modulation of human motor cortex excitability by the specific serotonin re-uptake inhibitor sertraline. Neuroscience Letters, 2002, 319(2): 116-120. https://doi.org/10.1016/s0304-3940(01)02563-0
  40. Gerdelat-Mas A, Loubinoux I, Tombari D, et al. Chronic administration of selective serotonin reuptake inhibitor (SSRI) paroxetine modulates human motor cortex excitability in healthy subjects. NeuroImage, 2005, 27(2): 314-322. https://doi.org/10.1016/j.neuroimage.2005.05.009
  41. Shin TK, Kang MS, Lee HY, et al. Fluoxetine and sertraline attenuate postischemic brain injury in mice. The Korean Journal of Physiology & Pharmacology, 2009, 13(3): 257-263. https://doi.org/10.4196/kjpp.2009.13.3.257
  42. Narushima K, Paradiso S, Moser DJ, et al. Effect of antidepressant therapy on executive function after stroke. The British Journal of Psychiatry, 2007, 190(3): 260-265. https://doi.org/10.1192/bjp.bp.106.025064
  43. Smoller JW. Do antidepressants raise the risk of stroke? The American Journal of Psychiatry, 2011, 168(5): 457-459. https://doi.org/10.1176/appi.ajp.2011.11020336
  44. Trifirò G, Dieleman J, Sen EF, et al. Risk of ischemic stroke associated with antidepressant drug use in elderly persons. Journal of Clinical Psychopharmacology, 2010, 30(3): 252-258. https://doi.org/10.1097/JCP.0b013e3181dca10a
  45. Hoirisch-Clapauch S and Nardi AE. Antidepressants: bleeding or thrombosis? Thrombosis Research, 2019, 181(1): 23-28. https://doi.org/10.1016/s0049-3848(19)30362-7
  46. Pericaud A, Straczek C, Montastruc F, et al. Use of antidepressants in unipolar depression in the elderly. L'Encephale, 2022, 48(4): 445-454. https://doi.org/10.1016/j.encep.2021.11.006
  47. Glymour MM, Gibbons LE, Gilsanz P, et al. Initiation of antidepressant medication and risk of incident stroke: using the Adult Changes in Thought cohort to address time-varying confounding. Annals of Epidemiology, 2019, 35: 42-47. https://doi.org/10.1016/j.annepidem.2019.04.010
  48. Tully PJ, Alpérovitch A, Soumaré A, et al. Association Between Cerebral Small Vessel Disease With Antidepressant Use and Depression: 3C Dijon Magnetic Resonance Imaging Study. Stroke, 2020, 51(2): 402-408. https://doi.org/10.1161/strokeaha.119.026712
  49. Legg LA, Rudberg AS, Hua X, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. The Cochrane Database of Systematic Reviews, 2021, 11(11): 009286. https://doi.org/10.1002/14651858.CD009286.pub4
  50. Juang HT, Chen PC and Chien KL. Using antidepressants and the risk of stroke recurrence: report from a national representative cohort study. BMC Neurology, 2015, 15: 86. https://doi.org/10.1186/s12883-015-0345-x
  51. Avuloglu Yilmaz E, Unal F and Yuzbasioglu D. Evaluation of cytogenetic and DNA damage induced by the antidepressant drug-active ingredients, trazodone and milnacipran, in vitro. Drug and Chemical Toxicology, 2017, 40(1): 57-66. https://doi.org/10.1080/01480545.2016.1174870
  52. Braillon A. Antidepressants after stroke and patient centered care: An oxymoron. Research in Social & Administrative Pharmacy, 2019, 15(9): 1187-1188. https://doi.org/10.1016/j.sapharm.2019.04.050
  53. Soh Y, Tiemeier H, Kawachi I, et al. Eight-Year Depressive Symptom Trajectories and Incident Stroke: A 10-Year Follow-Up of the HRS (Health and Retirement Study). Stroke, 2022, 53(8): 2569-2576. https://doi.org/10.1161/strokeaha.121.037768
  54. Li H, Zheng D, Li Z, et al. Association of Depressive Symptoms With Incident Cardiovascular Diseases in Middle-Aged and Older Chinese Adults. JAMA Network Open, 2019, 2(12): 1916591. https://doi.org/10.1001/jamanetworkopen.2019.16591
  55. McCann SK, Irvine C, Mead GE, et al. Efficacy of antidepressants in animal models of ischemic stroke: a systematic review and meta-analysis. Stroke, 2014, 45(10): 3055-3063. https://doi.org/10.1161/strokeaha.114.006304