Journal of Pharmaceutical and Biopharmaceutical Research (JPBR) (ISSN:2630-533X)  is an open access, continuously published, international, refereed  journal. The aim of the journal is to provide the authors a timely and peer reviewed process for evaluation and publication of their manuscripts. All articles submitted to JPBR will undergo a rigorous double-blind peer review, and all published articles can be downloaded and read for free. JPBR will pay wide attention to the trends in related fields and insist on publishing original research work of highest quality.

JPBR publishes high quality original research work, reviews, and short communications in the following areas:
Pharmaceutical Sciences:
• Pharmaceutics
• Pharmacology and Toxicology
• Medicinal Chemistry
• Physical Pharmacy
• Pharmaceutical Analysis
• Chromatography and Hyphenated Techniques
• Pharmacognosy and Phytochemistry
• Nanotechnology for Pharmaceutical Drug Formulations
Biopharmaceutical Sciences:
• Biochemistry
• Biotechnology
• Molecular Biology
• Immunology and Microbiology

Vol 4 No 1 (2022)

-- In Progress --

Published: 2022-04-20

Abstract views: 92   PDF downloads: 30  

Page 248-255

Mechanical properties of nanoparticles in the drug delivery kinetics

blankpage Kaivon Assani, Amy Neidhard-Doll, Tarun Goswami

Nanoparticle formulation is a recently developed drug delivery technology with enhanced targeting potential. Nanoparticles encapsulate the drug of choice and delivers it to the target via a targeting molecules (ex. antigen) located on the nanoparticle surface. Nanoparticles can even be targeted to deeply penetrating tissue and can be modeled to deliver drugs through the blood brain barrier. These advancements are providing better disease targeting such as to cancer and Alzheimer’s. Various polymers can be manufactured into nanoparticles. The polymers examined in this paper are polycaprolactone (PCL), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and poly(glycolic acid) (PGA). The purpose of this study is to analyze the mechanical properties of these polymers to establish drug delivery trends and model pharmacokinetics and biotransport. We found that, in general, as the melting point, elastic modulus and tensile strength increases, the degradation rate also increases. PLA composite material may be an ideal polymer for drug delivery due to its good control of degradation.

Abstract views: 149   PDF downloads: 77  

Page 237-247

Nanoparticulate carriers for drug delivery

blankpage Samantha Lokelani Crossen, Tarun Goswami

Drug delivery with nanoparticulate carriers is a new and upcoming research area that is making major changes within the pharmaceutical industry.  Nanoparticulate carriers are discussed, particularly, engineered nanoparticulate carriers used as drug delivery systems for targeted delivery. Nanoparticulate carriers that are used for drug delivery systems include polymers, micelles, dendrimers, liposomes, ceramics, metals, and various forms of biological materials.  The properties of these nanoparticulate carriers are very advantageous for targeted drug delivery and result in efficient drug accumulation at the targeted area of interest, reduced drug toxicity, reduced systemic side effects, and more efficient use of the drug overall.  Nanoparticlulate carriers are effective in passing various biological impediments and have a relatively high cellular uptake compared to that of microparticulate carriers, which allows for the drug agent to reach a targeted cell or tissue.  The use of nanoparticulate carriers for drug delivery results in a prolonged and sustained release of the drug which ultimately reduces the cost and amount of doses that need to be administered to the patient.  Currently, there is extensive research of nanoparticles as drug delivery carriers for challenging disease treatment cases such as cancer, HIV, and diabetes.

View All Issues
Prof. Pal Perjesi-photo  ISSN: 2630-533X
 Abbreviation: J Pharm Biopharm Res
 Editor-in-Chief: Prof. Pal Perjesi (Hungary)
 Publishing Frequency: Continuous publication
 Article Processing Charges (APC):
Click  here  for more details
 Publishing Model:
Open Access