Open Access

Peer-reviewed

Review

Main Article Content

Fatma Ibrahim
Sobhy M. El-Adl
Mohamed M. Baraka
Samy M. Ibrahim
Mahmoud Mohammed Sebaiycorresponding author

Abstract

In this literature review, we will present the latest reported methods that have been developed for determination of certain antibiotics which are used for the treatment of serious infections that may affect critically ill patients such as cefepime, levofloxacin, vancomycin and gentamicin in their pure form, pharmaceutical dosage form, and in biological samples.

Keywords
cefepime, levofloxacin,, vancomycin, gentamicin, antibiotics

Article Details

How to Cite
Ibrahim, F., El-Adl, S., Baraka, M., Ibrahim, S., & Sebaiy, M. (2020). Analytical methods for the determination of certain antibiotics used in critically ill patients. Journal of Pharmaceutical and Biopharmaceutical Research, 2(1), 99-117. https://doi.org/10.25082/JPBR.2020.01.002

References

  1. Lipman J, Udy AA and Roberts JA. Do we understand the impact of altered physiology, consequent interventions and resultant clinical scenarios in the intensive care unit? The antibiotic story. Anaesth Intensive Care, 2011, 39: 999-1000. https://doi.org/10.1177/0310057X1103900602
  2. Roberts J and Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Critical Care Medicine, 2009, 37(3): 840-851. https://doi.org/10.1097/CCM.0b013e3181961bff
  3. Roberts JA, DeWaele JJ, Dimopoulos G, et al. DALI: Defining Antibiotic Levels in Intensive careunit patients: a multicentre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic. BMC infectious diseases, 2012, 12:152. https://doi.org/10.1186/1471-2334-12-152
  4. Roberts JA, Paul SK, Akova M, et al. DALI: Defining Antibiotic Levels in Intensive care unit patients: Are current beta-lactam antibiotic doses sufficient for critically ill patients? Clinical Infectious Diseases. 2013 in press (Pubmed ID 24429437).
  5. British Pharmacopoeia, HM Stationery Office, London, UK, PA. 2017: 449, 1098, 1010, 1109, 1190.
  6. United States Pharmacopeia and National Formulary (USP 41-NF 36). Rockville, MD: United States Pharmacopeial Convention, 2013.
  7. Sweetman S and Martindale W. Martindale. 36th ed. London: Pharmaceutical Press, 2009.
  8. Farid N and Abdelwahab N. New Ecological Method for Determination of Different -Lactams: Application to Real Human Plasma Samples. Royal Society of Chemistry Advances, 2019, 9(34): 19539-19548. https://doi.org/10.1039/C9RA02671A
  9. D’Cunha R, Bach T, Young BA, et al. Quantification of Cefepime , Meropenem,Piperacillin, and Tazobactam in Human Plasma Using a Sensitive and Robust Liquid Chromatography-Tandem Mass Spectrometry Method, Part 2: Stability Evaluation. Antimicrobial Agents and Chemotherapy, 2018, 62(9): e00861-18. https://doi.org/10.1128/AAC.00861-18
  10. Patil K, Tambe H, Zope V, et al. Simultaneous Determination of Zidebactam and Cefepime in Dog Plasma by LCMS/ MS and its Application to Pre-Clinical Pharmacokinetic Study. Biomedical Chromatography, 2018, 32(8): e4249. https://doi.org/10.1002/bmc.4249
  11. Kummer M, Sestakova N, Theurillat R, et al. Monitoring of Cefepime in Urine by Micellar Electrokinetic Capillary Chromatography with Ultraviolet Detection and Liquid Chromatography Coupled to Mass Spectrometry. Journal of Separation Science, 2018, 41(21): 4067-4074. https://doi.org/10.1002/jssc.201800763
  12. D R H, B V S, Hiremath A B, et al. HPTLC Method Development and Validation of Cefepime and Tazobactam in Combined Parenteral Dosage Form. International Journal of Pharma and Bio Sciences, 2018, 9(2): 246-254. https://doi.org/10.22376/ijpbs.2018.9.2.p246-254
  13. El-Beltagy HE, Amin AS, El-Balkeny MN, et al. Simultaneous Determination of Cefepime, Cefotaxime and Ceftriaxone in Pharmaceutical formulation by Ultra-Fast Liquid Chromatography with PDA Detection. IOSR Journal of Pharmacy and Biological Sciences, 2018, 13(5): 54-61.
  14. Patil K, Naik S, Zope V, et al. LC-MS/MS Method for the Simultaneous Determination of Cefepime and Tazobactam in Dog Plasma. Drug Analytical Research, 2018, 2(1):36- 45. https://doi.org/10.22456/2527-2616.84357
  15. Kalyani L and Rao C. Stability Indicating RP-HPLC Method Development and Validation of Cefepime and Amikacin in Pure and Pharmaceutical Dosage Forms. Brazilian Journal of Pharmaceutical Sciences, 2018, 54(3): e17258. https://doi.org/10.1590/s2175-97902018000317258
  16. Chen F, Hu Z, Laizure S, et al. Simultaneous Assay of Multiple Antibiotics in Human Plasma by LC-MS/MS: Importance of Optimizing Formic Acid Concentration. Bioanalysis, 2017, 9(5): 469-483. https://doi.org/10.4155/bio-2016-0157
  17. Legrand T, Vodovar D, Tournier N, et al. Simultaneous Determination of Eight -Lactam Antibiotics, Amoxicillin, Cefazolin, Cefepime , Cefotaxime, Ceftazidime, Cloxacillin, Oxacillin, and Piperacillin, in Human Plasma by Using Ultra-High-Performance Liquid Chromatography with Ultraviolet Detection. Antimicrobial Agents and Chemotherapy, 2016, 60(8): 4734-4742. https://doi.org/10.1128/AAC.00176-16
  18. Tamboli S and Patil D. RP-HPLC Method for Simultaneous Estimation of Cefepime Hydrochloride and Tazobactam Sodium in Bulk and Pharmaceuticals. Journal of Chemistry. 2013. https://doi.org/10.1155/2013/208057
  19. Iqbal MS, Bahari MB, Darwis Y, et al. A RP-HPLC-UV Method with Solid Phase Extraction for Determination of Cefepime in Total Nutrient Admixtures: Application to Stability Studies. Current Pharmaceutical Analysis, 2012, 8(1): 68-74. https://doi.org/10.2174/157341212798995548
  20. Verdier M, Tribut O, Tattevin P, et al. Simultaneous Determination of 12 -Lactam Antibiotics in Human Plasma by High- Performance Liquid Chromatography with UV Detection: Application to Therapeutic Drug Monitoring. Antimicrobial Agents and Chemotherapy, 2011, 55(10): 4873-4879. https://doi.org/10.1128/AAC.00533-11
  21. Nemutlu E, Kr S, Katlan D, et al. Simultaneous Multiresponse Optimization of an HPLC Method to Separate Seven Cephalosporins in Plasma and Amniotic Fluid: Application to Validation and Quantification of Cefepime, Cefixime and Cefoperazone. Talanta, 2009, 80(1): 117-126. https://doi.org/10.1016/j.talanta.2009.06.034
  22. Farthing C, Farthing D, Brophy D, et al. High-Performance Liquid Chromatographic Determination of Cefepime and Cefazolin in Human Plasma and Dialysate. Chromatographia, 2008, 67(5-6): 365-368. https://doi.org/10.1365/s10337-008-0529-2
  23. Isla A, Arzuaga A, Maynar J, et al. Determination of Ceftazidime and Cefepime in Plasma and Dialysate- Ultrafiltrate from Patients Undergoing Continuous Veno- Venous Hemodiafiltration by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39(5): 996-1005. https://doi.org/10.1016/j.jpba.2005.05.027
  24. Palacios F, Mochn M, Snchez J, et al. Validation of an HPLC Method for Determination of Cefepime (a Fourth-Generation Cephalosporin). Determination in Human Serum, Cerebrospinal Fluid, and Urine. Pharmacokinetic Profiles. Chromatographia, 2005, 62(7-8): 355-361. https://doi.org/10.1365/s10337-005-0603-y
  25. Ocaa Gonzlez J, Callejn Mochn M and Barragn de la Rosa F. Simultaneous Determination of Cefepime and the Quinolones Garenoxacin, Moxifloxacin and Levofloxacin in Human Urine by HPLC-UV. Microchimica Acta, 2005, 151(1-2): 39-45. https://doi.org/10.1007/s00604-005-0391-y
  26. Bugnon D, Giannoni E, Majcherczyk P, et al. Pitfalls in Cefepime Titration from Human Plasma: Plasma- and Temperature-Related Drug Degradation In Vitro. Antimicrobial Agents and Chemotherapy, 2002, 46(11): 3654-3656. https://doi.org/10.1128/AAC.46.11.3654-3656.2002
  27. Calahorra B, Campanero M, Sdaba B, et al. Rapid High- Performance Liquid Chromatographic Determination of Cefepime in Human Plasma. Biomedical Chromatography, 1999, 13(4): 272-275. https://doi.org/10.1002/(SICI)1099-0801(199906)13: 4h272::AID-BMC842i3.0.CO;2-0
  28. Valassis I, Parissi-Poulou M and Macheras P. Quantitative Determination of Cefepime in Plasma and Vitreous Fluid by High-Performance Liquid Chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 721(2): 249-255. https://doi.org/10.1016/S0378-4347(98)00468-X
  29. Elkhali H, Linger L, Monteil H, et al. High-Performance Liquid Chromatographic Assay for Cefepime in Serum. Journal of Chromatography B: Biomedical Sciences and Applications, 1997, 690(1-2):181-188. https://doi.org/10.1016/S0378-4347(96)00406-9
  30. Venkataramana CHS, Venkatappa SB and Thachemperi JM. Extractive Spectrophotometric Method Development and Validation of Cefepime Hydrochloride in Tablet Formulation. World Journal of Pharmacy and Pharmaceutical Sciences, 2018, 7(7): 688-696. DOI: 10.20959/wjpps20187- 11859.
  31. Papanna RK, Krishnegowda JB and Nagaraja P. Spectrophotometric Method for the Determination of Cefepime , Cefazolin Sodium and Cefalothin Sodium in Pure and Pharmaceutical Dosage Forms by Using Ninhydrin. International Journal of Pharmacy and Pharmaceutical Sciences, 2015, 7(5): 194-199.
  32. Kant R, Bodla R, Bhutani R, et al. Spectrophotometric Absorbance Correction Method for the Estimation of Tazobactam and Cefepime in Combined Tablet Dosage Forms. Journal of Chemical and Pharmaceutical Research, 2015, 7(6): 648-656.
  33. Chafle DM. Development and Validation of Spectrophotometric Method for the Estimation of Cefepime in Bulk and Dosage Form. Der Pharma Chemica, 2013, 5(2): 127-132.
  34. Elazazy M and Shalaby A. Validated Spectrophotometric Assay of Cefepime Hydrochloride and Cefuroxime Sodium Using a Tetrazolium Salt. E-Journal of Chemistry, 2012, 9(4): 2261-2267. https://doi.org/10.1155/2012/959624
  35. Dave VM, Hirpara KP and Faldu S. Development and Validation of First Order Derivative Spectrophotometric Method for Simultaneous Estimation of Cefepime Hydrochloride and Amikacin Sulphate in Injection. Journal of Pharmaceutical Science and Bioscientific Research, 2012, 2(2): 58-62.
  36. Elazazy MS, Shalaby A, Elbolkiny MN, et al. Spectrophotometric Determination of Cefepime Hydrochloride, Cefoperazone Sodium, Ceftazidime Pentahydrate. Cefuroxime Sodium and Etamsylate Using Ammonium Molybdate. Scientia Pharmaceutica, 2003, 71(3): 211-228. https://doi.org/10.3797/scipharm.aut-03-20
  37. El-Hamd MA, Ali R, Haredy AM, et al. Application of Hantzsch Reaction as a New Method for Spectrofluorimetric Determination of Some Cephalosporins. Journal of Applied Pharmaceutical Science, 2017, 7(02): 147-155. Doi:10.7324/JAPS.2017.70220.
  38. Ssl N, elebier M, Kablan SE, et al. Indirect Square-Wave Voltammetric Determination of Cefepime in the Presence of Formaldehyde. Latin American Journal of Pharmacy, 2016, 35(10): 2246-2253.
  39. Barbosa A, De Araujo T, Trindade M, et al. Direct Cefepime Determination in Human Milk Using Solid Mercury Amalgam Electrode Manufactured with Silver Nanoparticles. Journal of Electroanalytical Chemistry, 2012, 681: 127-132. https://doi.org/10.1016/j.jelechem.2012.06.012
  40. Balaji K, Reddaiah K, Reddy T, et al. Voltammetric Reduction Behavior and Electrode Kinetics. Portugaliae Electrochimica Acta, 2011, 29(3):177-185. https://doi.org/10.4152/pea.201103177
  41. Nigam P and Joshi H. On-Chip Electrochemical Determination of Cefepime. Instrumentation Science & Technology, 2010, 38(5): 376-383. https://doi.org/10.1080/10739149.2010.509146
  42. Czyrski A, Anusiak K and Teyk A. The Degradation of Levofloxacin in Infusions Exposed to Daylight with an Identification of a Degradation Product with HPLC-MS. Scientific Reports, 2019, 9(1): 3621. https://doi.org/10.1038/s41598-019-40201-9
  43. Czyrski A. The HPLC Method for Fast Determination of Levofloxacin in Liquid Pharmaceutical Formulations. Farmacja Wspczesna, 2018, 11: 67-71.
  44. Spadaro A, Lorenti M, Zasa G, et al. Development and Validation of a New Ultra-fast HPLC Method for Quantification of Levofloxacin in Rabbit Aqueous Humour: Application to a Pharmacokinetic Study. Pharmaceutica Analytica Acta, 2018, 9(12): 1-5. https://doi.org/10.4172/2153-2435.1000603
  45. Ghimire S, Hateren VK, Vrubleuskaya N, et al. Determination of Levofloxacin in Human Serum Using Liquid Chromatography Tandem Mass Spectrometry. Journal of Applied Bioanalysis, 2018, 4(1): 16-25. https://doi.org/10.17145/jab.18.004
  46. Szerkus O, Jacyna J, Gibas A, et al. Robust HPLC-MS/MS Method for Levofloxacin and Ciprofloxacin Determination in Human Prostate Tissue. Journal of Pharmaceutical and Biomedical Analysis, 2017, 132: 173-183. https://doi.org/10.1016/j.jpba.2016.10.008
  47. Ebers A, Stroup S, Mpagama S, et al. Determination of Plasma Concentrations of Levofloxacin by High Performance Liquid Chromatography for Use at a Multidrug- Resistant Tuberculosis Hospital in Tanzania. Plos One, 2017, 12(1): e0170663. https://doi.org/10.1371/journal.pone.0170663
  48. Patel D, Dhananjay M, Vandana P, et al. A Validated Stability Indicating RP-HPLC Method Development and Validation for Simultaneous Estimation of Cefixime Trihydrate and Levofloxacin Hemihydrate in Pharmaceutical Dosage Form. International Journal of Analytical Techniques, 2017, 3(1): 1-12. https://doi.org/10.15226/2577-7831/3/1/00109
  49. Sumithra S, Shanmugasundaram P and Ravichandiran V. Quality by Design-Based Optimization and Validation of New Reverse Phase-High-Performance Liquid Chromatography Method for Simultaneous Estimation of Levofloxacin Hemihydrate and Ambroxol Hydrochloride in Bulk and its Pharmaceutical Dosage Form. Asian Journal of Pharmaceutical and Clinical Research, 2016, 9(9): 190-196. https://doi.org/10.22159/ajpcr.2016.v9s3.14040
  50. Naveed S, Sultana N, Arayne MS, et al. A New HPLC Method for the Assay of Levofloxacin and its Application in Drug-Metal Interaction Studies. Journal of Scientific and Innovative Research, 2014, 3(1): 91-96.
  51. Mando H and Hasan A. Development and Validation of RP-HPLC Method for Determination of Levofloxacin in Tablet Using UV and Fluorescence Detectors Simultaneously. International Journal of Pharmaceutical Sciences and Research, 2015, 6(4): 1401-1406.
  52. ileaa B, Vlase L, Popab D, et al. Therapeutic Monitoring of Levofloxacin : A New LC-MS/MS Method for Quantification of Levofloxacin in Human Plasma. Studia Universitatis Babes-Bolyai Chemia, 2013, LVIII: 105-115.
  53. Reddy EK and Reddy AR. Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Azithromycin and Levofloxacin in Combined Tablet Dosage Form. International Research Journal of Pharmaceutical and Applied Sciences, 2013, 3(5): 168-174.
  54. Belal F, Sharaf El-DinM, El-Enany N, et al. Micellar Liquid Chromatographic Method for the Simultaneous Determination of Levofloxacin and Ambroxol in Combined Tablets: Application to Biological Fluids. Chemistry Centeral Journal, 2013, 7(1): 1-14. https://doi.org/10.1186/1752-153X-7-162
  55. Aguilar-Carrasco J, Hernndez-Pineda J, Jimnez-Andrade J, et al. Rapid and Sensitive Determination of Levofloxacin in Microsamples of Human Plasma by High-Performance Liquid Chromatography and its Application in a Pharmacokinetic Study. Biomedical Chromatography, 2014, 29(3): 341- 345. https://doi.org/10.1002/bmc.3278
  56. Syed S and Pavani H. Validated Simultaneous Estimation and Development of Levofloxacin and Ornidazole by RPHPLC Method. International Journal of Pharmaceutical and Clinical Research, 2012, 4(4): 52-55.
  57. Kumar TM, Srikanth G, Rao JV, et al. Development and Validation of HPLC-UV Method for the Estimation of Levofloxacin in Human Plasma. International Journal of Pharmacy and Pharmaceutical Sciences, 2011, 3(2): 247-250.
  58. Fang P, Cai H, Li H, et al. Simultaneous Determination of Isoniazid, Rifampicin, Levofloxacin in Mouse Tissues and Plasma by High Performance Liquid Chromatography- Tandem Mass Spectrometry. Journal of Chromatography B, 2010, 878(24): 2286-2291. https://doi.org/10.1016/j.jchromb.2010.06.038
  59. Zhou Z, Yang M, Yu X, et al. A Rapid and Simple High- Performance Liquid Chromatography Method for the Determination of Human Plasma Levofloxacin Concentration and its Application to Bioequivalence Studies. Biomedical Chromatography, 2007, 21(10): 1045-1051. https://doi.org/10.1002/bmc.851
  60. Nemutlu E, Kr S, zync , et al. Simultaneous Separation and Determination of Seven Quinolones Using HPLC: Analysis of Levofloxacin and Moxifloxacin in Plasma and Amniotic Fluid. Chromatographia, 2007, 66(S1): 15-24. https://doi.org/10.1365/s10337-007-0292-9
  61. Hurtado F, Nogueira D, Bortolini F, et al. Determination of Levofloxacin in a Pharmaceutical Injectable Formulation by Using HPLC and UV Spectrophotometric Methods. Journal of Liquid Chromatography & Related Technologies, 2007, 30(13): 1981-1989. https://doi.org/10.1080/10826070701386629
  62. Meyyanathan S, Ramasarma G and Suresh B. Analysis of Levofloxacin in Pharmaceutical Preparations by High Performance Thin Layer Chromatography. Journal of Separation Science, 2004, 27(18): 1698-1700. https://doi.org/10.1002/jssc.200301616
  63. Siewert S. Validation of a Levofloxacin HPLC Assay in Plasma and Dialysate for Pharmacokinetic Studies. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(4): 1360-1362. https://doi.org/10.1016/j.jpba.2006.02.010
  64. Djabarouti S, Boselli E, Allaouchiche B,et al. Determination of Levofloxacin in Plasma, Bronchoalveolar Lavage and Bone Tissues by High-Performance Liquid Chromatography with Ultraviolet Detection Using a Fully Automated Extraction Method. Journal of Chromatography B, 2004, 799(1): 165-172. https://doi.org/10.1016/j.jchromb.2003.10.031
  65. Neckel U, Joukhadar C, Frossard M, et al. Simultaneous Determination of Levofloxacin and Ciprofloxacin in Microdialysates and Plasma by High-Performance Liquid Chromatography. Analytica Chimica Acta, 2002, 463(2): 199- 206. https://doi.org/10.1016/S0003-2670(02)00429-4
  66. Bttcher S, Baum H, Hoppe-Tichy T, et al. An HPLC Assay and a Microbiological Assay to Determine Levofloxacin in Soft Tissue, Bone, Bile and Serum. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25(2): 197-203. https://doi.org/10.1016/S0731-7085(00)00478-7
  67. Pooja M, Sowmya HG and Jose Gnana Babu C. Validated Spectrophotometric Quantitation of Levofloxacin in Bulk and Tablet Dosage Form. World Journal of Pharmacy and Pharmaceutical Sciences, 2018, 7(11): 1064-1074. Doi: 10.20959/wjpps201811-12560.
  68. Akram M, Anwar J, Alshemarya A, et al. Quantitative Determination of Ciprofloxacin and Levofloxacin Antibacterials by Spectrophotometeric and High Performance Liquid Chromatography, 2015, 11(1): 1-4. https://doi.org/10.11113/mjfas.v11n1.329
  69. Bushra U, Hossain S, Ahmed KhT, et al. Development and Validation of a Simple UV Spectrophotometric Method for the Determination of Levofloxacin both in Bulk and Pharmaceutical Formulation. International Journal of Pharmaceutical Sciences and Research, 2014, 5(6): 2369-2373.
  70. Maleque M, Hasan M, Hossen F, et al. Development and Validation of a Simple UV Spectrophotometric Method for the Determination of Levofloxacin both in Bulk and Marketed Dosage Formulations. Journal of Pharmaceutical Analysis, 2012, 2(6): 454-457. https://doi.org/10.1016/j.jpha.2012.06.004
  71. Desai V, Afieroho O, Dagunduro B, et al. A Simple UV Spectrophotometric Method for the Determination of Levofloxacin in Dosage Formulations. Tropical Journal of Pharmaceutical Research, 2011, 10(1): 75-79. https://doi.org/10.4314/tjpr.v10i1.66545
  72. Ghanbari M, Shahdost-fard F, Khoshroo A, et al. A Nanocomposite Consisting of Reduced Graphene Oxide and Electropolymerized -Cyclodextrin for Voltammetric Sensing of Levofloxacin. Microchimica Acta, 2019, 186(7). https://doi.org/10.1007/s00604-019-3530-6
  73. Ghanbari M, Rahimi-NasrabadiMand Sobati H. Modifying a Glassy Carbon Electrode with Reduced Graphene Oxide for the Determination of Levofloxacin with a Glassy. Analytical & Bioanalytical Electrochemistry, 2019, 11(2): 189- 200.
  74. Liu C, Xie D, Liu P, et al. Voltammetric Determination of Levofloxacin Using Silver Nanoparticles Deposited on a Thin Nickel Oxide Porous Film. Microchimica Acta, 2018, 186(1). https://doi.org/10.1007/s00604-018-3146-2
  75. El-Hamshary M, Fouad M, Hanafi R, et al. Screening and Optimization of Samarium-Assisted Complexation for the Determination of Norfloxacin, Levofloxacin and Lomefloxacin in their Corresponding Dosage Forms Employing Spectrofluorimetry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206: 578-587. https://doi.org/10.1016/j.saa.2018.08.053
  76. Ulu S. Rapid and Sensitive Spectrofluorimetric Determination of Enrofloxacin, Levofloxacin and Ofloxacin with 2,3,5,6-Tetrachloro-P-Benzoquinone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(5): 1038-1042. https://doi.org/10.1016/j.saa.2008.12.046
  77. Andriguetti N, Lisboa L, Hahn S, et al. Simultaneous Determination of Vancomycin and Creatinine in Plasma Applied to Volumetric Absorptive Microsampling Devices Using Liquid Chromatography-Tandem Mass Spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2019, 165: 315-324. https://doi.org/10.1016/j.jpba.2018.12.023
  78. Fan Y, Peng X, Yu J, et al. An Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method to Quantify Vancomycin in Human Serum by Minimizing the Degradation Product and Matrix Interference. Bioanalysis, 2019, 11(10): 941-955. https://doi.org/10.4155/bio-2018-0310
  79. Tang Y, Lou X, Yang G, et al. Pharmacokinetics and Tissue Residues of Vancomycin after Oral Administration in Crucian Carp. Aquaculture Research, 2019, 50(1): 268-276. https://doi.org/10.1111/are.13892
  80. Cao M, Feng Y, Zhang Y, et al. Studies on the Metabolism and Degradation of Vancomycin in Simulated in Vitro and Aquatic Environment by UHPLC-Triple-TOF-MS/MS. Scientific Reports, 2018, 8(1): 15471. https://doi.org/10.1038/s41598-018-33826-9
  81. Liu M, Yang Z and Li G. A Novel Method for the Determination of Vancomycin in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and its Application in Patients with Diabetic Foot Infections. Molecules, 2018, 23(11): 2939. https://doi.org/10.3390/molecules23112939
  82. De Zan MM, Caro YS and Alasino AB. Bioanalytical Method Optimization for the Therapeutic Drug Monitoring of Vancomycin. Journal of Analytical, Bioanalytical and Separation Techniques, 2017, 2(2): 89-95. https://doi.org/10.15436/2476-1869.17.1733
  83. Parker S, Guerra Valero Y, Ordez Mejia J, et al. An LCMS/ MS Method to Determine Vancomycin in Plasma (Total And Unbound), Urine and Renal Replacement Therapy Effluent. Bioanalysis, 2017, 9(12): 911-924. https://doi.org/10.4155/bio-2017-0019
  84. Usman M and Hempel G. Development and Validation of an HPLC Method for the Determination of Vancomycin in Human Plasma and its Comparison with an Immunoassay (PETINIA). SpringerPlus, 2016, 5(1): 124. https://doi.org/10.1186/s40064-016-1778-4
  85. Toi1 PV, Tho NDK, Phuong PN, et al. High Performance Liquid Chromatography Method for Implementation of Therapeutic Drug Monitoring of Vancomycin at Hospital for Tropical Diseases - Ho Chi Minh City Vietnam. Mahidol University Journal of Pharmaceutical Sciences, 2015, 42(4): 186-194.
  86. Oyaert M, Peersman N, Kieffer D, et al. Novel LC-MS/MS Method for Plasma Vancomycin: Comparison with Immunoassays and Clinical Impact. Clinica Chimica Acta, 2015, 441: 63-70. https://doi.org/10.1016/j.cca.2014.12.012
  87. Chauhan M and Bhatt N. A Simple and Modified Method Development of Vancomycin Using High Performance Liquid Chromatography. Journal of Chromatography & Separation Techniques, 2015, 6(7): 296. https://doi.org/10.4172/2157-7064.1000296
  88. Zhang M, Moore G and Young S. Determination of Vancomycin in Human Plasma, Bone and Fat by Liquid Chromatography/ Tandem Mass Spectrometry. Journal of Analytical & Bioanalytical Techniques, 2014, 5(3): 196. https://doi.org/10.4172/2155-9872.1000196
  89. Shou D, Dong Y, Shen L, et al. Rapid Quantification of Tobramycin and Vancomycin by UPLC-TQD and Application to Osteomyelitis Patient Samples. Journal of Chromatographic Science, 2014, 52(6): 501-507. https://doi.org/10.1093/chromsci/bmt069
  90. Hagihara M, Sutherland C and Nicolau D. Development of HPLC Methods for the Determination of Vancomycin in Human Plasma, Mouse Serum and Bronchoalveolar Lavage Fluid. Journal of Chromatographic Science, 2013, 51(3): 201-207. https://doi.org/10.1093/chromsci/bms128
  91. Yun-biao T, Meng-meng Z, Yin S, et al. Determination of Vancomycin Content in Human Plasma by LC-MS/MS. Chinese Journal of Pharmaceutical Analysis, 2013, 33(9): 1501- 1506.
  92. Hadwiger M, Sommers C, Mans D, et al. Quality Assessment of U.S. Marketplace Vancomycin for Injection Products Using High-Resolution Liquid Chromatography-Mass Spectrometry and Potency Assays. Antimicrobial Agents and Chemotherapy, 2012, 56(6): 2824-2830. https://doi.org/10.1128/AAC.00164-12
  93. Guerrero L, Martnez-Olondris P, Rigol M, et al. Development and Validation of a High Performance Liquid Chromatography Method to Determine Vancomycin Concentrations in Plasma And Pig Pulmonary Tissue. Journal of Liquid Chromatography & Related Technologies, 2012, 35(2): 240-257. https://doi.org/10.1080/10826076.2011.597073
  94. Baranowska I,Wilczek A and Baranowski J. Rapid UHPLC Method for Simultaneous Determination of Vancomycin , Terbinafine, Spironolactone, Furosemide and Their Metabolites: Application to Human Plasma and Urine. Analytical Sciences, 2010, 26(7): 755-759. https://doi.org/10.2116/analsci.26.755
  95. Tariq A, Raza Siddiqui M, Kumar J, et al. Development and Validation of High Performance Liquid Chromatographic Method for the Simultaneous Determination of Ceftriaxone and Vancomycin in Pharmaceutical Formulations and Biological Samples. ScienceAsia, 2010, 36(4): 297-304. https://doi.org/10.2306/scienceasia1513-1874.2010.36.297
  96. Abu-Shandi KH. Determination of Vancomycin in Human Plasma Using High-Performance Liquid Chromatography with Fluorescence Detection. Analytical and Bioanalytical Chemistry, 2009, 395(2): 527-532. https://doi.org/10.1007/s00216-009-2948-9
  97. Ye G, Cai X, Wang B, et al. Simultaneous Determination of Vancomycin and Ceftazidime in Cerebrospinal Fluid in Craniotomy Patients by High-Performance Liquid Chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(3): 860-865. https://doi.org/10.1016/j.jpba.2008.06.012
  98. Hong Z, Fang Yu, Ying L, et al. RP-HPLC Determination of Vancomycin Combined with other Drugs in Clinical Plasma. Chinese Journal of Pharmaceutical Analysis, 2008, 28(4): 591-594.
  99. Saito M, Santa T, Tsunoda M, et al. An Automated Analyzer for Vancomycin in Plasma Samples by Column-Switching High-Performance Liquid Chromatography with UV Detection. Biomedical Chromatography, 2004, 18(9): 735-738. https://doi.org/10.1002/bmc.386
  100. Favetta P, Guitton J, Bleyzac N, et al. New Sensitive Assay of Vancomycin in Human Plasma Using High-Performance Liquid Chromatography and Electrochemical Detection. Journal of Chromatography B: Biomedical Sciences and Applications. 2001, 751(2): 377-382. https://doi.org/10.1016/S0378-4347(00)00484-9
  101. Saikat P and Jolly P. Development and Validation of UVSpectrophotometric Method for estimation of Vancomycin Hydrochloride. Journal of Drug Delivery & Therapeutics, 2019, 9(3-s): 116-118. Doi:10.22270/jddt.v9i3-s.2959.
  102. Abed S and Hussein O. Batch and Flow-Injection Spectrophotometric Determination of Vancomycin Hydrochloride in Pharmaceutical Preparations Using Diazotized Procaine Penicillin. Analytical Chemistry An Indian Journal, 2016, 16(7): 295-304.
  103. Tariq MH, Naureen H, Abbas N, et al. Development and Validation of a Simple, Accurate and Economical Method for the Analysis of Vancomycin in Human Serum Using Ultracentrifuge Protein Precipitation and UV Spectrophotometer. Journal of Analytical & Bioanalytical Techniques, 2015, 6(2): 239.
  104. Hadi H. Spectrophotometric Determination of Vancomycin Hydrochloride in Pharmaceutical Preparations through Diazotization and Coupling Reactions. Iraqi Journal of Science, 2014, 55(4B): 1684-1693.
  105. Jnior A, Vila M and Tubino M. Green Spectrophotometric Method for the Quantitative Analysis of Vancomycin in Pharmaceuticals and Comparison with HPLC. Analytical Letters, 2008, 41(5): 822-836. https://doi.org/10.1080/00032710801935103
  106. El-Didamony A, Amin A, Ghoneim A, et al. Indirect Spectrophotometric Determination of Gentamicin and Vancomycin Antibiotics Based on their Oxidation by Potassium Permanganate. Open Chemistry, 2006, 4(4): 708-722. https://doi.org/10.2478/s11532-006-0035-z
  107. Hadi M and Mollaei T. Electroanalytical Determination of Vancomycin at a Graphenemodified Electrode: Comparison of Electrochemical Property between Graphene, Carbon Nanotube, and Carbon Black. Electroanalysis, 2018, 31(7): 1224-1228. https://doi.org/10.1002/elan.201800497
  108. Sharaf El-Din M, Ibrahim F, Kamal El-Deen A, et al. Stability-Indicating Spectrofluorimetric Method with Enhanced Sensitivity for Determination of Vancomycin Hydrochloride in Pharmaceuticals and Spiked Human Plasma: Application to Degradation Kinetics. Journal of Food and Drug Analysis, 2018, 26: 834-841. https://doi.org/10.1016/j.jfda.2017.06.005
  109. Lam M and Le X. Competitive Immunoassay for Vancomycin Using Capillary Electrophoresis with Laser- Induced Fluorescence Detection. Analyst, 2002, 127(12): 1633-1637. https://doi.org/10.1039/b206531b
  110. Belal F, El-Ashry S, El-Kerdawy M, et al. Voltametric Determination of Vancomycin in Dosage Forms through Treatment with Nitrous Acid. Arzneimittelforschung, 2011, 51(09): 763-768. https://doi.org/10.1055/s-0031-1300112
  111. Singh R, Sandhu GS, Brar GS, et al. Development and Validation of Analytical Method for Estimation of Gentamicin Sulphate. World Journal of Pharmacy and Pharmaceutical Sciences, 2019, 8(8): 1393-1402. Doi: 10.20959/wjpps20198-14510.
  112. Fiolet A, Jandot E, Doucey P, et al. Long-Term Stability of Gentamicin Sulfate-Ethylenediaminetetraacetic Acid Disodium Salt (EDTA-Na2) Solution for Catheter Locks. Journal of Pharmaceutical Analysis, 2018, 8(6): 386-393. https://doi.org/10.1016/j.jpha.2017.09.004
  113. Brozmanova H, Urinovska R, Sitik P, et al. Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of Gentamicin Concentrations and Comparison with Two Immunoassay Methods (Chemiluminiscent Assay a Polarization Fluoroimmunoassay). Clinical Therapeutics, 2017, 39(8S). https://doi.org/10.1016/j.clinthera.2017.05.267
  114. Liu Q, Li J, Song X, et al. Simultaneous Determination of Aminoglycoside Antibiotics in Feeds Using High Performance Liquid Chromatography with Evaporative Light Scattering Detection. Royal Society of Chemistry Advances, 2017, 7(3): 1251-1259. https://doi.org/10.1039/C6RA26581B
  115. Lucha S, Taibon J, Pongratz S, et al. An LC-MS/MS Based Candidate Reference Method for the Quantification of Total Gentamicin in Human Serum and Plasma Using NMR Characterized Calibrator Material. Clinica Chimica Acta, 2017, 464: 211-217. https://doi.org/10.1016/j.cca.2016.11.029
  116. Patil S, Vijayakrishna K and Sangshetti J. Quality by Design (Qbd) Approach towards the Development and Validation of HPLC Method for Gentamicin Content in Biodegradable Implants. Der Pharma Chemica, 2016, 8(1): 282-288. https://doi.org/10.22376/ijpbs.2017.8.2.p.258-269
  117. Ragab M, Abdel Monem M, Maher MA, et al. Validation of a RP-HPLC Method for Estimation of Gentamycin Sulfate in Poultry Meat Using UV Detector. Egypt Journal of Chemistry and Environmental Health, 2015, 1(1): 955-970.
  118. Jammal N, AL - Mardini MA and Abboud H. Development and Validation of LC/MS Method for the Estimation of Gentamicin Sulfate and its Impurities in Injections. International Journal of Pharmaceutical Sciences Review and Research, 2014, 27(1): 70-73.
  119. Mokh S, Jaber F, Kouzayha A, et al. Optimization and Comparisons for Separation, Detection and Quantification of 12 Aminoglycosides Using 2 Chromatographic Conditions by LC-MS/MS. American Journal of Analytical Chemistry, 2014, 05(14): 982-994. https://doi.org/10.4236/ajac.2014.514105
  120. Chuong MC, Chin J, Han JW, et al. High Performance Liquid Chromatography of Gentamicin Sulfate Reference Standards and Injection USP. International Journal of Pharmaceuticals Analysis, 2013, 4(1): 25-29.
  121. Kumar GA and Ramya V. Quantification of Gentamicin by Microbial Assay Technique and Reverse Phase HPLC. European Journal of Experimental Biology, 2012, 2(6): 2083- 2089.
  122. Zheng C, Wang B, Wang M, et al. Impurity Analysis of Gentamicin Bulk Samples by Improved Liquid Chromatography-Ion Trap Mass Spectrometry. Science China Chemistry, 2011, 54(9): 1518-1528. https://doi.org/10.1007/s11426-011-4304-0
  123. Inoue K, Hattori Y, Horie M, et al. Preparative Purification of Gentamicin Components Using High-Speed Counter- Current Chromatography Coupled with Electrospray Mass Spectrometry. Journal of Separation Science, 2011, 34(12): 1484-1488. https://doi.org/10.1002/jssc.201100114
  124. Laki M, Ludanyi K, Hajdu M, et al. Determination of Gentamicin Released from Orthopedic Carrier System by a Novel HPLC Method. Journal of Chromatographic Science, 2011, 49(3): 177-181. https://doi.org/10.1093/chrsci/49.3.177
  125. Plozza T, Trenerry VC, Zeglinski P, et al. The Confirmation and Quantification of Selected Aminoglycoside Residues in Animal Tissue and Bovine Milk by Liquid Chromatography Tandem Mass Spectrometry. International Food Research Journal, 2011, 18(3): 1077-1084.
  126. Baietto L, D’Avolio A, De Rosa F, et al. Development and Validation of a Simultaneous Extraction Procedure for HPLC-MS Quantification of Daptomycin, Amikacin, Gentamicin , and Rifampicin in Human Plasma. Analytical and Bioanalytical Chemistry, 2010, 396(2): 791-798. https://doi.org/10.1007/s00216-009-3263-1
  127. Joseph A, and Rustum A. Development and Validation of a RP-HPLC Method for the Determination of Gentamicin Sulfate and its Related Substances in a Pharmaceutical Cream Using a Short Pentafluorophenyl Column and a Charged Aerosol Detector. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(3): 521-531. https://doi.org/10.1016/j.jpba.2009.09.002
  128. Lecroz C, Campanero M, Gamazo C, et al. Determination of Gentamicin in Different Matrices by a New Sensitive High-Performance Liquid Chromatography-Mass Spectrometric Method. Journal of Antimicrobial Chemotherapy, 2006, 58(3): 557-563. https://doi.org/10.1093/jac/dkl258
  129. Heller D, Peggins J, Nochetto C, et al. LC/MS/MS Measurement of Gentamicin in Bovine Plasma, Urine, Milk, and Biopsy Samples Taken from Kidneys of Standing Animals. Journal of Chromatography B, 2005, 821(1): 22-30. https://doi.org/10.1016/j.jchromb.2005.04.015
  130. Meicheng Y, Zhen L, Xiaolei Y, et al. HPLC Method Using Pre-Column Derivatization for Determination of the Content of Gentamicin Sulfate and Neomycin Sulfate. Chinese Journal of Clinical Pharmacy, 2004, 5.
  131. Clarot I, Chaimbault P, Hasdenteufel F, et al. Determination of Gentamicin Sulfate and Related Compounds by High-Performance Liquid Chromatography with Evaporative Light Scattering Detection. Journal of Chromatography A, 2004, 1031(1-2): 281-287. https://doi.org/10.1016/j.chroma.2003.12.032
  132. Isoherranen N and Soback S. Determination of Gentamicin s C1, C1a, and C2 in Plasma and Urine by HPLC. Clinical Chemistry, 2000, 46(6): 837-842. https://doi.org/10.1093/clinchem/46.6.837
  133. Stead D and Richards R. Sensitive Fluorimetric Determination of Gentamicin Sulfate in Biological Matrices Using Solid-Phase Extraction, Pre-Column Derivatization with 9- Fluorenylmethyl Chloroformate and Reversed-Phase High- Performance Liquid Chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1996, 675(2): 295-302. https://doi.org/10.1016/0378-4347(95)00355-X
  134. Getek T, Vestal M and Alexander T. Analysis of Gentamicin Sulfate by High-Performance Liquid Chromatography Combined with Thermospray Mass Spectrometry. Journal of Chromatography A, 1991, 554(1-2): 191-203. https://doi.org/10.1016/S0021-9673(01)88449-1
  135. Barends D, van der Sandt J and Hulshoff A. Micro Determination of Gentamicin in Serum by High-Performance Liquid Chromatography with Ultraviolet Detection. Journal of Chromatography B: Biomedical Sciences and Applications, 1980, 182(2): 201-210. https://doi.org/10.1016/S0378-4347(00)81624-2
  136. Freeman M, Hawkins P, Loran J, et al. The Analysis of Gentamicin Sulphate in Pharmaceutical Specialities by High Performance Liquid Chromatography. Journal of Liquid Chromatography, 1979, 2(9): 1305-1317. https://doi.org/10.1080/01483917908060139
  137. Ismail A, Mohamed F, Rosli L, et al. Spectrophotometric Determination of Gentamicin Loaded PLGA Microparticles and Method Validation via Ninhydrin-Gentamicin Complex As A Rapid Quantification Approach. Journal of Applied Pharmaceutical Science, 2016, 6(1): 7-14. https://doi.org/10.7324/JAPS.2016.600102
  138. Fraihat S. Kinetic Spectrophotometric Methods for the Determination of Gentamicin in Pharmaceutical Forms. International Journal of Pharmacy and Pharmaceutical Sciences, 2015, 7(6): 302-305.
  139. Naveed S, Shah ShN, Qamar F, et al. Simple UV Spectrophotometric Assay of New Formulation Gentamycin. Journal of Applied Pharmacy, 2014, 6(4): 407-410. https://doi.org/10.4236/oalib.1100615
  140. Krzek J,Woltyska H and Hubicka U. Determination of Gentamicin Sulphate in Injection Solutions by Derivative Spectrophotometry. Analytical Letters, 2009, 42(3): 473-482. https://doi.org/10.1080/00032710802424461
  141. Wang H, Ren J and Zhang Y. Use of PDimethylaminobenzalhyde as a Coloured Reagent for Determination of Gentamycin. Talanta, 1993, 40(6): 851-853. https://doi.org/10.1016/0039-9140(93)80041-O
  142. Meng T, Al Bawab A, Hawwa AF, et al. Development and Validation of an Enzyme Linked Immunosorbent Assay (ELISA) for Gentamicin Quantification in Dried Blood Spot Samples. Asian Journal of Biomedical and Pharmaceutical Sciences, 2019, 10(66): 10-15. https://doi.org/10.35841/2249-622X.66.18-1176
  143. Santos L, Arajo A and Reis B, Montenegro M. Development of a Multicommutated Flow System with Chemiluminometric Detection for Quantification of Gentamicin in Pharmaceuticals. Journal of Automated Methods and Management in Chemistry, 2010, 2010: 1-7. https://doi.org/10.1155/2010/913207
  144. Fernandezramos J, Garciacampana A, Alesbarrero F, et al. Determination of Gentamicin in Pharmaceutical Formulations Using Peroxyoxalate Chemiluminescent Detection in Flow-Injection Analysis. Talanta, 2006, 69(3): 763-768. https://doi.org/10.1016/j.talanta.2005.11.008