Open Access


Research Article

Main Article Content

Baljit Singhcorresponding author
Abhishek Dhiman


In the present work an attempt has been made to design the antibiotic drug loaded carbopol-poly(NVP) based hydrogel wound dressings for better wound care. The polymer films were characterized by SEM-EDX, AFM, FTIR, 13CNMR, TGA/DTA/DTG, DSC, and swelling studies. Besides drug release, various biomedical properties (viz. blood compatibility, mucoadhesion, oxygen permeability, water vapour transmission rate, microbial penetration, tensile strength, bursting strength, resilience, stress relaxation, and folding endurance) have also been studied. The polymer films have been observed to be biocompatible, permeable to oxygen and water vapour and have absorbed simulated wound fluid 11.37±0.31 g/g of polymer film.The drug release profile followed the Case-II diffusion mechanism and release profile best fitted in Hixson-Crowell's kinetic models.Mechanical properties results showed that the polymer film had 0.65±0.12 Nmm-2 tensile strength, 119.38±14.26% elongationand 25.49±0.72% resilience.

Drug delivery, 1-Vinyl-2-pyrollidone, Hydrogel, Wound dressing

Article Details

How to Cite
Singh, B., & Dhiman, A. (2019). Functionalization of carbopol with NVP for designing antibiotic drug loaded hydrogel dressings for better wound management. Journal of Pharmaceutical and Biopharmaceutical Research, 1(1), 1-14.


  1. Chandika P, Ko SC, Jung WK. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biolog Macromol, 2015, 77: 24-35.
  2. Percival SL, Emanuel C, Cutting KF, et al. Microbiology of the skin and the role of biofilms in infection. Int Wound J, 2012, 9: 14-32.
  3. Jiang Q, Wang J, Tang R, et al. Hypromellose succinatecrosslinked chitosan hydrogel films for potential wound dressing.Int J Biolog Macromo, 2016, l91: 85-91.
  4. Tavakoli J, Tang Y. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structuralphysicomechanical and in-vitro biomedical studies. Materials Science and Engineering, 2017, C77: 318-325.
  5. Cal´o E, Khutoryanskiy VV. Biomedicalapplications of hydrogels: A review of patents and commercial products Eur Polym J, 2015, 65:252-267.
  6. Slaughter BV, Khurshid SS, Fisher OZ, et al. Hydrogels in regenerative medicine. Adv Mater, 2009, 21: 3307-3329.
  7. Moura LI, Dias AM, Carvalho E, et al.Recent advances on the development of wound dressings for diabetic foot ulcer treatment-a review. Acta biomaterialia, 2013, 9: 7093-7114.
  8. Lloyd LL, Kennedy JF, Methacanon P, et al. Carbohydrate polymers as wound management aids. Carbohydr Polym, 1998, 37: 315-322.
  9. Song J, Yu R, Wang L, et al. Poly (N-vinylpyrrolidone)- grafted poly (N-isopropylacrylamide) copolymers: synthesis characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer, 2011, 52: 2340-2350.
  10. Telford AM, James M, Meagher L, et al. Thermally crosslinked PNVP films as antifouling coatings for biomedical applications. ACS Appl Mater Interfaces, 2010, 2: 2399- 2408.
  11. Shahbuddin M, Bullock AJ, MacNeil S, et al. Glucomannan-poly (N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem, 2014, B2: 727-738.
  12. Zheng A, Xue Y, Wei D, et al. Synthesis and characterization of antimicrobial polyvinyl pyrrolidone hydrogel as wound dressing. Soft Mater, 2014, 12: 179-187.
  13. Smith LE, Rimmer S, MacNeil S. Examination of the effects of poly (N-vinylpyrrolidinone) hydrogels in direct and indirect contact with cells. Biomaterials, 2006, 27: 2806- 2812.
  14. Wan LS, Xu ZK, Huang XJ, et al. Hemocompatibility of Poly (acrylonitrilecoNvinyl2pyrrolidone): Swelling Behavior and Water States. Macromol Biosci, 2005, 5: 229-236.
  15. Bajpai SK, Pathak V, Soni B, et al. CNWs loaded poly (SA) hydrogels: effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym, 2014, 106: 351-358.
  16. Islam MT, Rodriguez-Hornedo N, Ciotti S, et al. Rheological characterization of topical carbomer gels neutralized to different pH. Pharma Res, 2004, 21: 1192-1199.
  17. Sahoo S, Pani NR, Sahoo SK. Microemulsion based topical hydrogel of sertaconazole: Formulationcharacterization and evaluation.Colloids SurfB Biointerfaces, 2014, 120: 193- 199.
  18. Jana S, Manna S, Nayak AK, et al. CP gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces, 2014, 114: 36-44.
  19. Wang Y, Lee CH. Characterization of a female controlled drug delivery system for microbicides. Contraception, 2002, 66(4): 281-287.
  20. Jaiswal M, Kumar A, Sharma S. Nanoemulsions loaded CP? 934 based gel for intranasal delivery of neuroprotective Centella asiatica extract: invitro and exvivo permeation study. J Pharma Invest, 2016, 46: 79-89.
  21. Silva JP ,Dhall S, Garcia M, et al. Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a CP gel. Acta Biomater, 2015, 26: 249-262.
  22. Singh B, Sharma N. Mechanistic implication for crosslinking in sterculia-based hydrogels and their use in GIT drug delivery.Biomacromolecules, 2009, 10: 2515-2532.
  23. Ritger PL, Peppas NA. A simple equation for description of solute release I, Fickian and non-Fickian release from nonswellable devices in the form of slabsspherescylinders or discs. J Control Rel, 1987, 5:23-36.
  24. Ritger PL, Peppas NA. A simple equation for description of solute release II, Fickian and anomalous release from swellable devices. J Control Release, 1987, 5: 37-42.
  25. Dash S, Murthy PN, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010, 67: 217-223.
  26. Sullad AG, Manjeshwar LS, Aminabhavi TM. Novel pHsensitive hydrogels prepared from the blends of poly (vinyl alcohol) with acrylic acid-graft-guar gum matrixes for isoniazid delivery. Ind Eng Chem Res, 2010, 49: 7323-7329.
  27. Imai Y, Nose Y. A new method for evalution of antithrombogenicity of materials. J Biomed Mater Res, 1972, 6: 165- 172.
  28. Ferreira P, Pereira R, Coelho JFJ, et al. Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int J Biolog Macromol, 2007, 40: 144- 152.
  29. Winkler LW. Die bestimmung des im wasser gel?sten sauerstoffes, Berichte der deutschen chemischen Gesellschaft, 1888, 21: 2843-2854.
  30. Chamb iHNM, Grosso CRF. Mechanical and water vapor permeability properties of biodegradables films based on methylcelluloseglucomannanpectin and gelatin. Food Sci Technol, 2011, 31: 739-746.
  31. Greenspan L. Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand, 1977, 81: 89-96.
  32. Wu P, Fisher AC, Foo PP, et al. In vitro assessment of water vapour transmission of synthetic wound dressings. Biomaterials, 1995, 16: 171-175.
  33. Bajpai SK, Saggu SS. Insulin release behaviour of Poly(methacrylamideco Nvinyl2pyrrolidonecoitaconic acid) Hydrogel: An Interesting Probe, Part II. J Macromol Sci A, 2007, 44: 153-157.
  34. Pal K, Banthia AK, Majumdar DK. Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends Biomater Artif Organs, 2006, 20: 59-67.
  35. Wei Y, Xie R ,Lin Y, et al. Structure formation in pHsensitive hydrogels composed of sodium caseinate and NOcarboxymethyl chitosan. Int JBiolog Macromol, 2016, 89: 353-359.
  36. Pramanick AK, Gupta S, Mishra T, et al. Topographical heterogeneity in transparent PVA hydrogels studied by AFM,Mater Sci Eng C, 2012, 32: 222-227.
  37. Ahuja M, Thakur K, Kumar A. Amylopectin-g-poly (Nvinyl- 2-pyrrolidone): Synthesischaracterization and in vitro release behaviour.Carbohydr Polym, 2014, 108: 127-134.
  38. Du J, Liu X, Liu W, et al. One-step preparation of vinylfunctionalized material surfaces: a versatile platform for surface modification. Sci China Chem, 2014, 57: 654-660.
  39. Patel MM, Smart JD, Nevell TG, et al. Mucin/poly (acrylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules, 2003, 4: 1184-1190.
  40. Capra RH, Baruzzi AM, Quinzani LM, et al. Rheologicaldielectric and diffusion analysis of mucin/CP matrices used in amperometric biosensors Sens Actuators B Chem, 2007, 124: 466-476.
  41. Szakonyi G, Zelk´o R. CP?-crospovidone interpolymer complex for pH-dependent desloratadine release. J Pharma Biomed Anal, 2016, 123: 141-146.
  42. Zhu X, Lu P, Chen W, et al. Studies of UV crosslinked poly (N-vinylpyrrolidone) hydrogels by FTIRRaman and solidstate NMR spectroscopies.Polymer, 2010, 51: 3054-3063.
  43. Tanodekaew S, Prasitsilp M, Swasdison S, et al. Preparation of acrylic grafted chitin for wound dressing application. Biomaterials, 2004, 25: 1453-1460.
  44. Jin S, Gu J, Shi Y, et al. Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur Polym J, 2013, 49: 1871-1880.
  45. Liu S, Luo W, Huang H. Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and -cyclodextrin. IntJBiolog Macromol, 2016, 89: 527- 534.
  46. Loh GOK, Tan YTF, Pe KK. Hydrophilic polymer solubilization on norfloxacin solubility in preparation of solid dispersion. Powder Technol, 2014, 256: 462-469.
  47. Bentez-Guerrero M, L´opez-Beceiro J, S´anchez-Jimnez PE, et al. Comparison of thermal behavior of natural and hotwashed sisal fibers based on their main components: Cellulosexylan and lignin, TG-FTIR analysis of volatile products. Thermochimica Acta, 2014, 581: 70-86.
  48. Verma SK, Pandey VS, Behari MYK. Gellan gum-g-Nvinyl- 2-pyrrolidone: Synthesisswellingmetal ion uptake and flocculation behavior. Int J Biolog Macromol, 2015, 72: 1292-1300.
  49. Chun MK, Bhusal P, Choi HK. Application of CP/PVP interpolymer complex to prepare mucoadhesive floating granule. Arch Pharmacal Res, 2013, 36: 745-751.
  50. Lin SY ,Yu HL. Thermal stability of methacrylic acid copolymers of Eudragits LSand L30D and the acrylic acid polymer of CP. J Polym Sci A, 1999, 37: 2061-2067.;2-Y
  51. Lee WF, Chiang WH. Swelling and drugrelease behaviour of the poly (AAcoNvinyl pyrrolidone)/chitosan interpenetrating polymer network hydrogels. J Appl Polym Sci, 2004, 91: 2135-2142.
  52. Shah R, Saha N, Saha P. Influence of temperaturepH and simulated biological solutions on swelling and structural properties of biomineralized (CaCO3) PVPCMC hydrogel. Prog Biomater, 2015, 4: 123-136.
  53. Singh R, Singh D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J Mater Sci Mater Med, 2012, 23: 2649-2658.
  54. Jain GK, Pathan SA, Akhter S, et al. Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: Influence of chitosan. Polym Degrad Stab, 2010, 95: 2360-2366.
  55. Tally M, Atassi Y. Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly (acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym, Bulletin, 2016, 1: 26.
  56. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharma Sci1, 2001, 3: 123-133.
  57. Tang C, Yin L, Yu J, et al. Swelling behavior and biocompatibility of CPcontaining superporous hydrogel composites. J Appl Polym Sci, 2007, 104: 2785-2791.
  58. Malik S, Kumar A, Ahuja M. Synthesis of gum kondagogug- poly (N-vinyl-2-pyrrolidone) and its evaluation as a mucoadhesive polymer.Int J Biolog Macromol, 2012, 51: 756- 762.
  59. L R, Wang H, Wang W, et al. Simultaneous radiation induced graft polymerization of N-vinyl-2-pyrrolidone onto polypropylene non-woven fabric for improvement of blood compatibility. Rad Phys Chem,2013, 88: 65-69.
  60. Hall DJ, Khutoryanskaya OV, Khutoryanskiy VV. Developing synthetic mucosa-mimetic hydrogels to replace animal experimentation in characterisation of mucoadhesive drug delivery systems. Soft Matter, 2011, 7: 9620-9623.
  61. Sajeesh S, Sharma CP. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)- chitosan for oral drug delivery. Drug Deliv, 2011, 18:227- 235.