Open Access Peer-reviewed Research Article

P22077 enhances the antitumor efficacy of Cisplatin and its mechanism

Main Article Content

Jiahao Qiu corresponding author
Qianwen Ren
Yingjie Wang
Qunling Xie
Yanjie Liu
Pengfei Yu
Hongbo Wang
Jingwei Tian

Abstract

Activation of DNA damage repair pathways in tumor cells may reduce the treatment efficacy of platinum-based chemotherapeutic agents. Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes that can remove the ubiquitin from target proteins and protect substrate proteins from degradation. Although ubiquitin-specific protease 7(USP7) is highly expressed in cervical cancer tissues and plays an important role in DNA damage repair, the role of USP7 inhibition in the antitumor efficacy of cisplatin remains unknown. This study explored the effects and mechanisms of a USP7 inhibitor P22077 on the anti-cervical cancer efficacy of cisplatin. In in vitro studies, P22077 and cisplatin both significantly reduced HeLa cell proliferation and colony formation, and the combination produced preferable effects. In in vivo xenograft tumor model, P22077 and cisplatin both demonstrated significant antitumor efficacy. The drug combination produced greater antitumor activity than the individual drug alone. Cisplatin evoked DNA damage repair-related molecules and P22077 tended to prevent this change. The drug combination produced higher cell death rate than the individual drug alone. Collectively, These results suggest that the USP7 inhibitor P22077 alone has significant antitumor efficacy and also can enhance the antitumor effects of cisplatin. The USP7 inhibitor P22077 combined with cisplatin may be an effective treatment strategy for cervical cancer.

Keywords
cervical cancer, DNA damage repair, combination therapy strategy

Article Details

How to Cite
Qiu, J., Ren, Q., Wang, Y., Xie, Q., Liu, Y., Yu, P., Wang, H., & Tian, J. (2022). P22077 enhances the antitumor efficacy of Cisplatin and its mechanism. Journal of Pharmaceutical and Biopharmaceutical Research, 3(2), 218-227. https://doi.org/10.25082/JPBR.2021.02.002

References

  1. Roden RBS and Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nature Reviews Cancer, 2018, 18(4): 240-254. https://doi.org/10.1038/nrc.2018.13
  2. Tsu V and Jeronimo J. Saving the World’s Women from Cervical Cancer. New England Journal of Medicine, 2016, 374(26): 2509-2511. https://doi.org/10.1056/NEJMp1604113
  3. Olawaiye AB, Baker TP, Washington MK, et al. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA: A Cancer Journal for Clinicians, 2021, 71(4): 287-298. https://doi.org/10.3322/caac.21663
  4. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. https://doi.org/10.3322/caac.21660
  5. Wieringa HW, van der Zee AG, de Vries EG, et al. Breaking the DNA damage response to improve cervical cancer treatment. Cancer Treatment Review, 2016, 42: 30-40. https://doi.org/10.1016/j.ctrv.2015.11.008
  6. Zhu H, Luo H, Zhang W, et al. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Design, Development and Therapy, 2016, 10: 1885-1895. https://doi.org/10.2147/DDDT.S106412
  7. Gottesman MM, Fojo T and Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews Cancer, 2002, 2(1): 48-58. https://doi.org/10.1038/nrc706
  8. Zisowsky J, Koegel S, Leyers S, et al. Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochemical Pharmacology, 2007, 73(2): 298-307. https://doi.org/10.1016/j.bcp.2006.10.003
  9. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47): 7265-7279. https://doi.org/10.1038/sj.onc.1206933
  10. Dasari S and Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology, 2014, 740: 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
  11. Khanna KK and Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics, 2001, 27(3): 247-254. https://doi.org/10.1038/85798
  12. Stracker TH and Petrini JH. The MRE11 complex: starting from the ends. Nature Reviews Molecular Cell Biology, 2011, 12(2): 90-103. https://doi.org/10.1038/nrm3047
  13. Cherry SM, Adelman CA, Theunissen JW, et al. The Mre11 complex influences DNA repair, synapsis, and crossing over in murine meiosis. Current Biology, 2007, 17(4): 373-378. https://doi.org/10.1016/j.cub.2006.12.048
  14. Reverdy C, Conrath S, Lopez R, et al. Discovery of Specific Inhibitors of Human USP7/HAUSP Deubiquitinating Enzyme. Chemistry & Biology, 2012, 19(4): 467-477. https://doi.org/10.1016/j.chembiol.2012.02.007
  15. Uziel T, Lerenthal Y, Moyal L, et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO Journal, 2003, 22(20): 5612-5621. https://doi.org/10.1093/emboj/cdg541
  16. Jungmichel S, Clapperton JA, Lloyd J, et al. The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator. Nucleic Acids Research, 2012, 40(9): 3913-3928. https://doi.org/10.1093/nar/gkr1300
  17. Stewart GS, Wang B, Bignell CR, et al. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 2003, 421(6926): 961-966. https://doi.org/10.1038/nature01446
  18. Dikic I, Wakatsuki S and Walters KJ. Ubiquitin-binding domains - from structures to functions. Nature Reviews Molecular Cell Biology, 2009, 10(10): 659-6571. https://doi.org/10.1038/nrm2767
  19. Vucic D, Dixit VM and Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Reviews Molecular Cell Biology, 2011, 12(7): 439-452. https://doi.org/10.1038/nrm3143
  20. Wang Z, Kang W, You Y, et al. USP7: Novel Drug Target in Cancer Therapy. Frontiers in Pharmacology, 2019, 10: 427. https://doi.org/10.3389/fphar.2019.00427
  21. Zhu Q, Sharma N, He J, et al. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle, 2015, 14(9): 1413-1425. https://doi.org/10.1080/15384101.2015.1007785
  22. Zhang P,Wei Y,Wang L, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nature Cell Biology, 2014, 16(9): 864-875. https://doi.org/10.1038/ncb3013
  23. Alonso-de Vega I, Martin Y and Smits VA. USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle, 2014, 13(24): 3921-3926. https://doi.org/10.4161/15384101.2014.973324
  24. Faustrup H, Bekker-Jensen S, Bartek J, et al. USP7 counteracts SCFbetaTrCP- but not APCCdh1- mediated proteolysis of Claspin. Journal of Cell Biology, 2009, 184(1): 13-19. https://doi.org/10.1083/jcb.200807137
  25. Su D, Ma S, Shan L, et al. Ubiquitin-specific protease 7 sustains DNA damage response and promotes cervical carcinogenesis. Journal Of Clinical Investigation, 2018, 128(10): 4280-4296. https://doi.org/10.1172/JCI120518
  26. Lv G, Sun D, Zhang J, et al. Lx2-32c, a novel semi-synthetic taxane, exerts antitumor activity against prostate cancer cells in vitro and in vivo. Acta Pharmaceutica Sinica B, 2017, 7(1): 52-58. https://doi.org/10.1016/j.apsb.2016.06.005
  27. Li F, Liu Z, Sun H, et al. PCC0208017, a novel small-molecule inhibitor of MARK3/MARK4, suppresses glioma progression in vitro and in vivo. Acta Pharmaceutica Sinica B, 2020, 10(2): 289- 300. https://doi.org/10.1016/j.apsb.2019.09.004
  28. Ma YT, Yang Y, Cai P, et al. A Series of Enthalpically Optimized Docetaxel Analogues Exhibiting Enhanced Antitumor Activity and Water Solubility. Journal Of Natural Products, 2018, 81(3): 524- 533. https://doi.org/10.1021/acs.jnatprod.7b00857
  29. Yang Y, Guan D, Lei L, et al. H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicology And Applied Pharmacology, 2018, 341: 98-105. https://doi.org/10.1016/j.taap.2018.01.015
  30. Wang H, Ma X, Ren S, et al. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Molecular Cancer Therapeutics, 2011, 10(1): 69-79. https://doi.org/10.1158/1535-7163.MCT-10-0581
  31. Clague MJ, Urbe S and Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nature Reviews Molecular Cell Biology, 2019, 20(6): 338-352. https://doi.org/10.1038/s41580-019-0099-1
  32. D’Arcy P, Wang X and Linder S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacology & Therapeutics, 2015, 147: 32-54. https://doi.org/10.1016/j.pharmthera.2014.11.002
  33. Mevissen TET and Komander D. Mechanisms of Deubiquitinase Specificity and Regulation. Annual Review of Biochemistry, 2017, 86: 159-192. https://doi.org/10.1146/annurev-biochem-061516-044916
  34. Nicholson B and Kumar KGS. The Multifaceted Roles of USP7: New Therapeutic Opportunities. Cell Biochemistry and Biophysics, 2011, 60(1-2): 61-68. https://doi.org/10.1007/s12013-011-9185-5
  35. Turnbull AP, Ioannidis S, Krajewski WW, et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature, 2017, 550(7677): 481-486. https://doi.org/10.1038/nature24451
  36. Xu L, Wang J, Yuan XN, et al. IU1 suppresses proliferation of cervical cancer cells through MDM2 degradation. International Journal of Biological Sciences, 2020, 16(15): 2951-2963. https://doi.org/10.7150/ijbs.47999
  37. Tavana O and Gu W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. Journal of Molecular Cell Biology, 2017, 9(1): 45-52. https://doi.org/10.1093/jmcb/mjw049
  38. Li M, Brooks CL, Kon N, et al. A dynamic role of HAUSP in the p53-Mdm2 pathway. Molecular Cell, 2004, 13(6): 879-886. https://doi.org/10.1016/s1097-2765(04)00157-1
  39. Zlatanou A, Sabbioneda S, Miller ES, et al. USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene, 2016, 35(8): 965-976. https://doi.org/10.1038/onc.2015.149
  40. Agathanggelou A, Smith E, Davies NJ, et al. USP7 inhibition alters homologous recombination repair and targets CLL cells independently of ATM/p53 functional status. Blood, 2017, 130(2): 156-166. https://doi.org/10.1182/blood-2016-12-758219
  41. Singh N, Bhakuni R, Chhabria D, et al. MDC1 depletion promotes cisplatin induced cell death in cervical cancer cells. BMC Research Notes, 2020, 13(1): 146. https://doi.org/10.1186/s13104-020-04996-5
  42. Wang M, Zhang Y, Wang T, et al. The USP7 Inhibitor P5091 Induces Cell Death in Ovarian Cancers with Different P53 Status. Cell Biochemistry And Biophysics, 2017, 43(5): 1755-1766. https://doi.org/10.1159/000484062