Open Access Peer-reviewed Research Article

(E)-2-Benzylidenecyclanones: Part XVII. An LC-MS study of microsomal transformation reactions of (E)-2-[(4'-methoxyphenyl)methylene]-benzosuberon-1-one: A cyclic chalcone analog

Main Article Content

Fatemeh Kenari
Szilárd Molnár
Zoltán Pintér
Sobhan Bitaraf
Pál Perjési corresponding author

Abstract

Biotransformation of the antiproliferative (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-one (2c) was studied using rat liver microsomes. As a result of the CYP-catalyzed transformations, one monooxygenated (2c+O) and the demethylated (2c-CH2) metabolites were identified by HPLC-MS. (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-ol, the expected product of rat liver microsomal carbonyl reductase, was not found in the incubates. Microsomal GST-catalyzed reaction of the compound resulted in formation of diastereomeric GST-conjugates. Under the present HPLC conditions, the diastereomeric adducts were separated into two chromatographic peaks (2c-GSH-1 and 2c-GSH-2).

Keywords
chalcone, benzosuberone, microsome, CYP, chalcone reductase, glutathione, microsomal glutathione transferase

Article Details

How to Cite
Kenari, F., Molnár, S., Pintér, Z., Bitaraf, S., & Perjési, P. (2023). (E)-2-Benzylidenecyclanones: Part XVII. An LC-MS study of microsomal transformation reactions of (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-one: A cyclic chalcone analog. Journal of Pharmaceutical and Biopharmaceutical Research, 4(2), 326-339. https://doi.org/10.25082/JPBR.2022.02.004

References

  1. Part XVI, Rozmer Z and Perjesi P. (E)-2-Benzylidenecyclanones: Part XVI. Study on the interaction of some (E)-2-benzyldenebenzosuberone derivatives with serum albumin by UV-Vis method, inhibitory effect on topoisomerase. Journal of Pharmaceutical and Biopharmaceutical Research, 2020, 2(1):118-125. https://doi.org/10.25082/JPBR.2020.01.003
  2. Rozmer Z and Perjési P. Naturally occurring chalcones and their biological activities. Phytochemistry Reviews, 2016, 15(1): 87-120. https://doi.org/10.1007/s11101-014-9387-8
  3. Mahapatra DK, Bharti SK and Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. European Journal of Medicinal Chemistry, 2015, 98: 69-114. https://doi.org/10.1016/j.ejmech.2015.05.004
  4. Zhuang C, Zhang W, Sheng C, et al. Chalcone: a privileged structure in medicinal chemistry. Chemical reviews, 2017, 117(12): 7762-7810. https://doi.org/10.1021/acs.chemrev.7b00020
  5. Gomes MN, Muratov EN, Pereira M, et al. Chalcone Derivatives: Promising starting points for drug design. Molecules, 2017, 22(8): 1210. https://doi.org/10.3390/molecules22081210
  6. Dimmock JR, Kandepu NM, Nazarali AJ, et al. Conformational and quantitative structure-activity relationship study of cytotoxic 2-arylidenebenzocycloalkanones. Journal of Medicinal Chemistry, 1999, 42(8): 1358-1366. https://doi.org/10.1021/jm9806695
  7. Dimmock JR, Zello GA, Oloo EO, et al. Correlations between cytotoxicity and topography of some 2-arylidenebenzocycloalkanones determined by X-ray crystallography. Journal of Medicinal Chemistry, 2002, 45(14): 3103-3111. https://doi.org/10.1021/jm010559p
  8. Perjési P, Das U, De Clercq E, et al. Design, synthesis and antiproliferative activity of some 3-benzylidene-2,3-dihydro-1-benzopyran-4-ones which display selective toxicity for malignant cells. European Journal of Medicinal Chemistry, 2007, 43(4): 839-845. https://doi.org/10.1016/j.ejmech.2007.06.017
  9. Rozmer Z, Berki T and Perjési P. Different effects of two cyclic chalcone analogues on cell cycle of Jurkat T cells. Toxicology in Vitro, 2006, 20(8): 1354-1362. https://doi.org/10.1016/j.tiv.2006.05.006
  10. Pilatova M, Varinska L, Perjesi P, et al. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicology in Vitro, 2010, 24(5): 1347-1355. https://doi.org/10.1016/j.tiv.2010.04.013
  11. Perjési P, Maász G, Reisch R, et al. (E)-2-Benzylidenebenzocyclanones: Part VII. Investigation of the conjugation reaction of two cytotoxic cyclic chalcone analogues with glutathione: an HPLC–MS study. Monatshefte für Chemie, 2012, 143(8): 1107-1114. https://doi.org/10.1007/s00706-012-0768-7
  12. Rozmer Z, Berki T, Maász G, et al. Different effects of two cyclic chalcone analogues on redox status of Jurkat T cells. Toxicology in Vitro, 2014, 28(8):1359-1365. https://doi.org/10.1016/j.tiv.2014.06.006
  13. Kohno Y, Kitamura S, Sanoh S, et al. Metabolism of the α,β-unsaturated ketones, chalcone and trans -4-phenyl-3-buten-2-one, by rat liver microsomes and estrogenic activity of the metabolites. Drug Metabolism and Disposition, 2005, 33(8): 1115-1123. https://doi.org/10.1124/dmd.104.002634
  14. Okamoto Y, Kitamura S, Takeshita M, et al. Microsomal carbonyl reductase responsible for reduction of 4-phenyl-3-buten-2-one in rats. IUBMB Life, 1999, 48(5): 543-547. https://doi.org/10.1080/713803550
  15. Huang L, Nikolic D and van Breemen RB. Hepatic metabolism of licochalcone A, a potential chemopreventive chalcone from licorice (Glycyrrhiza inflata), determined using liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409(30): 6937-6948. https://doi.org/10.1007/s00216-017-0642-x
  16. Nikolic D, Li Y, Chadwick LR, et al. Metabolism of 8-prenylnaringenin, a potent phytoestrogen from hops (Humulus lupulus), by human liver microsomes. Drug metabolism and disposition, 2004, 32(2): 272-279. https://doi.org/10.1124/dmd.32.2.272
  17. Bernardes A, Kuzma M, Almási A, et al. HPLC and HPLC-MS analysis of intestinal elimination and phase 2 metabolism of 4'-hydroxy-4-methoxychalcone and its bis-Mannich analog in the rat. The Open Medicinal Chemistry Journal, 2022, 16(1): e187410452208110. https://doi.org/10.2174/18741045-v16-e2208110
  18. Bernardes A, Pérez CN, Mayer M, et al. Study of reactions of two Mannich bases derived of 4’-hydroxychalcones with glutathione by RP-TLC, RP-HPLC and RP-HPLC-ESI-MS analysis. Journal of the Brazilian Chemical Society, 2017, 28: 1048-1062. https://doi.org/10.21577/0103-5053.20160260
  19. Jones DP. Redox potential of GSH/GSSG couple: Assay and biological significance. In: Methods in Enzymology (Internet). Elsevier, 2002, 93-112. https://doi.org/10.1016/s0076-6879(02)48630-2
  20. Aw TY. Cellular Redox: A Modulator of Intestinal Epithelial Cell Proliferation. Physiology, 2003, 18(5): 201-204. https://doi.org/10.1152/nips.01448.2003
  21. Schafer FQ and Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 2001, 30(11): 1191-1212. https://doi.org/10.1016/s0891-5849(01)00480-4
  22. Perjési P. Glutathione: biosynthesis, functions and biological implications. Nova Science Publishers, New York, 2019. ISBN 978-1-53614-740-7.
  23. Hill JR. In vitro drug metabolism using liver microsomes. Current Protocols in Pharmacology, 2004. https://doi.org/10.1002/0471141755.ph0708s23
  24. Perjési P, Nusser T, Tarczay Gy, et al. E-2-Benzylidenebenzocycloalkanones. Stereostructure and NMR spectroscopic investigation. Journal of Molecular Structure, 1999, 479(1): 13-19. https://doi.org/10.1016/S0022-2860(98)00805-9
  25. Phosphate-Buffered Saline (PBS; 0.1 M, pH 7.4). Cold Spring Harbor Protocols, 2014, 2014(12): pdb.rec085126. https://doi.org/10.1101/pdb.rec085126
  26. Karthikeyan C, Narayana Moorthy NSH, Ramasamy S, et al. Advances in Chalcones with Anticancer Activities. Physical Review A, 2014, 10(1): 97-115. https://doi.org/10.2174/1574892809666140819153902
  27. Constantinescu T and Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. International Journal of Molecular Sciences, 2022, 23(19): 11595. https://doi.org/10.3390/ijms231911595
  28. Powis G, Gasdaska JR and Baker A. Redox signaling and the control of cell growth and death. Advances in pharmacology, 1996, 38: 329-359. https://doi.org/10.1016/s1054-3589(08)60990-4
  29. Vašková J, Kočan L, Vaško L, et al. Glutathione-Related Enzymes and Proteins: A Review. Molecules, 2023, 28(3): 1447. https://doi.org/10.3390/molecules28031447
  30. Dinkova-Kostova AT, Massiah MA, Bozak RE, et al. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proceedings of the National Academy of Sciences, 2001, 98(6):3 404-309. https://doi.org/10.1073/pnas.051632198
  31. Jin YL, Jin XY, Jin F, et al. Structure activity relationship studies of anti-inflammatory TMMC derivatives: 4-Dimethylamino group on the B ring responsible for lowering the potency. Archives of Pharmacal Research 2009, 31(9): 1145. https://doi.org/10.1007/s12272-001-1281-7
  32. Wang J, Wang S, Song D, et al. Chalcone Derivatives Inhibit Glutathione S-Transferase P1-1 Activity: Insights into the Interaction Mode of α,β-Unsaturated Carbonyl Compounds. Chemical biology & drug design, 2009, 73(5): 511-514. https://doi.org/10.1111/j.1747-0285.2009.00807.x
  33. Leitgeb B, Szekeres A, Manczinger L, et al. The history of alamethicin: a review of the most extensively studied peptaibol. Chemistry & biodiversity, 2007, 4(6): 1027-1051. https://doi.org/10.1002/cbdv.200790095
  34. Fisher MB, Campanale K, Ackermann BL, et al. In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug metabolism and disposition, 2000, 28(5): 560-566.
  35. Kumar S, Samuel K, Subramanian R, et al. Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide. Journal of Pharmacology and Experimental Therapeutics, 2002, 303(3): 969-978. https://doi.org/10.1124/jpet.102.038992
  36. Walsky RL, Bauman JN, Bourcier K, et al. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metabolism and Disposition, 2012, 40(5): 1051-1065. https://doi.org/10.1124/dmd.111.043117
  37. Boase S and Miners JO. In vitro–in vivo correlations for drugs eliminated by glucuronidation: investigations with the model substrate zidovudine. British Journal of Clinical Pharmacology, 2002, 54(5): 493-503. https://doi.org/10.1046/j.1365-2125.2002.01669.x
  38. Yan Z and Caldwell GW. Metabolic assessment in liver microsomes by co-activating cytochrome P450s and UDP-glycosyltransferases. European Journal of Drug Metabolism and Pharmacokinetics, 2003, 28(3): 223-232. https://doi.org/10.1007/BF03190489
  39. Berne D, Ladmiral V, Leclerc E, et al. Thia-Michael reaction: The route to promising covalent adaptable networks. Polymers, 2022, 14(20): 4457. https://doi.org/10.3390/polym14204457
  40. Rozmer Z, Perjési P and Takács-Novák K. Application of RP-TLC for logP determination of isomeric chalcones and cyclic chalcone analogues. Journal of Planar Chromatography –- Modern TLC, 2006, 19: 124-128. https://doi.org/10.1556/jpc.19.2006.2.7
  41. Lundqvist G, Yücel-Lindberg T and Morgenstern R. The oligomeric structure of rat liver microsomal glutathione transferase studied by chemical cross-linking. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1992, 1159(1): 103-108. https://doi.org/10.1016/0167-4838(92)90081-n
  42. Jakobsson PJ, Mancini JA, Riendeau D, et al. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. Journal of Biological Chemistry, 1997, 272(36): 22934-22939. https://doi.org/10.1074/jbc.272.36.22934
  43. Jakobsson PJ, Morgenstern R, Mancini J, et al. Common structural features of MAPEG—a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Science, 1999, 8(3): 689-692. https://doi.org/10.1110/ps.8.3.689
  44. Weinander R, Ekström L, Andersson C, et al. Structural and Functional Aspects of Rat Microsomal Glutathione Transferase. Journal of Biological Chemistry, 1997, 272(14): 8871-8877. https://doi.org/10.1074/jbc.272.14.8871
  45. Morgenstern R, Guthenberg C, Mannervik B, et al. The amount and nature of glutathione transferases in rat liver microsomes determined by immunochemical methods. FEBS letters, 1983, 160(1-2): 264-268. https://doi.org/10.1016/0014-5793(83)80979-x
  46. Busenlehner LS, Ålander J, Jegerscöhld C, et al. Location of substrate binding sites within the integral membrane protein microsomal glutathione transferase-1. Biochemistry 2007, 46(10): 2812-2822. https://doi.org/10.1021/bi6023385
  47. Morgenstern R, Depierre JW and Ernster L. Activation of microsomal glutathione S-transferase activity by sulfhydryl reagents. Biochemical and Biophysical Research Communications, 1979, 87(3): 657-663. https://doi.org/10.1016/0006-291x(79)92009-6
  48. Parkinson A, Ogilvie BW, Buckley DB, et al. Biotransformation of Xenobiotics. In “Casarett and Doull's Toxicology: The Basic Science of Poisons (Editor: C. D. Klassen). 9th edition. McGraw Hill, 2019.
  49. Guzy J, Vasková-Kubalkova J, Rozmer Z, et al. Activation of oxidative stress response by hydroxyl substituted chalcones and cyclic chalcone analogues in mitochondria. FEBS Letters, 2010, 584: 567-570. https://doi.org/10.1016/j.febslet.2009.11.098
  50. Perjési P. (E)-2-benzylidenebenzocyclanones: Part XIII. Light-induced in solution (E)/(Z) isomerization of some cyclic chalcone analogues. Effect of ring size on lipophilicity of geometric isomers. Monatshefte der Chemie, 2015, 146(8): 1275-1281. https://doi.org/10.1007/s00706-015-1463-2