Open Access


Research Article

Main Article Content

Majid Farahmandjou corresponding author


Titanium dioxide nanoparticles (TiO2) have been extensively investigated because of its high chemical sustainability, optic properties, and adaptation to the environment. These studies include applications in heterogeneous catalysts, solar cells, coating technology, and electrical devices. TiO2 particles in the nanometer scale can remove limitations, such as the absorbance of organic materials, because of a high surface area to volume ratio. Titanium dioxide nanoparticles, were synthesized using a simple wet chemical method. Their physico-chemical properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The TEM results showed that the mean size of as-synthesized TiO2 was 5 nm with high crystalline anatase phase. The SEM observations revealed that the size of nanoparticles increased with annealing temperature and the morphology of the particles changed to the spherical shape. The crystal structure of the nanoparticles before and after annealing was done by XRD analysis. The rutile phase was formed after heat treatment at 600oC for 3 hours.                                                                                                   

TiO₂ nanoparticles, wet chemical synthesis, rutile phase

Article Details

How to Cite
Farahmandjou, M. (2019). One-step synthesis of TiO₂ nanoparticles using simple chemical technique. Materials Engineering Research, 1(1), 15-19.


  1. Jurablu S, Farahmandjou M and Firoozabadi TP. Multiple-layered structure of obelisk-shaped crystalline nano-ZnO prepared by sol-gel route. Journal of Theoretical and Applied Physics, 2015, 9: 261-266.
  2. Farahmandjou M and Soflaee F. Polymer-Mediated Synthesis of Iron Oxide (Fe2O3) Nanorods. Chinese Journal of Physics, 2015, 53: 080801-080809.
  3. Farahmandjou M and Soflaee F. Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Physical Chemistry Research, 2015, 3: 193-198.
  4. Zarinkamar M, Farahmandjou M and Firoozabadi TP. Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2) Catalyst. Journal of Nanostructures, 2016, 6: 114-118.
  5. Farahmandjou M. Magnetocrystalline properties of Iron-Platinum (L10-FePt) nanoparticles through phase transition. Iranian Journal of Physics Research, 2016, 16: 1-5.
  6. Farahmandjou M and Khalili P. Morphology Study of anatase nano-TiO2 for Self-cleaning Coating. International Journal of Fundamental Physical Sciences, 2013, 3: 54-56.
  7. Farahmandjou M and Ramazani M. Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor. Physical Chemistry Research, 2015, 3: 293-298.
  8. Shadrokh S, Farahmandjou M and Firozabadi TP. Fabrication and Characterization of Nanoporous Co Oxide (Co3O4) Prepared by Simple Sol-gel Synthesis. Physical Chemistry Research, 2016, 4: 153-160.
  9. Farahmandjou M, Honarbakhsha S and Behrouziniab S. PVP-Assisted Synthesis of Cobalt Ferrite (CoFe2O4) Nanorods. Physical Chemistry Research, 2016, 4: 655-662.
  10. Farahmandjou M and Golabiyan N. Solution combustion preparation of nano-Al2O3: synthesis and characterization. Transp Phenom Nano and Micro Scales, 2015, 3: 100-105.
  11. Farahmandjou M. Synthesis of ITO Nanoparticles Prepared by Degradation of Sulfide Method. Chinese Physics Letters, 2012, 29: 077306-077309.
  12. Farahmandjou M and Golabiyan N. Synthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method. Int J Bio-Inorg Hybr Nanomater, 2016, 5: 73-77.
  13. Farahmandjou M. Synthesis and Structural Study of L10- FePt nanoparticles. Turkish Journal of Engineering and Environmental Science, 2010, 34: 265-270.
  14. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Structural, optical, thermoelectrical, and magnetic study of Zn1−xCoxO(0 0≤x≤0.10) nanocrystals. International Journal of Applied Ceramic Technology, 2018, 15: 723-733.
  15. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Materials Research Express, 2018, 5: 065015-065024.
  16. Khoshnevisan B, Marami MB and Farahmandjou M. Fe3+-Doped Anatase TiO2 Study Prepared by New Sol-Gel Precursors. Chinese Physics Letters, 2018, 35: 027501-027505.
  17. Khoshnevisan B, Marami MB and Farahmandjou M. Solgel Synthesis of Fe-doped TiO2 Nanocrystals. Journal of Electronic Materials, 2018, 47: 3741-3749.
  18. Jafari A, Khademi S and Farahmandjou M. Nano-crystalline Ce-doped TiO2 Powders: Sol-gel Synthesis and Optoelectronic Properties. Materials Research Express, 2018, 5: 095008-095017.
  19. Farahmandjou M, Honarbakhsh S and Behrouzinia S. FeCo Nanorods Preparation Using New Chemical Synthesis. Journal of Superconductivity and Novel Magnetism, 2018, Accepted.
  20. Farahmandjou M and Khalili P. Study of Nano SiO2/TiO2 Superhydrophobic Self-Cleaning Surface Produced by Sol-Gel. Australian Journal of Basic & Applied Sciences, 2013, 7: 462-465.
  21. Jurablu S, Farahmandjou M and Firoozabadi TP. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. Journal of Sciences, Islamic Republic of Iran , 2015, 26: 281-285.
  22. Farahmandjou M and Dastpak M. Fe-Loaded CeO2 Nanosized Prepared by Simple Co-Precipitation Route. Physical Chemistry Research, 2018, 6: 713-720.
  23. Farahamndjou M. The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation. Revista mexicana de física, 2013, 59: 205-207.
  24. Dastpak M, Farahmandjou M and Firoozabadi TP. Synthesis and preparation of magnetic Fe-doped CeO2 nanoparticles prepared by simple sol-gel method. Journal of Superconductivity & Novel Magnetism, 2016, 29: 2925-2929.
  25. Motaghi S and Farahmandjou M. Structural and optoelectronic properties of Ce-Al2O3 nanoparticles prepared by sol-gel precursors. Material Research Express, 2019, 6(4): 045008.
  26. Yuan S, Chen W and Hu S. Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. Materials Science & Engineering C, Biomimetic and, Supramolecular Systems, 2005, 25(4): 479-485.
  27. Sakatani Y, Grosso D, Nicole L, et al. Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility. Journal of Materials Chemistry, 2006, 16: 77-82.
  28. Mills A and Wang J. Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films. Journal of Photochemistry and Photobiology B Biology, 2006, 182(2): 181-186.
  29. Kumar SR , PillaiSC , Hareesh US , et al. Synthesis of thermally stable, high surface area anatase–alumina mixed oxides. Materials Letters, 2000, 43(5-6): 286-290.
  30. Reidy DJ, Holmes JD and Morris MA. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. Journal of the European Ceramic Society, 2006, 26(9): 1527-1534.
  31. Lee KM, SuryanarayananV and Ho KC. A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91(15-16): 1416-1420.
  32. Sagadevan S. Synthesis and electrical properties of TiO2 nanoparticles using a wet chemical technique. American Journal of Nanoscience and Nanotechnology, 2013, 1: 27-30.
  33. Santacesaria E, Tonello M, Storti G, et al. Kinetics of titanium dioxide precipitation by thermal hydrolysis. Journal of Colloid & Interface Science, 1986, 111(1): 44-53.
  34. Chemseddine A and Moritz T. ChemInform Abstract: Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization. Cheminform, 1999, 2: 235-245.
  35. Music S, Gotic M, Ivanda M, et al. Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure
  36. [J]. Materials Science & Engineering B (Solid-State Materials for, Advanced Technology), 1997, 47(1): 33-40.
  37. Keesmann I. Zur hydrothermalen Synthese von Brookit. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1966, 346: 30-43.
  38. Kominami H, Kohno M and Kera Y. Synthesis of brookite-type titanium oxide nano-crystals in organic media. Journal of Materials Chemistry, 2000, 10(5): 1151-1156.
  39. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch. Springer Berlin Heidelberg, 1912.
  40. Farahmandjou and Majid. Effect of Oleic Acid and Oleylamine Surfactants on the Size of FePt Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25(6): 2075-2079.
  41. Zarinkamar M, Farahmandjou M, Firoozabadi TP, One-step synthesis of ceria (CeO2) nano-spheres by a simple wet chemical method. Journal of Ceramic Processing Research, 2016, 17(3): 166-169.