Aims and Scope

ReviewerCreditsMaterials Engineering Research  (ISSN: 2630-4503) is an open access, continuously published, international, refereed  journal in material field, publishing material science method, technology, and characterization, relevant to material engineering, as broadly defined.

Topics of interest include, but are not limited to the following:
• Material synthesis and processing
• Material Structure
• Material Crystallography
• Material Properties
• Material Application
• New Materials
• Emerging technologies in material engineering

Vol 4 No 1 (2022)

Published: 2022-05-09

Special Issue: Bio-Medical Materials

Abstract views: 175   PDF downloads: 20  
2022-11-08

Page 236-244

Residual properties of silicone (MED-4719) lead with leads from retrieved devices

blankpage Anmar Salih, Tarun Goswami

Leads are designed for in vivo applications, however, for a definite period of time. In-vivo environment affects the mechanical behavior of implantable devices, therefore, there is a need to evaluate the residual properties of implantable leads used with pacemakers, defibrillator and neuro-stimulators. Silicone (MED-4719) lead is widely used in cardiac implantable electronic devices made by different manufacturers. . We collected 150 devices (with or without leads) from Anatomical Gift Program of the Wright State University. The objective of this study was to investigate the residual properties of Silicone (MED-4719) lead with different in vivo exposure time and compare the properties of a new, unused lead supplied by Medtronic for the purposes of this research. The tensile test was performed by applying specific load on the samples, percentage elongation at 5N and the corresponding displacement measured. Load to failure, percentage elongation, ultimate tensile strength, and modulus of elasticity were determined for each lead. Methods to collect and compile data were standardized, and statistical models were used to assess the sensitivity of measured parameters with in vivo performance. Load to failure, elongation to failure, ultimate tensile strength, and percentage elongation at 5N showed a significant decrease after 94 months (P = 0.0063), 8 months (P = 0.0136), 94 months (P = 0.0244) and 71 months (P-value = 0.0326) after implantation, respectively. On the other hand, modulus of elasticity was found proportional to the number of months device was exposed and showed significant increase after 71 months (P = 0.0446) of in-vivo environment.

Abstract views: 485   PDF downloads: 178  
2022-05-25

Page 223-235

Degradation mechanisms of zinc-air batteries used in hearing aid

blankpage Kelly Hunt, Mallory Bates, Gerard Klint Simon, Tarun Goswami

Hearing aid devices are powered by the oxidation of zinc that occurs within zinc-air batteries. Zinc-air batteries have an average discharge time of 7 days. Therefore, hearing-aid devices need frequent battery replacement. In this paper, degradation mechanisms of zinc-air batteries investigated where a competition mechanism between zinc passivation and dendritic formation dictates the battery life. This research included exposure time from none to 9 days and to document dendritic growth with time. Scanning electron microscope images were taken to quantify the damage growth as well energy dispersive X-ray tests were conducted to comment on the composition changes. The results confirmed an increase in oxygen in exposed batteries from unexposed. These results matched findings from past literature. Exposure time was investigated to optimize battery lifespan. In conclusion, life of zinc-air batteries depends on the competition mechanism of zinc passivation and dendritic formation caused by oxidation and our investigation shows that this occurs within the first 7 days.

Abstract views: 405   PDF downloads: 193  
2022-05-23

Page 201-222

Comparison of aero engine component lifing methods

blankpage Ashley Whitney-Rawls, Paul Copp, Jace Carter, Tarun Goswami

Failure of critical engine components such as compressor, fan, and turbine disks during flight can cause the loss of the engine, aircraft, or even life. To reduce the risk of this failure during flight, different methodologies and tools have been developed to determine the safe operating life of these critical disk components. The two most widely used lifing methods, safe-life and damage tolerance, are inherently conservative, retiring all components when a predetermined operating limit is reached. Both methods retire components with theoretical useful life remaining. Additional lifing methods can be used to reduce this conservatism and extend the life of these components. Retirement for cause, developed within the United States Air Force is a lifing method that can extend the life of components by retiring a component only when there is cause to do so. Military and industry standards on lifing methodologies were reviewed. Both deterministic and probabilistic approaches to disk lifing methods are discussed as well as current tools. This paper provides a comparison of the methodologies and tools currently being used today by both the government and industry.

Abstract views: 426   PDF downloads: 168  
2022-05-19

Page 196-200

Relationship between applied load and clearance in suture knots

blankpage Amena S. Shermadou, Steven R. Lindheim, Jerome L. Yaklic, Tarun Goswami

Ethicon Coated Vicryl absorbable sutures of different diameters were studied in order to determine if a relationship exists between the load and measured clearance. A prototype was designed to simulate knot location. Tensile tests were conducted on the suture knots followed by clearance measurements after each load level was applied. From the results it was concluded that the measured clearance was directly proportional to the amount of load applied to the suture knot. Also, based on the diameter of the suture, the smaller the diameter, the lower was the total displacement of the knot or the clearance.

Abstract views: 349   PDF downloads: 181  
2022-05-06

Page 187-195

In-vivo damage development in Vena Cava Filter: Study of a retrieved device

blankpage Anne Marie Lutz, Tarun Goswami

This article was prepared from a project assigned in a graduate class, BME 7371, Failure Assessment of Medical Devices, taught at Wright State University by the senior author. The device was donated for the study which was successfully retrieved after 93 days in-vivo. Even-though the mechanical integrity of the device held in-tact, the microscopic observations revealed that the damage via corrosion and scratching took place on the surface of the device. The image reconstructed in 3D using image-J software to determine device roughness and depth-of-pits. Results presented in this paper show that damage starts developing in these devices after the implantation that resulted in premature failure in many cases as reported in the media and literature.

View All Issues
Chuanlang Zhan-photo  ISSN: 2630-4503
 Abbreviation: Mater Eng Res
 Editor-in-Chief: Prof. Chuanlang Zhan(China)
 Publishing Frequency: Continuous publication
 Article Processing Charges (APC): Click here  for more details
 Publishing Model: Open Access