Open Access Peer-reviewed Review

Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects

Main Article Content

Md. Dipu Ahmed corresponding author
Kazi Madina Maraz

Abstract

Although lithium-ion batteries have gained widespread use in high-performance and mobile industries, concerns about their safety due to the low boiling point of their organic liquid electrolyte have posed challenges to their further development. In response, solid polymer electrolytes have emerged as a promising alternative, characterized by low flammability, flexibility, and high safety relative to liquid electrolytes. However, commercialization has been hindered by limitations in Li-ion conductivity and mechanical properties. Recent research efforts have focused on addressing these limitations to improve the performance and safety of polymer-based Li-ion batteries. This review discusses the utilization of polymer materials to enhance battery safety and overcome previous challenges, with a particular emphasis on the design of robust artificial interfaces to increase battery stability. Furthermore, we discuss the prospects for the future of polymer-based battery industries.

Keywords
polymer electrolyte, ion-transport, Li-ion battery, battery safety, solid polymer electrolyte, i-QSE

Article Details

Supporting Agencies
Thanks University of Tennessee, Knoxville, USA and Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh for their resources and supports.
How to Cite
Ahmed, M. D., & Maraz, K. M. (2023). Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects. Materials Engineering Research, 5(1), 245-255. https://doi.org/10.25082/MER.2023.01.001

References

  1. Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019, 5(9): 2326-2352. https://doi.org/10.1016/j.chempr.2019.05.009
  2. Armand M and Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652-657. https://doi.org/10.1038/451652a
  3. Hager MD, Esser B, Feng X, et al. Polymer-based batteries—flexible and thin energy storage systems. Advanced Materials, 2020, 32(39): 2000587. https://doi.org/10.1002/adma.202000587
  4. Mindemark J, Lacey MJ, Bowden T, et al. Beyond PEO-Alternative host materials for Li$^{+$-conducting solid polymer electrolytes. Progress in Polymer Science, 2018, 81: 114-143. https://doi.org/10.1016/j.progpolymsci.2017.12.004
  5. Bruce PG, Freunberger SA, Hardwick LJ, et al. Li–O$_{2$ and Li–S batteries with high energy storage. Nature materials, 2012, 11(1): 19-29. https://doi.org/10.1038/nmat3191
  6. Armand M. The history of polymer electrolytes. Solid State Ionics, 1994, 69(3-4): 309-319. https://doi.org/10.1016/0167-2738(94)90419-7
  7. Fenton DE. Complexes of Alkali Metal Ions with Poly (etylene oxide). polymer, 1973, 14: 589. https://doi.org/10.1016/0032-3861(73)90146-8
  8. Mauger A, Julien CM, Goodenough JB, et al. Tribute to Michel Armand: from rocking chair–Li-ion to solid-state lithium batteries. Journal of The Electrochemical Society, 2019, 167(7): 070507. https://doi.org/10.1149/2.0072007JES
  9. Feuillade G and Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 1975, 5: 63-69. https://doi.org/10.1007/BF00625960
  10. Skaarup S, West K and Zachau-Christiansen B. Mixed phase solid electrolytes. Solid State Ionics, 1988, 28: 975-978. https://doi.org/10.1016/0167-2738(88)90314-1
  11. Quartarone E and Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews, 2011, 40(5): 2525-2540. https://doi.org/10.1039/c0cs00081g
  12. Zhao Q, Liu X, Stalin S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4(5): 365-373. https://doi.org/10.1038/s41560-019-0349-7
  13. Wang Y and Zhong WH. Development of electrolytes towards achieving safe and high‐performance energy-storage devices: a review. ChemElectroChem, 2015, 2(1): 22-36. https://doi.org/10.1002/celc.201402277
  14. Armand MB, Duclot MJ and Rigaud P. Polymer solid electrolytes: Stability domain. Solid State Ionics, 1981, 3: 429-430. https://doi.org/10.1016/0167-2738(81)90126-0
  15. Tarascon JM and Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367. https://doi.org/10.1038/35104644
  16. Lopez J, Mackanic DG, Cui Y, et al. Designing polymers for advanced battery chemistries. Nature Reviews Materials, 2019, 4(5): 312-330. https://doi.org/10.1038/s41578-019-0103-6
  17. Long L, Wang S, Xiao M, et al. Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. https://doi.org/10.1039/C6TA02621D
  18. Sun J, Stone GM, Balsara NP, et al. Structure–conductivity relationship for peptoid-based PEO–mimetic polymer electrolytes. Macromolecules, 2012, 45(12): 5151-5156. https://doi.org/10.1021/ma300775b
  19. Hawker CJ, Chu F, Pomery PJ, et al. Hyperbranched poly (ethylene glycol) s: a new class of ion-conducting materials. Macromolecules, 1996, 29(11): 3831-3838. https://doi.org/10.1021/ma951909i
  20. Kim CS and Oh SM. Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochimica Acta, 2000, 45(13): 2101-2109. https://doi.org/10.1016/S0013-4686(99)00426-0
  21. Mackanic DG, Michaels W, Lee M, et al. Crosslinked poly (tetrahydrofuran) as a loosely coordinating polymer electrolyte. Advanced Energy Materials, 2018, 8(25): 1800703. https://doi.org/10.1002/aenm.201800703
  22. Devaux D, Villaluenga I, Bhatt M, et al. Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ionics, 2017, 310: 71-80. https://doi.org/10.1016/j.ssi.2017.08.007
  23. Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Materials, 2013, 12(5): 452-457. https://doi.org/10.1038/nmat3602
  24. Arora P and Zhang Z. Battery separators. Chemical Reviews, 2004, 104(10): 4419-4462. https://doi.org/10.1021/cr020738u
  25. Chen Z, Hsu PC, Lopez J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1(1): 1-2. https://doi.org/10.1038/nenergy.2015.9
  26. Wong DHC, Thelen JL, Fu Y, et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proceedings of the National Academy of Sciences, 2014, 111(9): 3327-3331. https://doi.org/10.1073/pnas.1314615111
  27. Stalin S, Choudhury S, Zhang K, et al. Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chemistry of Materials, 2018, 30(6): 2058-2066. https://doi.org/10.1021/acs.chemmater.7b05353
  28. Whittingham MS. History, evolution, and future status of energy storage. Proceedings of the IEEE, 2012, 100(Supp): 1518-1534. https://doi.org/10.1109/JPROC.2012.2190170
  29. Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513-537. https://doi.org/10.1039/C3EE40795K
  30. Manthiram A, Yu X and Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017, 2(4): 1-16. https://doi.org/10.1038/natrevmats.2016.103
  31. Hallinan Jr DT and Balsara NP. Polymer electrolytes. Annual review of materials research, 2013, 43: 503-525. https://doi.org/10.1146/annurev-matsci-071312-121705
  32. Wright PV. Electrical conductivity in ionic complexes of poly (ethylene oxide). British Polymer Journal, 1975, 7(5): 319-327. https://doi.org/10.1002/pi.4980070505
  33. Xue Z, He D and Xie X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. https://doi.org/10.1039/C5TA03471J
  34. Williams ML, Landel RF and Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, 1955, 77(14): 3701-3707. https://doi.org/10.1021/ja01619a008
  35. Vogel H. The temperature dependence law of the viscosity of fluids. Physics Z, 1921, 22(35): 645-646.
  36. Tammann G and Hesse W. The dependence of viscosity upon the temperature of supercooled liquids. Z. Anorg. Allg. Chem, 1926, 156(1): 245-257. https://doi.org/10.1002/zaac.19261560121
  37. Ratner MA and Shriver DF. Ion transport in solvent-free polymers. Chemical Reviews, 1988, 88(1): 109-124. https://doi.org/10.1021/cr00083a006
  38. Adam G and Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. The Journal of Chemical Physics, 1965, 43(1): 139-146. https://doi.org/10.1063/1.1696442
  39. Gadjourova Z, Andreev YG, Tunstall DP, et al. Ionic conductivity in crystalline polymer electrolytes. Nature, 2001, 412(6846): 520-523. https://doi.org/10.1038/35087538
  40. Christie AM, Lilley SJ, Staunton E, et al. Increasing the conductivity of crystalline polymer electrolytes. Nature, 2005, 433(7021): 50-53. https://doi.org/10.1038/nature03186
  41. Sun J, Stone GM, Balsara NP, et al. Structure–conductivity relationship for peptoid-based PEO–mimetic polymer electrolytes. Macromolecules, 2012, 45(12): 5151-5156. https://doi.org/10.1021/ma300775b
  42. Nishimoto A, Agehara K, Furuya N, et al. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules, 1999, 32(5): 1541-1548. https://doi.org/10.1021/ma981436q
  43. Hawker CJ, Chu F, Pomery PJ, et al. Hyperbranched poly (ethylene glycol) s: a new class of ion-conducting materials. Macromolecules, 1996, 29(11): 3831-3838. https://doi.org/10.1021/ma951909i
  44. Bates CM, Chang AB, Momcilovic N, et al. ABA triblock brush polymers: Synthesis, self-assembly, conductivity, and rheological properties. Macromolecules, 2015, 48(14): 4967-4973. https://doi.org/10.1021/acs.macromol.5b00880
  45. Wang Y, Agapov AL, Fan F, et al. Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Physical Review Letters, 2012, 108(8): 088303. https://doi.org/10.1103/PhysRevLett.108.088303
  46. Wang Y, Fan F, Agapov AL, et al. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 2014, 55(16): 4067-4076. https://doi.org/10.1016/j.polymer.2014.06.085
  47. Porcarelli L, Shaplov AS, Bella F, et al. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Letters, 2016, 1(4): 678-682. https://doi.org/10.1021/acsenergylett.6b00216
  48. Villaluenga I, Inceoglu S, Jiang X, et al. Nanostructured single-ion-conducting hybrid electrolytes based on salty nanoparticles and block copolymers. Macromolecules, 2017, 50(5): 1998-2005. https://doi.org/10.1021/acs.macromol.6b02522
  49. Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature materials, 2013, 12(5): 452-457. https://doi.org/10.1038/nmat3602
  50. Tan SJ, Zeng XX, Ma Q, et al. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochemical Energy Reviews, 2018, 1: 113-138. https://doi.org/10.1007/s41918-018-0011-2
  51. Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33: 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
  52. Zhang J, Sun B, Huang X, et al. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports, 2014, 4(1): 6007. https://doi.org/10.1038/srep06007
  53. Li X, Qian K, He YB, et al. A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5(35): 18888-18895. https://doi.org/10.1039/C7TA04415A
  54. Bhattacharyya A J, Maier J. Second phase effects on the conductivity of non‐aqueous salt solutions: ``Soggy sand electrolytes''. Advanced Materials, 2004, 16(9-10): 811-814. https://doi.org/10.1002/adma.200306210
  55. Zeng XX, Yin YX, Shi Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem, 2018, 4(2): 298-307. https://doi.org/10.1016/j.chempr.2017.12.003
  56. Yang H, Leow WR and Chen X. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices. Advanced Materials, 2018, 30(13): 1704347. https://doi.org/10.1002/adma.201704347
  57. Hu W. The melting point of chain polymers. The Journal of Chemical Physics, 2000, 113(9): 3901-3908. https://doi.org/10.1063/1.1288002
  58. Chen Z, Hsu PC, Lopez J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1(1): 1-2. https://doi.org/10.1038/nenergy.2015.9
  59. Orendorff CJ, Lambert TN, Chavez CA, et al. Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Advanced Energy Materials, 2013, 3(3): 314-320. https://doi.org/10.1002/aenm.201200292
  60. Lin D, Zhuo D, Liu Y, et al. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. Journal of the American Chemical Society, 2016, 138(34): 11044-11050. https://doi.org/10.1021/jacs.6b06324
  61. Shi Y, Zhang Q, Zhang Y, et al. Promising and reversible electrolyte with thermal switching behavior for safer electrochemical storage devices. ACS applied materials & interfaces, 2018, 10(8): 7171-7179. https://doi.org/10.1021/acsami.7b19726
  62. Stalin S, Choudhury S, Zhang K, et al. Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chemistry of Materials, 2018, 30(6): 2058-2066. https://doi.org/10.1021/acs.chemmater.7b05353
  63. Liu K, Liu W, Qiu Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Science Advances, 2017, 3(1): e1601978. https://doi.org/10.1126/sciadv.1601978
  64. Zhou G, Liu K, Fan Y, et al. An aqueous inorganic polymer binder for high performance lithium–sulfur batteries with flame-retardant properties. ACS Central Science, 2018, 4(2): 260-267. https://doi.org/10.1021/acscentsci.7b00569