Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects
Main Article Content
Abstract
Although lithium-ion batteries have gained widespread use in high-performance and mobile industries, concerns about their safety due to the low boiling point of their organic liquid electrolyte have posed challenges to their further development. In response, solid polymer electrolytes have emerged as a promising alternative, characterized by low flammability, flexibility, and high safety relative to liquid electrolytes. However, commercialization has been hindered by limitations in Li-ion conductivity and mechanical properties. Recent research efforts have focused on addressing these limitations to improve the performance and safety of polymer-based Li-ion batteries. This review discusses the utilization of polymer materials to enhance battery safety and overcome previous challenges, with a particular emphasis on the design of robust artificial interfaces to increase battery stability. Furthermore, we discuss the prospects for the future of polymer-based battery industries.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019, 5(9): 2326-2352. https://doi.org/10.1016/j.chempr.2019.05.009
- Armand M and Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652-657. https://doi.org/10.1038/451652a
- Hager MD, Esser B, Feng X, et al. Polymer-based batteries—flexible and thin energy storage systems. Advanced Materials, 2020, 32(39): 2000587. https://doi.org/10.1002/adma.202000587
- Mindemark J, Lacey MJ, Bowden T, et al. Beyond PEO-Alternative host materials for Li$^{+$-conducting solid polymer electrolytes. Progress in Polymer Science, 2018, 81: 114-143. https://doi.org/10.1016/j.progpolymsci.2017.12.004
- Bruce PG, Freunberger SA, Hardwick LJ, et al. Li–O$_{2$ and Li–S batteries with high energy storage. Nature materials, 2012, 11(1): 19-29. https://doi.org/10.1038/nmat3191
- Armand M. The history of polymer electrolytes. Solid State Ionics, 1994, 69(3-4): 309-319. https://doi.org/10.1016/0167-2738(94)90419-7
- Fenton DE. Complexes of Alkali Metal Ions with Poly (etylene oxide). polymer, 1973, 14: 589. https://doi.org/10.1016/0032-3861(73)90146-8
- Mauger A, Julien CM, Goodenough JB, et al. Tribute to Michel Armand: from rocking chair–Li-ion to solid-state lithium batteries. Journal of The Electrochemical Society, 2019, 167(7): 070507. https://doi.org/10.1149/2.0072007JES
- Feuillade G and Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 1975, 5: 63-69. https://doi.org/10.1007/BF00625960
- Skaarup S, West K and Zachau-Christiansen B. Mixed phase solid electrolytes. Solid State Ionics, 1988, 28: 975-978. https://doi.org/10.1016/0167-2738(88)90314-1
- Quartarone E and Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews, 2011, 40(5): 2525-2540. https://doi.org/10.1039/c0cs00081g
- Zhao Q, Liu X, Stalin S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4(5): 365-373. https://doi.org/10.1038/s41560-019-0349-7
- Wang Y and Zhong WH. Development of electrolytes towards achieving safe and high‐performance energy-storage devices: a review. ChemElectroChem, 2015, 2(1): 22-36. https://doi.org/10.1002/celc.201402277
- Armand MB, Duclot MJ and Rigaud P. Polymer solid electrolytes: Stability domain. Solid State Ionics, 1981, 3: 429-430. https://doi.org/10.1016/0167-2738(81)90126-0
- Tarascon JM and Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367. https://doi.org/10.1038/35104644
- Lopez J, Mackanic DG, Cui Y, et al. Designing polymers for advanced battery chemistries. Nature Reviews Materials, 2019, 4(5): 312-330. https://doi.org/10.1038/s41578-019-0103-6
- Long L, Wang S, Xiao M, et al. Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. https://doi.org/10.1039/C6TA02621D
- Sun J, Stone GM, Balsara NP, et al. Structure–conductivity relationship for peptoid-based PEO–mimetic polymer electrolytes. Macromolecules, 2012, 45(12): 5151-5156. https://doi.org/10.1021/ma300775b
- Hawker CJ, Chu F, Pomery PJ, et al. Hyperbranched poly (ethylene glycol) s: a new class of ion-conducting materials. Macromolecules, 1996, 29(11): 3831-3838. https://doi.org/10.1021/ma951909i
- Kim CS and Oh SM. Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochimica Acta, 2000, 45(13): 2101-2109. https://doi.org/10.1016/S0013-4686(99)00426-0
- Mackanic DG, Michaels W, Lee M, et al. Crosslinked poly (tetrahydrofuran) as a loosely coordinating polymer electrolyte. Advanced Energy Materials, 2018, 8(25): 1800703. https://doi.org/10.1002/aenm.201800703
- Devaux D, Villaluenga I, Bhatt M, et al. Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ionics, 2017, 310: 71-80. https://doi.org/10.1016/j.ssi.2017.08.007
- Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Materials, 2013, 12(5): 452-457. https://doi.org/10.1038/nmat3602
- Arora P and Zhang Z. Battery separators. Chemical Reviews, 2004, 104(10): 4419-4462. https://doi.org/10.1021/cr020738u
- Chen Z, Hsu PC, Lopez J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1(1): 1-2. https://doi.org/10.1038/nenergy.2015.9
- Wong DHC, Thelen JL, Fu Y, et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proceedings of the National Academy of Sciences, 2014, 111(9): 3327-3331. https://doi.org/10.1073/pnas.1314615111
- Stalin S, Choudhury S, Zhang K, et al. Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chemistry of Materials, 2018, 30(6): 2058-2066. https://doi.org/10.1021/acs.chemmater.7b05353
- Whittingham MS. History, evolution, and future status of energy storage. Proceedings of the IEEE, 2012, 100(Supp): 1518-1534. https://doi.org/10.1109/JPROC.2012.2190170
- Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513-537. https://doi.org/10.1039/C3EE40795K
- Manthiram A, Yu X and Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017, 2(4): 1-16. https://doi.org/10.1038/natrevmats.2016.103
- Hallinan Jr DT and Balsara NP. Polymer electrolytes. Annual review of materials research, 2013, 43: 503-525. https://doi.org/10.1146/annurev-matsci-071312-121705
- Wright PV. Electrical conductivity in ionic complexes of poly (ethylene oxide). British Polymer Journal, 1975, 7(5): 319-327. https://doi.org/10.1002/pi.4980070505
- Xue Z, He D and Xie X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. https://doi.org/10.1039/C5TA03471J
- Williams ML, Landel RF and Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, 1955, 77(14): 3701-3707. https://doi.org/10.1021/ja01619a008
- Vogel H. The temperature dependence law of the viscosity of fluids. Physics Z, 1921, 22(35): 645-646.
- Tammann G and Hesse W. The dependence of viscosity upon the temperature of supercooled liquids. Z. Anorg. Allg. Chem, 1926, 156(1): 245-257. https://doi.org/10.1002/zaac.19261560121
- Ratner MA and Shriver DF. Ion transport in solvent-free polymers. Chemical Reviews, 1988, 88(1): 109-124. https://doi.org/10.1021/cr00083a006
- Adam G and Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. The Journal of Chemical Physics, 1965, 43(1): 139-146. https://doi.org/10.1063/1.1696442
- Gadjourova Z, Andreev YG, Tunstall DP, et al. Ionic conductivity in crystalline polymer electrolytes. Nature, 2001, 412(6846): 520-523. https://doi.org/10.1038/35087538
- Christie AM, Lilley SJ, Staunton E, et al. Increasing the conductivity of crystalline polymer electrolytes. Nature, 2005, 433(7021): 50-53. https://doi.org/10.1038/nature03186
- Sun J, Stone GM, Balsara NP, et al. Structure–conductivity relationship for peptoid-based PEO–mimetic polymer electrolytes. Macromolecules, 2012, 45(12): 5151-5156. https://doi.org/10.1021/ma300775b
- Nishimoto A, Agehara K, Furuya N, et al. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules, 1999, 32(5): 1541-1548. https://doi.org/10.1021/ma981436q
- Hawker CJ, Chu F, Pomery PJ, et al. Hyperbranched poly (ethylene glycol) s: a new class of ion-conducting materials. Macromolecules, 1996, 29(11): 3831-3838. https://doi.org/10.1021/ma951909i
- Bates CM, Chang AB, Momcilovic N, et al. ABA triblock brush polymers: Synthesis, self-assembly, conductivity, and rheological properties. Macromolecules, 2015, 48(14): 4967-4973. https://doi.org/10.1021/acs.macromol.5b00880
- Wang Y, Agapov AL, Fan F, et al. Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Physical Review Letters, 2012, 108(8): 088303. https://doi.org/10.1103/PhysRevLett.108.088303
- Wang Y, Fan F, Agapov AL, et al. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 2014, 55(16): 4067-4076. https://doi.org/10.1016/j.polymer.2014.06.085
- Porcarelli L, Shaplov AS, Bella F, et al. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Letters, 2016, 1(4): 678-682. https://doi.org/10.1021/acsenergylett.6b00216
- Villaluenga I, Inceoglu S, Jiang X, et al. Nanostructured single-ion-conducting hybrid electrolytes based on salty nanoparticles and block copolymers. Macromolecules, 2017, 50(5): 1998-2005. https://doi.org/10.1021/acs.macromol.6b02522
- Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature materials, 2013, 12(5): 452-457. https://doi.org/10.1038/nmat3602
- Tan SJ, Zeng XX, Ma Q, et al. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochemical Energy Reviews, 2018, 1: 113-138. https://doi.org/10.1007/s41918-018-0011-2
- Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33: 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
- Zhang J, Sun B, Huang X, et al. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports, 2014, 4(1): 6007. https://doi.org/10.1038/srep06007
- Li X, Qian K, He YB, et al. A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5(35): 18888-18895. https://doi.org/10.1039/C7TA04415A
- Bhattacharyya A J, Maier J. Second phase effects on the conductivity of non‐aqueous salt solutions: ``Soggy sand electrolytes''. Advanced Materials, 2004, 16(9-10): 811-814. https://doi.org/10.1002/adma.200306210
- Zeng XX, Yin YX, Shi Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem, 2018, 4(2): 298-307. https://doi.org/10.1016/j.chempr.2017.12.003
- Yang H, Leow WR and Chen X. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices. Advanced Materials, 2018, 30(13): 1704347. https://doi.org/10.1002/adma.201704347
- Hu W. The melting point of chain polymers. The Journal of Chemical Physics, 2000, 113(9): 3901-3908. https://doi.org/10.1063/1.1288002
- Chen Z, Hsu PC, Lopez J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1(1): 1-2. https://doi.org/10.1038/nenergy.2015.9
- Orendorff CJ, Lambert TN, Chavez CA, et al. Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Advanced Energy Materials, 2013, 3(3): 314-320. https://doi.org/10.1002/aenm.201200292
- Lin D, Zhuo D, Liu Y, et al. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. Journal of the American Chemical Society, 2016, 138(34): 11044-11050. https://doi.org/10.1021/jacs.6b06324
- Shi Y, Zhang Q, Zhang Y, et al. Promising and reversible electrolyte with thermal switching behavior for safer electrochemical storage devices. ACS applied materials & interfaces, 2018, 10(8): 7171-7179. https://doi.org/10.1021/acsami.7b19726
- Stalin S, Choudhury S, Zhang K, et al. Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chemistry of Materials, 2018, 30(6): 2058-2066. https://doi.org/10.1021/acs.chemmater.7b05353
- Liu K, Liu W, Qiu Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Science Advances, 2017, 3(1): e1601978. https://doi.org/10.1126/sciadv.1601978
- Zhou G, Liu K, Fan Y, et al. An aqueous inorganic polymer binder for high performance lithium–sulfur batteries with flame-retardant properties. ACS Central Science, 2018, 4(2): 260-267. https://doi.org/10.1021/acscentsci.7b00569