Open Access

Peer-reviewed

Research Article

Main Article Content

Majid Farahmandjou corresponding author
Nazafarin Golabiyan

Abstract

Alumina (Al2O3) is a very interesting material with broad applicability as a support for various catalytically active phases and ceramic materials. Aluminium oxide (Al2O3) Nanoparticles were synthesized by aluminium chloride hexahydrate as precursor and polyvinylpyrrolydon (PVP) as surfactant and polymer agent. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern exhibited gamma-Al2O3 to alpha- Al2O3 structural phase transition in the samples. The mean diameter of sphere-like as-prepared nanoparticles was around 26 nm and mean diameter of annealed sample was around 10 nm as estimated by XRD technique and direct HRTEM observation. The surface morphological studies from SEM depicted the size of alumina decreases with increasing annealing temperature. The effect of PVP surfactant on the morphology of the alumina nanoparticles has been investigated. EDS showed peaks of aluminium and oxygen in prepared Al2O3.

Keywords
aluminium oxide, nanoparticles, PVP, surfactant, synthesis

Article Details

How to Cite
Farahmandjou, M., & Golabiyan, N. (2019). Synthesis and characterisation of Al₂O₃ nanoparticles as catalyst prepared by polymer co-precipitation method. Materials Engineering Research, 1(2), 40-44. https://doi.org/10.25082/MER.2019.02.002

References

  1. Jurablu S, Bullet M, Farahmandjou M, et al. Multiple-layered structure of obelisk-shaped crystalline nano-ZnO prepared by sol–gel route. Journal of Theoretical and Applied Physics, 2015, 9(4): 261-266. https://doi.org/10.1007/s40094-015-0184-6
  2. Farahmandjou M, Soflaee F. Polymer-Mediated Synthesis of Iron Oxide (Fe2O3) Nanorods. Chinese Journal of Physics, 2015, 53(4): 178-186. https://doi.org/10.6122/CJP.20150413
  3. Farahmandjou M and Soflaee F. Synthesis and characterization of α-Fe2O3nanoparticles by simple co-precipitation method. Physical Chemistry Research, 2015, 3(3): 191-196. https://doi.org/10.22036/pcr.2015.9193
  4. Zarinkamar M, Farahmandjou M and Firoozabadi TP. Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2) Catalyst. Journal of Nanostructures, 2016, 6(2): 116-120. https://doi.org/10.7508/jns.2016.02.002
  5. Farahmandjou M. Magnetocrystalline properties of Iron-Platinum (L10-FePt) nanoparticles through phase transition. Iran Journal of Physical Research, 2016, 16: 1-5. https://doi.org/10.18869/acadpub.ijpr.16.1.1
  6. Farahmandjou M and Khalili P. Morphology Study of anatase nano-TiO2 for Self-cleaning Coating. International Journal of Fundation Physical Science, 2013, 3: 54-56. https://doi.org/10.14331/ijfps.2013.330055
  7. Farahmandjou M and Ramazani M. Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor. Physical Chemistry Research, 2015, 3: 293-298. https://doi.org/10.22036/pcr.2015.10641
  8. Shadrokh S, Farahmandjou M and Firozabadi TP. Fabrication and Characterization of Nanoporous Co Oxide (Co3O4) Prepared by Simple Sol-gel Synthesis. Physical Chemistry Research, 2016, 4: 153160. https://doi.org/10.22036/pcr.2016.12909
  9. Farahmandjou M, Honarbakhsha S and Behrouziniab S. PVP-Assisted Synthesis of Cobalt Ferrite (CoFe2O4) Nanorods. Physical Chemistry Research, 2016, 4: 655-662. https://doi.org/10.22036/pcr.2016.16702
  10. Farahmandjou M and Golabiyan N. Solution combustion preparation of nano-Al2O3: synthesis and characterization. Transp Phenom Nano Micro Scales, 2015, 3: 100-105.
  11. Farahmandjou M. Synthesis of ITO Nanoparticles Prepared by the Degradation of Sulfide Method. Chinese Physics Letters, 2012, 29(7): 077306. https://doi.org/10.1088/0256-307X/29/7/077306
  12. Farahmandjou M and Golabiyan N. Synthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method. Int J Bio-Inorg Hybr Nanomater, 2016, 5: 73-77.
  13. Farahmandjou M. Synthesis and Structural Study of L10- FePt nanoparticles. Turkey Journal of Engineering Environment Science, 2010, 34: 265-270. https://doi.org/10.3906/muh-1010-20
  14. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Structural, optical, thermoelectrical, and magnetic study of Zn1‐xCoxO (0≤x≤0.10) nanocrystals. International Journal of Applied Ceramic Technology, 2018, 15: 723-733. https://doi.org/10.1111/ ijac.12848
  15. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Materials Research Express, 2018, 5: 065015-065024. https://doi.org/10.1088/2053-1591/aac6f1
  16. Khoshnevisan B, Marami MB and Farahmandjou M. Fe3+-Doped Anatase TiO2Study Prepared by New Sol-Gel Precursors. Chinese Physics Letters, 2018, 35: 027501-027505. https://doi.org/10.1088/0256-307X/35/2/027501
  17. Marami MB, Farahmandjou M and Khoshnevisan B. Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals. Journal of Electronic Materials, 2018, 47: 3741-3749. https://doi.org/10.1007/s11664-018-6234-5
  18. Jafari A, Khademi S and Farahmandjou M. Nano-crystalline Ce-doped TiO2Powders: Sol-gel Synthesis and Optoelectronic Properties. Materials Research Express, 2018, 5: 095008. https://doi.org/10.1088/2053-1591/aad5b5
  19. Farahmandjou M, Honarbakhsh S and Behrouzinia S. FeCo Nanorods Preparation Using New Chemical Synthesis. Journal of Superconductivity & Novel Magnetism, 2018(9): 1-6. https://doi.org/10.1007/s10948-018-4659-y
  20. Farahmandjou M and Khalili P. Study of Nano SiO2/TiO2 Superhydrophobic Self-Cleaning Surface Produced by Sol-Gel. Australian Journal of Basic & amp; Applied Sciences, 2013, 7: 462-465.
  21. Jurablu S, Farahmandjou M and Firoozabadi TP. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. J Sci Islamic Republic of Iran, 2015, 26: 281-285.
  22. Farahmandjou M and Dastpak M. Fe-Loaded CeO2 Nanosized Prepared by Simple Co-Precipitation Route. Physical Chemistry Research, 2018, 6: 713-720. https://doi.org/10.22036/pcr.2018.132220.1486
  23. Farahamndjou, M. The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation. Rev mex Fis, 2013, 59: 205-207.
  24. Dastpak M, Farahmandjou M and Firoozabadi TP. Synthesis and Preparation of Magnetic Fe-Doped CeO2 Nanoparticles Prepared by Simple Sol-Gel Method. Journal of Superconductivity and Novel Magnetism, 2016, 29(11): 2925-2929. https://doi.org/10.1007/s10948-016-3639-3
  25. Motaghi S and Farahmandjou M. Structural and optoelectronic properties of Ce-Al2O3 nanoparticles prepared by sol-gel precursors. Material Research Express, 2019, 6(4): 045008. https://doi.org/10.1088/2053-1591/aaf927
  26. Li J, Pan Y, Xiang C, et al. Low Temperature Synthesis of Ultrafine α-Al2O3Powder by a Simple Aqueous Sol-gel Process. Ceramics International, 2006, 32(5): 587-591. https://doi.org/10.1016/j.ceramint.2005.04.015
  27. Ma MG, Zhu YJ and Xu ZL. A new route to synthesis of γ-alumina nanorods. Materials Letters, 2007, 61(8-9): 1812-1815. https://doi.org/10.1016/j.matlet.2006.07.138
  28. Park YK, Tadd EH, Zubris M, et al. Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Materials Research Bulletin, 2005, 40(9): 1506-1512. https://doi.org/10.1016/j.materresbull.2005.04.031
  29. Rozita Y, Brydson R and Scott AJ. An investigation of commercial gamma-Al2O3 nanoparticles. Journal of Physics Conference Series, 2010, 241(1). https://doi.org/10.1088/1742-6596/241/1/012096
  30. Suchanek WL. Hydrothermal Synthesis of Alpha Alumina (α-Al2O3) Powders: Study of the Processing Variables and Growth Mechanisms. Journal of the American Ceramic Society, 2010, 93(2): 399-412. https://doi.org/10.1111/j.1551-2916.2009.03399.x
  31. Ananthapadmanabhan PV, Sreekumar KP, Venkatramani N, et al. Characterization of plasma-synthesized alumina. Journal of Alloys and Compounds, 1996, 244(1-2): 0-74. https://doi.org/10.1016/s0925-8388(96)02440-1
  32. Nguefack M, Popa AF, Rossignol S, et al. Preparation of alumina through a sol–gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite. Physical Chemistry Chemical Physics, 2003, 5: 4279-4289. https://doi.org/10.1039/B306170A
  33. Nieto MI, Tallón C and Moreno R. Synthesis of Gamma-Alumina Nanoparticles by Freeze Drying. Advances in Science and Technology, 2006, 45: 223-230. https://doi.org/10.4028/www.scientific.net/AST.45.223
  34. Ogihara T, Nakajima H, Yanagawa T, et al. Preparation of monodisperse, spherical alumina powders from alkoxides. Journal of the American Ceramic Society, 1991, 74: 2263-2269.
  35. Janbey A, Pati RK, Tahir S, et al. A new chemical route for the synthesis of nano-crystalline α-Al2O3 powder. Journal of the European Ceramic Society, 2001, 21(12): 2285-2289. https://doi.org/10.1016/S0955-2219(00)00322-8
  36. Inoue K, Hama M, Kobayashi Y, et al. Low Temperature Synthesis of α-Alumina with a Seeding Technique, ISRN Ceramics, 2013: 317830-317835.
  37. Scherrer P. Bestimmung der inneren Struktur und der Gröe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch. Springer Berlin Heidelberg, 1912.
  38. Farahmandjou M. Effect of Oleic Acid and Oleylamine Surfactants on the Size of FePt Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25(6): 2075-2079. https://doi.org/10.1007/s10948-012-1586-1
  39. Zarinkamar M, Farahmandjou M and Firoozabadi TP. One-step synthesis of ceria (CeO2) nano-spheres by a simple wet chemical method. J Ceram Proc Res, 2016, 17: 166-169.
  40. Motaghi S and Farahmandjou M. Structural and optoelectronic properties of Ce–Al2O3 nanoparticles prepared by sol-gel precursors. Material Research Express, 2019, 6: 045008. https://doi.org/10.1088/2053-1591/aaf927
  41. Behrouzinia S, Salehinia D, Khorasani K, et al. The continuous control of output power of a CuBr laser by a pulsed external magnetic fiel. Optics Communications, 2019, 436: 143-145. https://doi.org/10.1016/j.optcom.2018.12.016
  42. Farahmandjou M and Motaghi S. Sol-gel Synthesis of Ce-doped α-Al2O3: Study of Crystal and Optoelectronic Properties. Optics Communications, 2019, 441: 1–7. https://doi.org/10.1016/j.optcom.2019.02.029
  43. Jafari A, Khademi S, Farahmandjou M, et al. Structural and optical properties of Ce3+-doped TiO2 nanocrystals prepared by sol-gel precursors. Journal of Electronic Materials, 2018, 47(11): 6901–6908. https://doi.org/10.1007/s11664-018-6590-1
  44. Khodadadi A, Farahmandjou M and Mojtaba Y. Investigation on synthesis and characterization of Fe-doped Al2O3 nanocrystals by new sol–gel precursors. Material Research Express, 2019, 6: 025029. https://doi.org/10.1088/2053-1591/aaef70
  45. Khodadadi A, Farahmandjou M and Yaghoubi M. Investigation on synthesis and characterization of Fe-doped Al2O3 nanocrystals by new sol–gel precursors. Material Research Express, 2019, 6: 025029. https://doi.org/10.1088/2053-1591/aaef70
  46. Khoshnevisan B, Marami MB and Farahmandjou M. Fe3+-Doped Anatase TiO2Study Prepared by New Sol-Gel Precursors. Chinese Physics Letters, 2018, 35: 027501-027505. https://doi.org/10.1088/0256-307X/35/2/027501
  47. Marami MB, Farahmandjou M and Khoshnevisan B. Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals. Journal of Electronic Materials, 2018, 47(7): 3741–3748. https://doi.org/10.1007/s11664-018-6234-5