Open Access Peer-reviewed Research Article

Main Article Content

Parastoo Khalili
Majid Farahmandjou corresponding author

Abstract

In this paper, α-Fe2O4@ZnO nanoparticles (NPs) were synthesized by coprecipitation method in the presence of PVP and EG surfactants. The samples were charactrized by x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and fourier transform infrared spectroscopy (FTIR). The XRD results exhibited rhombohedral α-Fe2O3 and wurtzite structure of ZnO. The SEM images showed that the NPs changed from rod-shape to nanoleaves particles after heat treatment. The TEM studies displayed the formation of Fe2O3@ZnO core-shell of as-synthesized NPs. The stretching vibrations peaks in FTIR in the wavenumber of 532 cm-1 and 473 cm-1 ascribed to the Fe and Zn groups. The XRF data indicated decreasing of the Fe weight percent from 22 %Wt.  to 25 %Wt., after heat treatment.

Keywords
α-Fe2O4@ZnO, Nanoleaves, XRF, Crystal structure, FTIR

Article Details

How to Cite
Khalili, P., & Farahmandjou, M. (2020). Study of α-Fe₂O₃@ZnO nanoleaves: Morphological and optical study. Materials Engineering Research, 2(1), 118-124. https://doi.org/10.25082/MER.2020.01.004

References

  1. Moghimi A and Farahmandjou M. Preconcentration of Cd (II) by chemically converted graphene sheets adsorbed on surfactant-coated C18 before determination by flame atomic absorption spectrometry (FAAS). African Journal of Pure and Applied Chemistry, 2014, 8(1): 1-8. https://doi.org/10.5897/AJPAC2013.0542
  2. Farahmandjou M. Liquid Phase Synthesis of indium tin oxide (ITO) nanoparticles using In (III) and Sn (IV) salts. Australian Journal of Basic and Applied Sciences, 2013, 7(4): 31-34.
  3. Farahmandjou M. Synthesis of ITO Nanoparticles Prepared by Degradation of Sulfide Method. Chinese Physics Letters, 2012, 29, 077306-9. https://doi.org/10.1088/0256-307X/29/7/077306
  4. Farahmandjou M. The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation. Revista mexicana de fsica, 2013, 59: 205-207.
  5. Farahmandjou M. Synthesis and Morphology Study of Nano-Indium Tin Oxide (ITO) Grains. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2013, 2(2): 373.
  6. Farahmandjou M and Ramazani M. Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor. Physical Chemistry Research, 2015, 3: 293-298. https://doi.org/10.22036/pcr.2015.10641
  7. Farahmandjou M and Khalili P. Morphology Study of anatase nano-TiO2 for Self-cleaning Coating. International Journal of Physical Sciences, 2013, 3: 54-56. https://doi.org/10.14331/ijfps.2013.330055
  8. Farahmandjou M. One-step synthesis of TiO2 nanoparticles using simple chemical technique. Materials Science and Engineering, 2019, 1(1): 15-19. https://doi.org/10.25082/MER.2019.01.004
  9. Ramazani M, Farahmandjou M and Firoozabadi TP. Effect of nitric acid on particle morphology of the nano-TiO2. International Journal of Nanoscience and Nanotechnolog, 2015, 11: 115-122.
  10. Farahmandjou M. Self-cleaning measurement of nano-sized photoactive TiO2. Journal of Computer and Robotics, 2014, 7(2): 15-19.
  11. Zarinkamar M, Farahmandjou M and Firoozabadi TP. Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2) Catalyst. Journal of Nanostructures, 2016, 6: 116- 120. https://doi.org/10.7508/jns.2016.02.002
  12. Zarinkamar M, Farahmandjou M and Firoozabadi TP. Onestep synthesis of ceria (CeO2) nano-spheres by a simple wet chemical method. Journal of Ceramic Processing Research, 2016, 17: 166-169.
  13. Farahmandjou M and Zarinkamar M. Synthesis of nanosized ceria (CeO2) particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology. Journal of Ultrafine Grained and Nanostructured Materials, 2015, 48: 5-10. https://doi.org/10.7508/jufgnsm.2015.01.002
  14. Farahmandjou M, Zarinkamar M and Firoozabadi TP. Synthesis of Cerium Oxide (CeO2) nanoparticles using simple Co-precipitation method. Revista Mexicana de Fsica, 2016, 62: 496-499.
  15. Farahmandjou M and Soflaee F. Synthesis and characterization of
  16. -Fe2O3 nanoparticles by simple co-precipitation method. Physical Chemistry Research, 2015, 3: 193-198. https://doi.org/10.22036/pcr.2015.9193
  17. Farahmandjou M and Soflaee F. Polymer-Mediated Synthesis of Iron Oxide (Fe2O3) Nanorods. Chinese Journal of Physics, 2015, 53: 080801-9. https://doi.org/10.6122/CJP.20150413
  18. Farahmandjou M and Soflaee F. Low Temperature Synthesis of
  19. -Fe2O3 Nano-rods Using Simple Chemical Route. Journal of Nanostructures, 2014, 4(4): 413-418. https://doi.org/10.7508/jns.2014.04.002
  20. Farahmandjou M and Soflaee F. Synthesis of Iron Oxide Nanoparticles using Borohydride Reduction.International Journal of Bio-Inorganic Hybrid Nanomaterials, 2014, 3: 203-206.
  21. Jurablu S, Farahmandjou M and Firoozabadi TP. Multiplelayered structure of obelisk-shaped crystalline nano-ZnO prepared by sol-gel route. Journal of Theoretical and Applied Physics, 2015, 9: 261-266. https://doi.org/10.1007/s40094-015-0184-6
  22. Jurablu S, Farahmandjou M and Firoozabadi TP. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. Journal of Sciences, Islamic Republic of Iran, 2015, 26: 281-285.
  23. Farahmandjou M and Jurablu S. Co-precipitation Synthesis of Zinc Oxide (ZnO) Nanoparticles by Zinc Nitrate Precursor. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2014, 3 (3): 179-184.
  24. FarahmandjouMand Golabiyan N. Synthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2016, 5(1): 73-77.
  25. Farahmandjou M and Golabiyan N. Solution combustion preparation of nano-Al2O3: Synthesis and characterization. łTransport Phenomena in Nano and Micro Scales, 2015, 3: 100-105. https://doi.org/10.7508/tpnms.2015.02.004
  26. Farahmandjou M and Golabiyan N. New pore structure of nano-alumina (Al2O3) prepared by sol gel method. Journal of Ceramic Processing Research, 2015, 16(2): 1-4.
  27. FarahmandjouMand Golabiyan N. Synthesis and characterisation of Al2O3 nanoparticles as catalyst prepared by polymer co-precipitation method. Materials Science and Engineering, 2019, 1(2): 40-44. https://doi.org/10.25082/MER.2019.02.002
  28. Farahmandjou M and Salehizadeh SA. The optical band gap and the tailing states determination in glasses of TeO2- V2O5-K2O system. Glass Physics and Chemistry, 2013, 39: 473-479. https://doi.org/10.1134/S1087659613050052
  29. FarahmandjouMand Abaeyan N. Simple Synthesis of Vanadium Oxide (V2O5) Nanorods in Presence of CTAB Surfactant. Colloid Surface Science, 2016, 1: 10-13. https://doi.org/10.15406/jnmr.2017.05.00103
  30. Farahmandjou M and Salehizadeh SA. Investigation on calorimetric and elastic properties of 50TeO2-(50-x) V2O5- xK2O glassy systems. Chalcogenide Letters, 2015, 12 (11): 619-631. https://doi.org/10.1016/j.jnoncrysol.2016.03.012
  31. Farahmandjou M and N Abaeiyan. Chemical synthesis of vanadium oxide (V2O5) nanoparticles prepared by sodium metavanadate. Journal of Nanomedicine Research, 2017, 5(1): 00103. https://doi.org/10.15406/jnmr.2017.05.00103
  32. Farahmandjou M and Abaeiyan N. Simple synthesis of new nano-sized pore structure vanadium pantoxide (V2O5). International Journal of Bio-Inorganic Hybrid Nanomaterials, 2015, 4(4): 243-247.
  33. Shadrokh S, Farahmandjou M and Firozabadi TP. Fabrication and Characterization of Nanoporous Co Oxide (C3O4) Prepared by Simple Sol-gel Synthesis. Physical Chemistry Research, 2016, 4: 153-160. https://doi.org/10.22036/pcr.2016.12909
  34. Farahmandjou M and Shadrokh S. Chemical synthesis of the Co3O4 nanoparticles in presence of CTAB surfactant. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2015, 4(3): 129-134.
  35. Farahmandjou M. Preparation of Ferromagnetic Co3O4 Nanoparticles by Wet Chemical Synthesis Method. To Physics Journal, 2019, 3: 89-99.
  36. Honarbakhsh S, Farahmandjou M and Behroozinia S. Synthesis and characterization of iron cobalt (FeCo) nanorods prepared by simple Co-precipitation method. Journal of Fundamental and Applied Sciences, 2016, 8: 892-900. https://doi.org/10.4314/jfas.8vi2s.142
  37. Farahmandjou M, Honarbakhsh S and Behrouzinia S. FeCo Nanorods Preparation Using New Chemical Synthesis. Journal of Superconductivity and Novel Magnetism, 2018, 31: 4147-4152. https://doi.org/10.1007/s10948-018-4659-y
  38. Farahmandjou M, Honarbakhsha S and Behrouziniab S. PVP-Assisted Synthesis of Cobalt Ferrite (CoFe2O4) Nanorods. Physical Chemistry Research, 2016, 4: 655-662. https://doi.org/10.22036/pcr.2016.16702
  39. Farahmandjou M. Synthesis and Structural Study of L10- FePt NPs. Turkish Journal of Engineering and Environmental Sciences, 2010, 34: 265-270. https://doi.org/10.3906/muh-1010-20
  40. Farahmandjou M. Magnetocrystalline properties of Iron- Platinum (L10-FePt) nanoparticles through phase transition. Iranian Journal of Physics Research, 2016, 16: 1-5. https://doi.org/10.18869/acadpub.ijpr.16.1.1
  41. Farahmandjou M. Effect of Oleic Acid and Oleylamine Surfactants on the Size of FePt Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25: 2075-2079. https://doi.org/10.1007/s10948-012-1586-1
  42. Dastpak M, FarahmandjouMand Firoozabadi TP. Synthesis and Preparation of Magnetic Fe-Doped CeO2 Nanoparticles Prepared by Simple Sol-Gel Method. Journal of Superconductivity and Novel Magnetism, 2016, 29: 2925-2929. https://doi.org/10.1007/s10948-016-3639-3
  43. Farahmandjou M and Dastpak M. Fe-Loaded CeO2 Nanosized Prepared by Simple Co-Precipitation Route. Physical Chemistry Research, 2018, 6: 713-720.
  44. Farahmandjou M and Dastpak M. Synthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method. Journal of Sciences, Islamic Republic of Iran, 2020, 31(1): 39-43. https://doi.org/10.22059/jsciences.2020.256813.1007255
  45. Farahmandjou M, DastpakMand Panji Z. CTAB-assisted of Fe2O3/CeO2 nanosized prepared by coprecipitation method. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2018, 7(3): 221-226.
  46. Farahmandjou M and Khalili P. Study of Nano SiO2/TiO2 Superhydrophobic Self-Cleaning Surface Produced by Sol- Gel. Australian Journal of Basic and Applied Sciences, 2013, 7: 462-465.
  47. Motaghi S and Farahmandjou M. Structural and optoelectronic properties of Ce-Al2O3 nanoparticles prepared by sol-gel precursors. Materials Research Express, 2019, 6: 045008. https://doi.org/10.1088/2053-1591/aaf927
  48. Farahmandjou M and Motaghi S. Sol-gel Synthesis of Cedoped
  49. -Al2O3: Study of Crystal and Optoelectronic Properties. Optics Communications, 2019, 441: 1-7. https://doi.org/10.1016/j.optcom.2019.02.029
  50. Khodadadi A, Farahmandjou M, Yaghoubi M, et al. Structural and Optical Study of Fe3+-Doped Al2O3 Nanocrystals Prepared by New Sol gel Precursors. International Journal of Applied Ceramic Technology, 2018, 16: 718-726. https://doi.org/10.1111/ijac.13065
  51. Khodadadi A, Farahmandjou M and Yaghoubi M. Investigation on synthesis and characterization of Fe-doped Al2O3 nanocrystals by new sol-gel precursors. Materials Research Express, 2019, 6: 025029. https://doi.org/10.1088/2053-1591/aaef70
  52. Farahmandjou M, Khodadadi A and Yaghoubi M. Synthesis and Characterization of Fe-Al2O3 nanoparticles Prepared by Coprecipitation Method. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), in press. https://doi.org/10.30492/ijcce.2020.38036
  53. Farahmandjou M, Khodadadi A and Yaghoubi M. Low Concentration Iron-Doped Alumina (Fe/Al2O3) Nanoparticles Using Co-Precipitation Method. Journal of Superconductivity and Novel Magnetism, 2020. https://doi.org/10.1007/s10948-020-05569-0
  54. Farahmandjou M and Behrouzinia S. Fe Lauded TiO2 Nanoparticles Synthesized by Sol-gel Precursors. Physical Chemistry Research, 2019, 7(2): 395-401. https://doi.org/10.22036/pcr.2019.151365.1546
  55. Khoshnevisan B, Marami MB and Farahmandjou M. Fe3+- Doped Anatase TiO2 Study Prepared by New Sol-Gel Precursors. Chinese Physics Letters, 2018, 35: 027501-5. https://doi.org/10.1088/0256-307X/35/2/027501
  56. Marami MB, Farahmandjou M and Khoshnevisan B. Solgel Synthesis of Fe-doped TiO2 Nanocrystals. Journal of Electronic Materials, 2018, 47: 3741-3749. https://doi.org/10.1007/s11664-018-6234-5
  57. Jafari A, Khademi S, Farahmandjou M, et al. Preparation and Characterization of Cerium Doped Titanium Dioxide Nanoparticles by the Electrical Discharge Method. Journal of Advanced Materials in Engineering, 2019, 38(2): 83-90. https://doi.org/10.29252/jame.38.2.83
  58. Jafari A, Khademi S and Farahmandjou M. Nano-crystalline Ce-doped TiO2 Powders: Sol-gel Synthesis and Optoelectronic Properties. Materials Research Express, 2018, 5(9): 095008. https://doi.org/10.1088/2053-1591/aad5b5
  59. Jafari A, Khademi S, Farahmandjou M, et al. Structural and optical properties of Ce3+-doped TiO2 nanocrystals prepared by sol-gel precursors. Journal of Electronic Materials, 2018, 47: 6901-6908. https://doi.org/10.1007/s11664-018-6590-1
  60. Marami MB and Farahmandjou M. Water-Based Sol-Gel Synthesis of Ce-Doped TiO2 Nanoparticles. ournal of Electronic Materials, 2019, 48: 4740-4747. https://doi.org/10.1007/s11664-019-07265-9
  61. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Structural, optical, thermoelectrical, and magnetic study of Zn1- xCoxO (0 x 0.10) nanocrystals. International Journal of Applied Ceramic Technology, 2018, 15: 723-733. https://doi.org/10.1111/ijac.12848
  62. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Materials Research Express, 2018, 5: 065015. https://doi.org/10.1088/2053-1591/aac6f1
  63. Ehsana MF and Hea T. In situ synthesis of ZnO/ZnTe common cation hetero structure and its visible-light photocatalytic reduction of CO2 in to CH4. Applied Catalysis B: Environmental, 2015, 166-167: 345-352. https://doi.org/10.1016/j.apcatb.2014.11.058
  64. Xie J, Zhou Z, Lian Y, et al. Synthesis of
  65. - Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV-vis light irradiation. Ceramics International, 2015, 141: 2622-2625. https://doi.org/10.1016/j.ceramint.2014.10.043
  66. Achouri F, Corbel S, Aboulaich A, et al. Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. Journal of Physics and Chemistry of Solids, 2014, 75: 1081-108. https://doi.org/10.1016/j.jpcs.2014.05.013
  67. Vijay Kumar S, Huang NM, Yusoff N, et al. High performance magnetically separable graphene/ zinc oxide nanocomposite. Materials Letters, 2013, 93: 411- 414. https://doi.org/10.1016/j.matlet.2012.09.089
  68. Liu Y, Sun L, Wu J, et al. Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites. Materials Science and Engineering: B, 2015, 194: 9-13. https://doi.org/10.1016/j.mseb.2014.12.021
  69. Yin Q, Qiaon R, Zhu L, et al.
  70. -Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: Synthesis and enhanced visible-light photocatalysis. Materials Letters, 2014, 135: 135-138. https://doi.org/10.1016/j.matlet.2014.07.149
  71. Dem’Yanets LN, Li LE and Uvarova TG. Zinc oxide: hydrothermal growth of nanoand bulk crystals and their luminescent properties. Journal of Materials Science, 2006, 41(5): 1439-1444. https://doi.org/10.1007/s10853-006-7457-z
  72. Risti M, Musi S, Ivanda M, et al. Solegel synthesis and characterization of nanocrystalline ZnO powders. Journal of Alloys and Compounds, 2005, 397(1-2): L1-L4. https://doi.org/10.1016/j.jallcom.2005.01.045
  73. Zulfiqar Ahmed MN, Chandrasekhar KB, Jahagirdar AA, et al. Photocatalytic activity of nanocrystalline ZnO,
  74. -Fe2O3 and ZnFe2O4/ZnO. Applied Nanoscience, 2015, 5: 961- 968. https://doi.org/10.1007/s13204-014-0395-1
  75. Radzimska AK, Markiewicz E and Jesionowski T. Structural characterization of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012. 656353. https://doi.org/10.1155/2012/656353
  76. Hoseini F, Farahmandjou M and Firoozabadi TP. Coprecipitation synthesis of zinc ferrit (Fe2O3/ZnO) nanoparticles prepared by CTAB surfactant. Journal of Fundamental and Applied Sciences, 2016, 8(3S): 738-745. https://doi.org/10.4314/jfas.v8i3s.258
  77. Scherrer P. Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften. Gottingen. Mathematisch-Physikalische Klasse, 1918, 2: 98- 100. https://doi.org/10.4236/health.2011.370702,486
  78. Sebt SA, Parhizgar SS, Farahmandjou M, et al. The role of ligands in the synthesis of FePt nanoparticles. Journal of Superconductivity and Novel Magnetism, 2009, 22: 849-854. https://doi.org/10.1007/s10948-009-0509-2
  79. Farahmandjou M, Sebt SA, Parhizgar SS, et al. Stability investigation of colloidal FePt nanoparticle systems by spectrophotometer analysis. Chinese Physics Letters, 2009, 26: 027501-3. https://doi.org/10.1088/0256-307X/26/2/027501
  80. Farahmandjou M, Sebt SA, Parhizgar SS, et al. The Effect of NaCl Prepared by Ultra-sonic Vibration on the Sintering of Annealed FePt Nanoparticles. Journal of Physics: Conference Series, 153(1): 012050. https://doi.org/10.1088/1742-6596/153/1/012050
  81. Farahmandjou M. Comparison of the Fe and Pt nanoparticles with FePt alloy prepared by polyol process: Shape and composition study. Acta Physica Polonica A, 2013, 123: 277-278. https://doi.org/10.12693/APhysPolA.123.277
  82. Behrouzinia S, Salehinia D, Khorasani K, et al. The continuous control of output power of a CuBr laser by a pulsed external magnetic field. Optics Communications, 2019, 436: 143-145. https://doi.org/10.1016/j.optcom.2018.12.016
  83. Behrouzinia S, Khorasani K and Farahmandjou M. Buffer gas effects on output power of a copper vapor laser. Laser Physics, 2016, 26(5): 055003. https://doi.org/10.1088/1054-660X/26/5/055003
  84. Farahmandjou M. The effect of reflux process on the size and uniformity of FePt nanoparticles. International Journal of fundamental physical sciences, 2011, 1(3): 57-59. https://doi.org/10.14331/ijfps.2011.330014
  85. Farahmandjou M. Two step growth process of iron-platinum (FePt) nanoparticles. International Journal of Physical Sciences, 2012, 7(19): 2713-2719. https://doi.org/10.5897/IJPS11.1456
  86. Farahmandjou M. Shape and composition study of ironplatinum (FePt) nanoalloy prepared by polyol process. International Journal of Physical Sciences, 2012, 7(12): 1938- 1942. https://doi.org/10.5897/IJPS11.1710
  87. Farahmandjou M. The Effect of 1, 2-Hexadecadeniol and LiBEt3H Superhydride on the Size of FePt Nanoparticles. AIP Conference Proceedings, 2011, 1415(1): 193-195. https://doi.org/10.1063/1.3667254
  88. Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds. John Wiley and Sons, 1978.
  89. Ferraro JR. Low frequency vibrations of inorganic and coordination compounds. Plenum Press, New York, 1971. https://doi.org/10.1007/978-1-4684-1809-5 9
  90. Lopez T, Mendez J, Zamudio T, et al. Materials Chemistry and Physics, 1992, 30: 161-167. https://doi.org/10.1016/0254-0584(92)90218-W