Open Access Peer-reviewed Research Article

Chemical stability and thermodynamics of new Zr₂-based heusler alloys

Main Article Content

Saleem Yousuf corresponding author
Dinesh C. Gupta

Abstract

We present the spin polarized calculations on the new Zr2NiX (X = Al, Ga) alloys. Band structure analysis present them as half-metallic compounds with integral spin magnetic moment of 3 mB following the general Slater-Pauling rule.  Thermal effects on some macroscopic properties using quasi-harmonic Debye model which considers the phononic effects, the effects of pressure and temperature are taken into account. The variations of the thermal expansion coefficient, Debye temperature, Gruneisen parameter γ and heat capacity for the compounds have been investigated for the first time. These thermodynamic properties may prove as a reference for their synthesis.

Keywords
Density functional theory; Transition-metal compounds; Thermodynamics.

Article Details

How to Cite
Yousuf, S., & C. Gupta, D. (2018). Chemical stability and thermodynamics of new Zr₂-based heusler alloys. Materials Engineering Research, 1(1), 1-6. https://doi.org/10.25082/MER.2018.01.001

References

  1. Heusler F. F. Heusler, Verh. Dtsch. Phys. Ges. 5, 219 (1903). Verh. Dtsch. Phys. Ges., 1903, 5: 219.
  2. De Groot RA, Mueller FM, Van Engen PG, et al. New class of materials: half-metallic ferromagnets. Physical Review Letters, 1983, 50(25): 2024. https://doi.org/10.1103/PhysRevLett.50.2024
  3. Ishida S, Masaki T, Fujii S, et al. Theoretical search for half-metalliic films of Co2 MnZ (ZSi, Ge). Physica B: Condensed Matter, 1998, 245(1): 1-8. https://doi.org/10.1016/S0921-4526(97)00495-X
  4. Moodera JS, Mathon G. Spin polarized tunneling in ferromagnetic junctions. Journal of magnetism and magnetic materials, 1999, 200(1-3): 248-273. https://doi.org/10.1016/S0304-8853(99)00515-6
  5. Datta S, Das B. Electronic analog of the electro-optic modulator. Applied Physics Letters, 1990, 56(7): 665-667. https://doi.org/10.1063/1.102730
  6. Kilian KA, Victora RH. Electronic structure of NiCo2 MnIn for use in spin injection. Journal of Applied Physics, 2000, 87(9): 7064-7066. https://doi.org/10.1063/1.372932
  7. Tanaka CT, Nowak J, Moodera JS. Spin-polarized tunneling in a half-metallic ferromagnet. Journal of applied physics, 1999, 86(11): 6239-6242. https://doi.org/10.1063/1.371678
  8. Park JH, Vescovo E, Kim HJ, et al. Direct evidence for a half-metallic ferromagnet. Nature, 1998, 392(6678): 794. doi:10.1038/33883
  9. Hirohata A, Takanashi K. Future perspectives for spintronic devices. Journal of Physics D: Applied Physics, 2014, 47(19): 193001.
  10. Ishida S, Akazawa S, Kubo Y, et al. Band theory of CoCo2 MnSn, CoCo2 TiSn and CoCo2 TiAl. Journal of Physics F: Metal Physics, 1982, 12(6): 1111.
  11. Ishida S, Fujii S, Kashiwagi S, et al. Search for half-metallic compounds in CoCo2 MnZ (Z= IIIb, IVb, Vb element). Journal of the Physical Society of Japan, 1995,64(6): 2152- 2157. https://doi.org/10.1143/JPSJ.64.2152
  12. Gupta DC, Bhat IH. Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMnCo2Ge and RuMnCo2Sb Heusler alloys. Materials Science and Engineering: B, 2015, 193: 70-75. https://doi.org/10.1016/j.mseb.2014.11.009
  13. Fujii S, Sugimura S, Asano S. Hyperfine fields and electronic structures of the Heusler alloys Co2 MnX (X= Al, Ga, Si, Ge, Sn). Journal of Physics: Condensed Matter, 1990, 2(43): 8583.
  14. Bhat IH, Yousuf S, Bhat TM, et al. Investigation of electronic structure, magnetic and transport properties of halfmetallic MnCo2 CuSi and MnCo2 ZnSi Heusler alloys. Journal of Magnetism and Magnetic Materials, 2015, 395: 81-88. https://doi.org/10.1016/j.jmmm.2015.07.022
  15. De Boeck J, Van Roy W, Das J, et al. Technology and materials issues in semiconductor-based magnetoelectronics. Semiconductor Science and Technology, 2002, 17(4): 342. https://doi.org/10.1088/0268-1242/17/4/307
  16. Blaha P, Schwarz K, Madsen GKH, et al. wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 2001.
  17. Schwarz K, Blaha P, Madsen GKH. Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer Physics Communications, 2002, 147(1- 2): 71-76. https://doi.org/10.1016/S0010-4655(02)00206-0
  18. Ouardi S, Fecher GH, Felser C, et al. Realization of spin gapless semiconductors: the Heusler compound MnCo2 CoAl. Physical review letters, 2013, 110(10): 100401. https://doi.org/10.1103/PhysRevLett.110.100401
  19. Wang XT, Cui YT, Liu XF, et al. Electronic structures and magnetism in the LiCo2 AgSb-type Heusler alloys, ZrCo2 CoZ (Z= Al, Ga, In, Si, Ge, Sn, Pb, Sb): A first-principles study. Journal of Magnetism and Magnetic Materials, 2015, 394: 50-59. https://doi.org/10.1016/j.jmmm.2015.06.035
  20. Pugaczowa-Michalska M. Theoretical prediction of ferrimagnetism in MnCo2 FeB, MnCo2 CoB and MnCo2 NiB. Intermetallics, 2012, 24: 128-134. https://doi.org/10.1016/j.intermet.2012.01.004
  21. Slater JC. The ferromagnetism of nickel. Physical Review, 1936, 49(7): 537. https://doi.org/10.1103/PhysRev.49.537
  22. Pauling L. The nature of the interatomic forces in metals. Physical Review, 1938, 54(11): 899. https://doi.org/10.1103/PhysRev.54.899
  23. Otero-de-la-Roza A, Abbasi-Perez D, Luana V. Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Computer Physics Communications, 2011, 182(10): 2232-2248. https://doi.org/10.1016/j.cpc.2011.05.009
  24. Blanco MA, Francisco E, Luana V. GIBBS: isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 2004, 158(1): 57-72. https://doi.org/10.1016/j.comphy.2003.12.001
  25. Marx D, Hutter J. Ab initio molecular dynamics. Parallel computing, 2009, 309(309): 327.
  26. Allen MP, Tildesley DJ. Computer Simulation of Liquids Oxford Univ. Press. 1987.
  27. Peng F, Fu H, Yang X. Ab initio study of phase transition and thermodynamic properties of PtN. Physica B: Condensed Matter, 2008, 403(17): 2851-2855. https://doi.org/10.1016/j.physb.2008.02.022