Open Access Peer-reviewed Review

Cellulose based smart sensors

Main Article Content

Ekta Jagtiani corresponding author

Abstract

Cellulose fibres, cellulose nanofibers, cellulose nanocrystals and cellulose derivatives are all examples of cellulose-based materialsthat display superior characteristics with a number of desirable properties, including biodegradability, sustainability, biocompatibility, thermal properties , optical transparency, flexibility, high mechanical strength, high porosity,hydrophilicity, a large surface area and broad chemical modification capabilities. "Smart" materials based on cellulose created by the chemical changes and physical incorporation/blending techniques offer numerous advantages, most notably their intelligent responses to environmental stimuli. Conductive networks are formed in cellulose-based composite materials by combining or coating conductive materials with the cellulose components or by directly carbonising the cellulose materials. Numerous nanopaper-based optical sensing platforms are explained and how they can be tailored to exhibit plasmonic or photoluminescent features suitable for sensing applications using nanomaterials or as biomaterials. The responsiveness of these "smart" materials to pH, temperature, light, electricity, magnetic fields and mechanical forces, among other parameters, is also reviewed, as were their applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials, smart membranes, etc.

Keywords
cellulose, sensors, multi-faceted applications, piezoelectricity, smart materials

Article Details

How to Cite
Jagtiani, E. (2022). Cellulose based smart sensors. Advances in Biochips, 3(1), 50-70. https://doi.org/10.25082/AB.2022.01.002

References

  1. Masaya Nogi B, Iwamoto S, Norio Nakagaito A, et al. Optically Transparent Nanofiber Paper. Advances in Materials, 2009, 21: 1595-1598. https://doi.org/10.1002/adma.200803174
  2. Abraham E, Deepa B, Pothan LA, et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 2011, 86: 1468-1475. https://doi.org/10.1016/J.CARBPOL.2011.06.034
  3. Mondal S, Memmott P and Martin D. Preparation and characterization of green bio-composites based on modified spinifex resin and spinifex grass fibres. Journal of Composite Materials, 2013, 48: 1375-1382. https://doi.org/10.1177/0021998313486500
  4. Anirudhan TS, Gopal SS and Rejeena SR. Synthesis and Characterization of Poly(Ethyleneimine)-Modified Poly(Acrylic Acid)-Grafted Nanocellulose/Nanobentonite Superabsorbent Hydrogel for the Selective Recovery of $beta$-Casein From Aqueous Solutions. International Journal of Polymeric Materials, , 2015, 64: 772-784. https://doi.org/10.1080/00914037.2015.1030647
  5. Gardner DJ, Oporto GS, Mills R, et al. Adhesion and Surface Issues in Cellulose and Nanocellulose. Journal of Adhesion Science and Technology, 2012, 22: 545-567. https://doi.org/10.1163/156856108X295509
  6. Milanez DH, do Amaral RM, de Faria LIL, et al. Technological indicators of nanocellulose advances obtained from data and text mining applied to patent documents. Materials Research, 2014, 17: 1513-1522. https://doi.org/10.1590/1516-1439.266314
  7. Milanez DH, do Amaral RM, de Faria LIL, et al. Assessing nanocellulose developments using science and technology indicators. Materials Research, 2013, 16: 635-641. https://doi.org/10.1590/S1516-14392013005000033
  8. Henriksson M, Henriksson G, Berglund LA, et al. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 2007, 43: 3434-3441. https://doi.org/10.1016/J.EURPOLYMJ.2007.05.038
  9. Saito T, Kimura S, Nishiyama Y, et al. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, 2007, 8: 2485-2491. https://doi.org/10.1021/BM0703970
  10. Aulin C, Ahok S, Josefsson P, et al. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water. Langmuir: the ACS journal of surfaces and colloids, 2009, 25: 7675-7685. https://doi.org/10.1021/LA900323N
  11. Pääkko M, Ankerfors M, Kosonen H, et al. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules, 2007, 8: 1934-1941. https://doi.org/10.1021/BM061215P
  12. Saito T, Uematsu T, Kimura S, et al. Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter, 2011, 7: 8804-8809. https://doi.org/10.1039/C1SM06050C
  13. Gebald C, Wurzbacher JA, Tingaut P, et al. Amine-based nanofibrillated cellulose as adsorbent for CO 2 capture from air. Environmental Science and Technology, 2011, 45: 9101-9108. https://doi.org/10.1021/ES202223P
  14. Sehaqui H, Salajková M, Zhou Q, Berglund LA et al. Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter, 2010, 6: 1824-1832. https://doi.org/10.1039/B927505C
  15. Nakagaito AN and Yano H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A: Materials Science and Processing, 2004, 78: 547-552. https://doi.org/10.1007/S00339-003-2453-5
  16. Sehaqui H, Zhou Q, Ikkala O, et al. Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules, 2011, 12: 3638-3644. https://doi.org/10.1021/BM2008907
  17. Sehaqui H, Ezekiel Mushi N, Morimune S, et al. Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing. ACS Applied Materials and Interfaces, 2012, 4: 1043-1049. https://doi.org/10.1021/AM2016766
  18. Henriksson M, Berglund LA, Isaksson P, et al. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules, 2008, 9: 1579-1585. https://doi.org/10.1021/BM800038N
  19. Zheng G, Cui Y, Karabulut E, et al. Nanostructured paper for flexible energy and electronic devices. MRS Bulletin, 2013, 38: 320-325. https://doi.org/10.1557/MRS.2013.59
  20. Zhu H, Fang Z, Preston C, et al. Transparent paper: fabrications, properties, and device applications. Energy & Environmental Science, 2013, 7: 269-287. https://doi.org/10.1039/C3EE43024C
  21. Taniguchi T and Okamura K. New Films Produced from Microfibrillated Natural Fibres. Polymer International, 1998, 47(3): 291-294. https://doi.org/10.1002/(SICI)1097-0126(199811)4733.0.CO;2-1
  22. Fukuzumi H, Saito T, Iwata T, et al. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 2009, 10: 162-165. https://doi.org/10.1021/BM801065U
  23. Henriksson M, Berglund LA, Isaksson P, et al. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules, 2008, 9: 1579-1585. https://doi.org/10.1021/BM800038N
  24. Saito T, Hirota M, Tamura N, et al. , 2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules, 2009, 10: 1992-1996. https://doi.org/10.1021/BM900414T
  25. Siró I and Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 2010 17: 459-494. https://doi.org/10.1007/S10570-010-9405-Y
  26. Sehaqui H, Liu A, Zhou Q, et al. Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures. Biomacromolecules, 2010, 11: 2195-2198. https://doi.org/10.1021/BM100490S
  27. Liu A, Walther A, Ikkala O, et al. Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules, 2011, 12: 633-641. https://doi.org/10.1021/BM101296Z
  28. Iguchi M, Yamanaka S and Budhiono A. Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science, 2000, 35: 261-270. https://doi.org/10.1023/A:1004775229149
  29. (PDF) Chemical surface modifications of microfibrillated cellulose. Per Stenstad and Martin Andresen. https://www.academia.edu
  30. Abe K, Iwamoto S and Yano H. Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules, 2007, 8: 3276-3278. https://doi.org/10.1021/BM700624P
  31. Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 2011, 50: 5438-5466. https://doi.org/10.1002/ANIE.201001273
  32. Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 2013, 94: 154-169. https://doi.org/10.1016/J.CARBPOL.2013.01.033
  33. Iwamoto S, Nakagaito AN and Yano H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, 2007, 89: 461-466. https://doi.org/10.1007/S00339-007-4175-6
  34. Dujardin E, Blaseby M and Mann S. Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. Journal of Materials Chemistry, 2003, 13: 696-699. https://doi.org/10.1039/B212689C
  35. Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40: 3941-3994. https://doi.org/10.1039/C0CS00108B
  36. Cellulosic Nanocomposites: A Review. BioResources. https://ojs.cnr.ncsu.edu
  37. Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 2011, 50: 5438-5466. https://doi.org/10.1002/ANIE.201001273
  38. Yano H. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Sustainable humanosphere: bulletin of Research Institute for Sustainable Humanosphere Kyoto University, 2005.
  39. Iwamoto S, Kai W, Isogai A, et al. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules, 2009, 10: 2571-2576. https://doi.org/10.1021/BM900520N
  40. Soriano ML and Dueñas-Mas MJ. Promising Sensing Platforms Based on Nanocellulose. Carbon-Based Nanosensor Technology, 2018, 273-301. https://doi.org/10.1007/5346_2018_26
  41. Kaushik M and Moores A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chemistry, 2016, 18: 622-637. https://doi.org/10.1039/C5GC02500A
  42. Chen W, Yu H, Lee SY, et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47: 2837-2872. https://doi.org/10.1039/C7CS00790F
  43. Kim J, Kim SW, Park S, et al. Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Advanced healthcare materials, 2013, 2: 1525-1531. https://doi.org/10.1002/ADHM.201200368
  44. Cai H, Sharma S, Liu W, et al. Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules, 2014, 15: 2540-2547. https://doi.org/10.1021/BM5003976
  45. Markstedt K, Mantas A, Tournier I, et al. 3D Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules, 2015, 16: 1489-1496. https://doi.org/10.1021/ACS.BIOMAC.5B00188
  46. Lin N and Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014, 59: 302-325. https://doi.org/10.1016/J.EURPOLYMJ.2014.07.025
  47. Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose — artificial blood vessels for microsurgery. Progress in Polymer Science, 2001, 26: 1561-1603. https://doi.org/10.1016/S0079-6700(01)00021-1
  48. EP1057477A1. Oil-in-water emulsion composition containing cellulose fibrils and cosmetic use thereof. Google Patents. https://patents.google.com/patent/EP1057477A1/en
  49. Ruiz-Palomero C, Soriano ML and Valcárcel M. Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC - Trends in Analytical Chemistry, 2017, 87: 1-18. https://doi.org/10.1016/J.TRAC.2016.11.007
  50. Morales-Narváez E, Golmohammadi H, Naghdi T, et al. Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9: 7296-7305. https://doi.org/10.1021/ACSNANO.5B03097
  51. Valcárcel M. Supporting Data: Pharmaceutical Crystallization with Nanocellulose Organogels. Collections, 2016, 52: 7741-7894. https://doi.org/10.15128/m900nt40f
  52. Ruiz-Palomero C, Soriano ML and Valcárcel M. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. Journal of chromatography A, 2016, 1428: 352-358. https://doi.org/10.1016/J.CHROMA.2015.06.023
  53. Jesús Dueñas-Mas M, Laura Soriano M, Ruiz-Palomero C, et al. Modified nanocellulose as promising material for the extraction of gold nanoparticles. Microchemical Journal, 2018, 138: 379-383. https://doi.org/10.1016/J.MICROC.2018.01.035
  54. Zhu H, Yang X, Cranston ED, et al. Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal-Organic-Framework Particles for Separations Applications. Advanced materials, 2016, 28: 7652-7657. https://doi.org/10.1002/ADMA.201601351
  55. Matsumoto M and Kitaoka T. Ultraselective Gas Separation by Nanoporous Metal-Organic Frameworks Embedded in Gas-Barrier Nanocellulose Films. Advanced materials, 2016, 28: 1765-1769. https://doi.org/10.1002/ADMA.201504784
  56. Shao C, Wang M, Meng L, et al. Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30: 3110-3121. https://doi.org/10.1021/ACS.CHEMMATER.8B01172/SUPPL_FILE/CM8B01172_SI_004.AVI
  57. Hur J, Im K, Kim SW, et al. Polypyrrole/Agarose-based electronically conductive and reversibly restorable hydrogel. ACS nano, 2014, 8: 10066-10076. https://doi.org/10.1021/NN502704G
  58. Wei Z, Yang JH, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chemical Society Reviews, 2014, 43: 8114-8131. https://doi.org/10.1039/C4CS00219A
  59. Shi Y, Wang M, Ma C, et al. A Conductive Self-Healing Hybrid Gel Enabled by Metal-Ligand Supramolecule and Nanostructured Conductive Polymer. Nano letters, 2015, 15: 6276-6281. https://doi.org/10.1021/ACS.NANOLETT.5B03069
  60. Zheng C, Yue Y, Gan L, et al. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials, 2019, 9: 937. https://doi.org/10.3390/NANO9070937
  61. Jahan Z, Niazi MBK and Gregersen W. Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. Journal of Industrial and Engineering Chemistry, 2018, 57: 113-124. https://doi.org/10.1016/J.JIEC.2017.08.014
  62. Chen Y, Xu W, Liu W, et al. Responsiveness, swelling, and mechanical properties of PNIPA nanocomposite hydrogels reinforced by nanocellulose. Journal of Materials Research, 2015, 30: 1797-1807. https://doi.org/10.1557/JMR.2015.94
  63. Yin R, Yang S, Li Q, et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Science Bulletin, 2020, 65: 899-908. https://doi.org/10.1016/J.SCIB.2020.02.020
  64. Li S, Huang D, Yang J, et al. Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy, 2014, 9: 309-317. https://doi.org/10.1016/J.NANOEN.2014.08.004
  65. Wang Z, Tammela P, Zhang P, et al. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. Nanoscale, 2014, 6: 13068-13075. https://doi.org/10.1039/C4NR04642K
  66. Li Z, Ahadi K, Jiang K, et al. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Research, 2017, 10: 1847-1860. https://doi.org/10.1007/S12274-017-1573-8
  67. Khosrozadeh A, Darabi MA, Xing M, et al. Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(18): 11379-11389. https://doi.org/10.1021/ACSAMI.5B11256
  68. Zhang K, Chen G, Li R, et al. Facile Preparation of Highly Transparent Conducting Nanopaper with Electrical Robustness. ACS Sustainable Chemistry & Engineering, 2020, 8: 5132-5139. https://doi.org/10.1021/acsami.5b11256
  69. Kim JH, Shim BS, Kim HS, et al. Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing - Green Technology, 2015, 2: 197-213. https://doi.org/10.1007/S40684-015-0024-9
  70. Csoka L, Hoeger IC, Rojas OJ, et al. Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Letters, 2012, 1: 867-870. https://doi.org/10.1021/MZ300234A
  71. Mahadeva SK, Walus K and Stoeber B. Piezoelectric paper for physical sensing applications. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, 2015, 861-864. https://doi.org/10.1109/MEMSYS.2015.7051095
  72. Kim JH, Yun S, Kim JH, et al. Fabrication of Piezoelectric Cellulose Paper and Audio Application. Journal of Bionic Engineering, 2009, 6: 18-21. https://doi.org/10.1016/S1672-6529(08)60096-7
  73. Rajala S, Siponkoski T, Sarlin E, et al. Cellulose Nanofibril Film as a Piezoelectric Sensor Material. ACS Applied Materials and Interfaces, 2016, 8: 15607-15614. https://doi.org/10.1021/ACSAMI.6B03597
  74. Kim J, Lee H, Kim HS, et al. Vibration Sensor Characteristics of Piezoelectric Electro-active Paper. Journal of Intelligent Material Systems and Structures, 2010, 21(11): 1123-1130. https://doi.org/10.1177/1045389X10376679
  75. Kim JH, Yun GY, Jang SD, et al. Surface acoustic wave (SAW) device using piezoelectric cellulose EAPap: fabrication and characterization of SPIE. The International Society for Optical Engineering, 2009, 7291: 72910W-72910W-7. https://doi.org/10.1117/12.815591
  76. Kumar A, Gullapalli H, Balakrishnan K, et al. Flexible ZnO-cellulose nanocomposite for multisource energy conversion. Small, 2011, 7: 2173-2178. https://doi.org/10.1002/SMLL.201100458
  77. Kim KH, Lee KY, Seo JS, et al. Paper-based piezoelectric nanogenerators with high thermal stability. Small, 2011, 7: 2577-2580. https://doi.org/10.1002/SMLL.201100819
  78. Soomro MY, Hussain I, Bano N, et al. Piezoelectric power generation from zinc oxide nanowires grown on paper substrate. Physica Status Solidi - Rapid Research Letters, 2012, 6: 80-82. https://doi.org/10.1002/PSSR.201105519
  79. Fabrication and testing of piezoelectric hybrid paper for MEMS applications, Boris Stoeber and Suresha Mahadeva. https://www.academia.edu
  80. Piezoelectric Paper Fabricated via Nanostructured Barium Titanate Functionalization of Wood Cellulose Fibers. https://agris.fao.org
  81. Staley ME and Flatau AB. Characterization of energy harvesting potential of Terfenol-D and Galfenol. Smart Structures and Materials 2005: Smart Structures and Integrated Systems, 2005, 5764: 630. https://doi.org/10.1117/12.604871
  82. Claeyssen F, Lhermet N, le Letty RL, et al. Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 1997, 258: 61-73. https://doi.org/10.1016/S0925-8388(97)00070-4
  83. Goldie JH, Gerver MJ, Oleksy J, et al. Composite Terfenol-D sonar transducers. SPIE, 1999, 3675: 223-234. https://doi.org/10.1117/12.352797
  84. Li P, Wen Y, Liu P, et al. A magnetoelectric energy harvester and management circuit for wireless sensor network. Sensors & Actuators: A Physical, 2010, 1: 100-106. https://doi.org/10.1016/J.SNA.2009.11.007
  85. Ueno T and Yamada S. Performance of energy harvester using iron-gallium alloy in free vibration. IEEE Transactions on Magnetics, 2011, 47: 2407-2409. https://doi.org/10.1109/TMAG.2011.2158303
  86. Dapino MJ, Flatau AB and Calkins FT. Statistical Analysis of Terfenol-D Material Properties. Journal of Intelligent Material Systems and Structures, 1998, 17(7): 587-599. https://doi.org/10.1177/1045389X06059500
  87. Goodfriend MJ, Shoop KM. Adaptive Characteristics of the Magnetostrictive Alloy, Terfenol-D, for Active Vibration Control. Journal of Intelligent Material Systems & Structures, 1992, 3(2): 245-254. https://doi.org/10.1177/1045389X9200300204
  88. Wang TZ and Zhou YH. Nonlinear dynamic model with multi-fields coupling effects for giant magnetostrictive actuators. International Journal of Solids and Structures, 2013, 50: 2970-2979. https://doi.org/10.1016/J.IJSOLSTR.2013.05.012
  89. Moon SJ, Lim CW, Kim BH, et al. Structural vibration control using linear magnetostrictive actuators. Journal of Sound and Vibration, 2007, 302: 875-891. https://doi.org/10.1016/J.JSV.2006.12.023
  90. Olabi AG and Grunwald A. Design and application of magnetostrictive materials. Materials & Design, 2008, 29: 469-483. https://doi.org/10.1016/J.MATDES.2006.12.016
  91. Duenas TA and Carman GP. Large magnetostrictive response of Terfenol-D resin composites (invited). Journal of Applied Physics, 2000, 87: 4696. https://doi.org/10.1063/1.373133
  92. Ghosh DP and Gopalakrishnan S. Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Materials and Structures, 2005, 14: 1462. https://doi.org/10.1088/0964-1726/14/6/038
  93. Sabo R, Yermakov A, Law CT, et al. Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review. J Renew Mater, , 2016, 4(5): 297-312. https://doi.org/10.7569/JRM.2016.634114
  94. Handbook of Giant Magnetostrictive Materials. https://vdoc.pub/documents
  95. High-performance cellulose nanofibril composite films: BioResources. https://bioresources.cnr.ncsu.edu
  96. Kaleta J, Lewandowski D, Mech R, et al. Magnetostriction of field-structural composite with Terfenol-D particles. ACME, 2015, 15: 897-902. https://doi.org/10.1016/J.ACME.2015.02.009
  97. Elhajjar R. Smart Composites: Mechanics and Design. Aeronautical Journal, 2014, 118(1208): 1222.
  98. Yermakov A, Thompson A, Coaty C, et al. Flexible Magnetostrictive Nanocellulose Membranes for Actuation, Sensing, and Energy Harvesting Applications. Frontiers in Materials, 2020, 7: 38. https://doi.org/10.3389/FMATS.2020.00038/BIBTEX
  99. Pasquale G di, Graziani S, Pollicino A, et al. Paper based sensor for deformation measurements. I2MTC 2019 - 2019 IEEE International Instrumentation and Measurement Technology Conference, Proceedings, 2019. https://doi.org/10.1109/I2MTC.2019.8826962
  100. Qin D, Xia Y and Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nature protocols, 2010, 5: 491-502. https://doi.org/10.1038/NPROT.2009.234
  101. Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40: 3941-3994. https://doi.org/10.1039/C0CS00108B
  102. Parolo C, Medina-Sánchez M, de La Escosura-Muñiz A, et al. Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab on a Chip, 2013, 13: 386-390. https://doi.org/10.1039/C2LC41144J
  103. Lu Y, Shi W, Qin J, et al. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by Wax printing. Analytical Chemistry, 2010, 82: 329-335. https://doi.org/10.1021/AC9020193
  104. Morales-Narváez E, Golmohammadi H, Naghdi T, et al. Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9: 7296-7305. https://doi.org/10.1021/acsnano.5b03097
  105. Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A. Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29: 5426-5446. https://doi.org/10.1021/acs.chemmater.7b01170
  106. Nie J, Zhang Y, Lin L, et al. Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Analytical chemistry, 2012, 84: 6331-6335. https://doi.org/10.1021/AC203496C
  107. Noiphung J, Songjaroen T, Dungchai W, et al. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Analytica Chimica Acta, 2013, 788: 39-45. https://doi.org/10.1016/J.ACA.2013.06.021
  108. Han YL, Wang W, Hu J, et al. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper–polymer composite. Lab on a Chip, 2013, 13: 4745-4749. https://doi.org/10.1039/C3LC50919B
  109. Morales MA and Halpern JM. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chemistry, 2018, 29: 3231-3239. https://doi.org/10.1021/acs.bioconjchem.8B00592
  110. Marquez S and Morales-Narváez E. Nanoplasmonics in paper-based analytical devices. Frontiers in Bioengineering and Biotechnology, 2019, 7: 69. https://doi.org/10.3389/fbioe.2019.00069/bibtex
  111. Heli B, Morales-Narváez E, Golmohammadi H, et al. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale, 2016, 8: 7984-7991. https://doi.org/10.1039/c6nr00537c
  112. Morales-Narváez E, Golmohammadi H, Naghdi T, et al. Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9: 7296-7305. https://doi.org/10.1021/acsnano.5b03097
  113. Wilson AD and Baietto M. Applications and Advances in Electronic-Nose Technologies. Sensors, 2009, 9: 5099. https://doi.org/10.3390/S90705099
  114. Mahadeva SK, Walus K and Stoeber B. Paper as a platform for sensing applications and other devices: A review. ACS Applied Materials and Interfaces, 2015, 7: 8345-8362. https://doi.org/10.1021/acsami.5b00373
  115. Yang G, Lee C, Kim J, et al. Flexible graphene-based chemical sensors on paper substrates. Physical Chemistry Chemical Physics, 2013, 15: 1798-1801. https://doi.org/10.1039/C2CP43717A
  116. Mirica KA, Azzarelli JM, Weis JG, et al. Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 3265-3270. https://doi.org/10.1073/PNAS.1307251110
  117. Jia H, Wang J, Zhang X, et al. Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Letters, 2014, 3: 86-90. https://doi.org/10.1021/mz400523x
  118. Weishaupt R, Siqueira G, Schubert M, et al. A Protein-Nanocellulose Paper for Sensing Copper Ions at the Nano- to Micromolar Level. Advanced Functional Materials, 2017, 27: 1604291. https://doi.org/10.1002/ADFM.201604291
  119. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 2008, 5: 763-775. https://doi.org/10.1038/nmeth.1248
  120. Howes PD, Chandrawati R and Stevens MM. Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205): 1247390. https://doi.org/10.1126/science.1247390
  121. Xu Y, Meng Y, Zhou S, et al. Interferometric scattering of a single plasmonic nanoparticle cluster assembled in a nanostructured template. Optics Express, 2021, 29(9): 12976. https://doi.org/10.1364/OE.420801
  122. Somers RC, Bawendi MG and Nocera DG. CdSe nanocrystal based chem-/bio- sensors. Chemical Society Reviews, 2007, 36: 579-591. https://doi.org/10.1039/B517613C
  123. Morales-Narváez E and Merkoçi A. Graphene oxide as an optical biosensing platform. Advanced materials, 2012, 24: 3298-3308. https://doi.org/10.1002/ADMA.201200373
  124. Loh KP, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nature chemistry, 2010, 2: 1015-1024. https://doi.org/10.1038/nchem.907
  125. Fang Z, Zhu H, Preston C, et al. Highly transparent and writable wood all-cellulose hybrid nanostructured paper. Journal of Materials Chemistry C, 2013, 1: 6191-6197. https://doi.org/10.1039/C3TC31331J
  126. Ji S, Hyun BG, Kim K, et al. Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Materials, 2016, 8: 1-9. https://doi.org/10.1038/AM.2016.113
  127. Zhu H, Fang Z, Wang Z, et al. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. ACS Nano, 2016, 10: 1369-1377. https://doi.org/10.1021/acsnano.5B06781
  128. Li S and Lee PS. Development and applications of transparent conductive nanocellulose paper. Science and Technology of Advanced Materials, 2017, 18(1): 620-633. https://doi.org/10.1080/14686996.2017.1364976
  129. Jung M, Kim K, Kim B, et al. Vertically stacked nanocellulose tactile sensor. Nanoscale, 2017, 9: 17212-17219. https://doi.org/10.1039/C7NR03685J
  130. Wu J and Lin LY. Ultrathin ($<$ 1 $mu$m) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper. Scientific Reports, 2017, 7: 1-7. https://doi.org/10.1038/srep43898
  131. Zhou J and You-lo H. Conductive Polymer Protonated Nanocellulose Aerogels for Tunable and Linearly Responsive Strain Sensors. ACS Applied Materials and Interfaces, 2018, 10: 27902-27910. https://doi.org/10.1021/acsami.8b10239
  132. Golmohammadi H, Morales-Narváez E, Naghdi T, et al. Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29: 5426-5446. https://doi.org/10.1021/acs.chemmater.7b01170
  133. Mondal S. Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers, 2017, 163: 301-316. https://doi.org/10.1016/J.CARBPOL.2016.12.050
  134. Nanopapers: From Nanochemistry and Nanomanufacturing to Advanced Applications - Google Books. https://books.google.co.in/books
  135. Huang J, Zhu H, Chen Y, et al. Highly transparent and flexible nanopaper transistors. ACS Nano, 2013, 7: 2106-2113. https://doi.org/10.1021/nn304407r
  136. Lay M, Méndez JA, Delgado-Aguilar M, et al. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Carbohydrate polymers, 2016, 152: 361-369. https://doi.org/10.1016/J.CARBPOL.2016.06.102
  137. Koga H, Nogi M, Komoda N, et al. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Materials, 2014, 6: 93. https://doi.org/10.1038/am.2014.9
  138. Xu X, Zhou J, Jiang L, et al. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 2016, 8: 12294-12306. https://doi.org/10.1039/C6NR02245F
  139. Mautner A, Lee KY, Tammelin T, et al. Cellulose nanopapers as tight aqueous ultra-filtration membranes. Reactive and Functional Polymers, 2015, 86: 209-214. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2014.09.014
  140. Zhao J, Wei Z, Feng X, et al. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin. ACS applied materials & interfaces, 2014, 6: 14945-14951. https://doi.org/10.1021/AM5026352
  141. Henriksson M, Fogelstroem L, Berglund LA, et al. Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates. Composites Science & Technology, 2011, 71(1): 13-17. https://doi.org/10.1016/j.compscitech.2010.09.006
  142. Nogi M, Ifuku S, Abe K, et al. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Applied Physics Letters, 2006, 88: 133124. https://doi.org/10.1063/1.2191667
  143. Gao X, Huang L, Wang B, et al. Natural Materials Assembled, Biodegradable, and Transparent Paper-Based Electret Nanogenerator. ACS Applied Materials and Interfaces, 2016, 8: 35587-35592. https://doi.org/10.1021/ACSAMI.6B12913
  144. Zhou L, Yang Z, Luo W, et al. Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper. ACS Applied Materials and Interfaces, 2016, 8: 28838-28843. https://doi.org/10.1021/ACSAMI.6B09471