Open Access

Peer-reviewed

Research Article

Main Article Content

Parastoo Khalili
Majid Farahmandjoucorresponding author

Abstract

In this study, zinc oxide (ZnO) nanoparticles (NPs) were first synthesized using co-precipitation method in the presence of Zn(NO3)2.6H2O precursor and calcined at different temperature of 450 oC and 1000 oC. Samples were then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The XRD study revealed the hexagonal wurtzite structure for annealed samples. SEM images showed tthat he morphology of the ZnO NPs changed from sphere-like shape to polygon shape by increasing temperature. The exact size of NPs were measured by TEM analysis about 40 nm for as-prepared samples. The EDS analysis demonstrated an increasing level of Zn element from 28.5 wt% to 50.8 wt% for as-synthesized and annealed samples, respectively.

Keywords
ZnO nanorods, polygon-shaped nanoparicles, coprecipitation synthesis, EDX

Article Details

Supporting Agencies
The authors are thankful for the financial support of varamin pishva branch at Islamic Azad University for analysis and the discussions on the results.
How to Cite
Khalili, P., & Farahmandjou, M. (2021). Morphology and structure study of polygon ZnO nanorods: Biomedical applications. Materials Engineering Research, 3(1), 125-132. https://doi.org/10.25082/MER.2021.01.001

References

  1. Zarinkamar M, Farahmandjou M and Firoozabadi TP. Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2) Catalyst. Journal of Nanostructures, 2016, 6(2): 116-120.
  2. Farahmandjou M. Magnetocrystalline properties of Iron-Platinum (L10-FePt) nanoparticles through phase transition. Iranian Journal of Physics Research, 2016, 16(1): 1-5. https://doi.org/10.18869/acadpub.ijpr.16.1.1
  3. Shadrokh S, Farahmandjou M and Firozabadi TP. Fabrication and Characterization of Nanoporous Co Oxide (Co3O4) Prepared by Simple Sol-gel Synthesis. Physical Chemistry Research, 2016, 4(2): 153-160.
  4. Dastpak M, Farahmandjou M and Firoozabadi TP. Synthesis and Preparation of Magnetic Fe-Doped CeO2 Nanoparticles Prepared by Simple Sol-Gel Method. Journal of Superconductivity and Novel Magnetism, 2016, 29(11): 2925-2929. https://doi.org/10.1007/s10948-016-3639-3
  5. Farahmandjou M and Soflaee F. Polymer-Mediated Synthesis of Iron Oxide (Fe2O3) Nanorods. Chinese Journal of Physics, 2015, 53: 080801.
  6. Farahmandjou M and Soflaee F. Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Physical Chemistry Research, 2015, 3(3): 193-198.
  7. Farahmandjou M. Synthesis and Structural Study of L10-FePt nanoparticles. Turkish Journal of Engineering and Environmental Sciences, 2011, 34(4): 265-270.
  8. Farahmandjou M and Dastpak M. Fe-Loaded CeO2 Nanosized Prepared by Simple Co-Precipitation Route. Physical Chemistry Research, 2018, 6(4): 713-720.
  9. Farahmandjou M and Motaghi S. Sol-gel Synthesis of Ce-doped α-Al2O3: Study of Crystal and Optoelectronic Properties. Optics Communications, 2019, 441: 1-7. https://doi.org/10.1016/j.optcom.2019.02.029
  10. Motaghi S and Farahmandjou M. Structural and optoelectronic properties of Ce-Al2O3 nanoparticles prepared by sol-gel precursors. Material Research Express, 2019, 6(4): 045008. https://doi.org/10.1088/2053-1591/aaf927
  11. Farahmandjou M. Synthesis of ITO Nanoparticles Prepared by Degradation of Sulfide Method. Chinese Physics Letter, 2012, 29(7): 077306. https://doi.org/10.1088/0256-307X/29/7/077306
  12. Farahmandjou M and Golabiyan N. Synthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2016, 5(1): 73-77.
  13. Farahmandjou M and Golabiyan N. Solution combustion preparation of nano-Al2O3: Synthesis and characterization. Transport Phenomena in Nano and Micro Scales, 2015, 3(2): 100-105.
  14. Farahmandjou M and Golabiyan N. New pore structure of nano-alumina (Al2O3) prepared by sol gel method. Journal of Ceramic Processing Research, 2015, 16(2): 1-4.
  15. Khodadadi A, Farahmandjou M, Yaghoubi M, et al. Structural and Optical Study of Fe3+-Doped Al2O3Nanocrystals Prepared by New Sol gel Precursors. International Journal of Applied Ceramic Technology, 2019, 16(2): 718-726. https://doi.org/10.1111/ijac.13065
  16. Farahmandjou M. The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation. Revista Mexicana de F´ısica, 2013, 59(3): 205-207.
  17. Zarinkamar M, Farahmandjou M and Firoozabadi TP. One-step synthesis of ceria (CeO2) nanospheres by a simple wet chemical method. Journal of Ceramic Processing Research, 2016, 17(3): 166-169.
  18. Khodadadi A, Farahmandjou M and Yaghoubi M. Investigation on synthesis and characterization of Fe-doped Al2O3 nanocrystals by new sol-gel precursors. Materials Research Express, 2019, 6: 025029. https://doi.org/10.1088/2053-1591/aaef70
  19. Farahmandjou M and Zarinkamar M. Synthesis of nano-sized ceria (CeO2) particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology.Journal of Ultrafine Grained Nanostructured Materials, 2015, 48(1): 5-10.
  20. Farahmandjou M, Zarinkamar M and Firoozabadi TP. Synthesis of Cerium Oxide (CeO2) nanoparticles using simple Co-precipitation method. Revista Mexicana de F´ısica, 2016, 62(5): 496-499.
  21. Farahmandjou M and Salehizadeh SA. The optical band gap and the tailing states determination in glasses of TeO2-V2O5-K2O system, Glass Physics and Chemistry, 2013, 39(5): 473-479. https://doi.org/10.1134/S1087659613050052
  22. Behrouzinia S, Salehinia D, Khorasani K, et al. The continuous control of output power of a CuBr laser by a pulsed external magnetic field. Optics Communications, 2019, 436: 143-145. https://doi.org/10.1016/j.optcom.2018.12.016
  23. Farahmandjou M. Effect of Oleic Acid and Oleylamine Surfactants on the Size of FePt Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25(6): 2075-2079. https://doi.org/10.1007/s10948-012-1586-1
  24. Farahmandjou M and Soflaee F. Synthesis of Iron Oxide Nanoparticles using Borohydride Reduction, Journal of Bio-Inorganic Hybrid Nanomaterials, 2014, 3(4): 203-206.
  25. Sebt SA, Parhizgar SS, Farahmandjou M, et al. The role of ligands in the synthesis of FePt nanoparticles. Journal of Superconductivity and Novel Magnetism, 2009, 22(8): 849-854. https://doi.org/10.1007/s10948-009-0509-2
  26. Farahmandjou M, Sebt SA, Parhizgar SS, et al. Stability investigation of colloidal FePt nanoparticle systems by spectrophotometer analysis. Chinese Physics Letter, 2009, 26(2): 027501. https://doi.org/10.1088/0256-307X/26/2/027501
  27. Farahmandjou M and Ramazani M. Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor. Physical Chemistry Research, 2015, 3(4): 293-198.
  28. Honarbakhsh S, Farahmandjou M and Behroozinia S. Synthesis and characterization of iron cobalt (FeCo) nanorods prepared by simple Co-precipitation method. Journal of Fundamental and Applied Sciences, 2016, 8(2): 892-900. https://doi.org/10.4314/jfas.8vi2s.142
  29. Farahmandjou M, Honarbakhsh S and Behrouzinia S. PVP-Assisted Synthesis of Cobalt Ferrite (CoFe2O4) Nanorods. Physical Chemistry Research, 2016, 4(4): 655-662.
  30. Farahmandjou M, Honarbakhsh S and Behrouzinia S. FeCo Nanorods Preparation Using New Chemical Synthesis.Journal of Superconductivity and Novel Magnetism, 2018, 31: 4147-4152. https://doi.org/10.1007/s10948-018-4659-y
  31. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Structural, optical, thermoelectrical, and magnetic study of Zn1-xCoxO (0 ≤ x ≤ 0.10) nanocrystals. Int. International Journal of Applied Ceramic Technology, 2018, 15(3): 723-733.
  32. Khoshnevisan B, Marami MB and Farahmandjou M. Fe3+-Doped Anatase TiO2 Study Prepared by New Sol-Gel Precursors. Chinese Physics Letter, 2018, 35(2): 027501. https://doi.org/10.1088/0256-307X/35/2/027501
  33. Marami MB, FarahmandjouMand Khoshnevisan B. Solgel Synthesis of Fe-doped TiO2 Nanocrystals. Journal of Electronic Materials, 2018, 47(7): 3741-3748. https://doi.org/10.1007/s11664-018-6234-5
  34. Farahmandjou M and Khalili P. Study of Nano SiO2/TiO2 Superhydrophobic Self-Cleaning Surface Produced by Sol-Gel.Australian Journal of Basic and Applied Sciences, 2013, 7(6): 462-465.
  35. Farahmandjou M and Khalili P. Morphology Study of anatase nano-TiO2 for Self-cleaning Coating. International Journal of Fundamental Physical Sciences, 2013, 3(3): 54-56. https://doi.org/10.14331/ijfps.2013.330055
  36. Jafari A, Khademi S and Farahmandjou M. Nano-crystalline Ce-doped TiO2 Powders: Sol-gel Synthesis and Optoelectronic Properties.MaterialsResearch Express, 2018, 5(9): 095008. https://doi.org/10.1088/2053-1591/aad5b5
  37. Jafari A, Khademi S, Farahmandjou M, et al. Structural and optical properties of Ce3+-doped TiO2 nanocrystals prepared by sol-gel precursors. Journal of Electronic Materials, 2018, 47(11): 6901- 6908. https://doi.org/10.1007/s11664-018-6590-1
  38. Marami MB and Farahmandjou M. Water-Based Sol-Gel Synthesis of Ce-Doped TiO2 Nanoparticles. Journal of Electronic Materials, 2019, 48(7): 4740-4747. https://doi.org/10.1007/s11664-019-07265-9
  39. Ramazani M, Farahmandjou M and Firoozabadi TP. Effect of nitric acid on particle morphology of the nano-TiO2. International Journal of Nanoscience and Nanotechnology, 2015, 11(2): 115-122.
  40. Hoseini F, FarahmandjouMand Firoozabadi TP. Coprecipitation synthesis of zinc ferrit (FE2O3/ZNO) nanoparticles prepared by CTAB surfactant. Journal of Fundamental and Applied Sciences, 2016, 8(3): 738-745. https://doi.org/10.4314/jfas.v8i3s.258
  41. Jurablu S, Farahmandjou M and Firoozabadi TP. Multiple-layered structure of obelisk-shaped crystalline nano-ZnO prepared by sol-gel route. Journal of Theoretical and Applied Physics, 2015, 9(4): 261-266. https://doi.org/10.1007/s40094-015-0184-6
  42. Akhtari F, Zorriasatein S, Farahmandjou M, et al. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Materials Research Express, 2018, 5(6): 065015. https://doi.org/10.1088/2053-1591/aac6f1
  43. Jurablu S, Farahmandjou M and Firoozabadi TP. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. Journal of Science, Islamic Republic of Iran, 2015, 26(3): 281-285.
  44. Farahmandjou M and Jurablu S. Co-precipitation Synthesis of Zinc Oxide (ZnO) Nanoparticles by Zinc Nitrate Precursor. Journal of Bio-Inorganic Hybrid Nanomaterials, 2014, 3(3): 179-184.
  45. Khalili P and Farahmandjou M. Study of Fe2O3@ZnO nanoleaves: Morphological and optical study. Material Engineering Research, 2020, 2(1): 118-124. https://doi.org/10.25082/MER.2020.01.004
  46. Lu CH and Yeh CH. Influence of Hydrothermal Conditions on the Morphology and Particle Size of Zinc Oxide Powder. Ceramics International, 2000, 26(4): 351-357. https://doi.org/10.1016/S0272-8842(99)00063-2
  47. Wang C, Wang E, Shen E, et al. Growth of Zno Nanoparticles from Nanowhisker Precursor with a Simple Solvothermal Route. Materials Research Bulletin, 2006, 41(12): 2298-2302. https://doi.org/10.1016/j.materresbull.2006.04.017
  48. Milosevic O, Jordovic B and Uskokovic D. Preparation of Fine Spherical Zno Powders by an Ultrasonic Spray Pyrolysis Method. Materials Letter, 1994, 19(3-4): 165-170. https://doi.org/10.1016/0167-577X(94)90063-9
  49. Zhao X, Li M and Lou X. Sol-gel assisted hydrothermal synthesis of ZnO microstructures: Morphology control and photocatalytic activity. Advanced Powder Technology, 2014, 25(1): 372-378. https://doi.org/10.1016/j.apt.2013.06.004
  50. Poornajar M, Marashi P, Fatmehsari DH, et al. Synthesis of ZnOnanorods via chemical bath deposition method: The effects of physicochemical factors. Ceramics International, 2016, 42(1): 173-184. https://doi.org/10.1016/j.ceramint.2015.08.073
  51. Sarkar J, Ghosh M, Mukherjee A, et al. Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess and biosystems engineering, 2014, 37(2): 165-171. https://doi.org/10.1007/s00449-013-0982-7
  52. Baskar G, Chandhuru J, Fahad KS, et al. Mycological Synthesis, Characterization and Antifungal Activity of Zinc Oxide Nanoparticles. Asian Journal of Pharmacy and Technology, 2013, 3(4): 142-146.
  53. Scherrer P. Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften. Gottingen. Mathematisch- Physikalische Klasse, 1918, 2: 98-100.
  54. Farahmandjou M, Khodadadi A and Yaghoubi M. Low Concentration Iron-Doped Alumina (Fe/Al2O3) Nanoparticles Using Co-Precipitation Method. Journal of Superconductivity and Novel Magnetism, 2020, 33: 3425-3432. https://doi.org/10.1007/s10948-020-05569-0
  55. Farahmandjou M and Dastpak M. Synthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method. Journal of Sciences, Islamic Republic of Iran, 2020, 31(1): 39-43.
  56. Farahmandjou M, Khodadadi A and Yaghoubi M. Synthesis and Characterization of Fe-Al2O3 nanoparticles Prepared by Coprecipitation Method. Iranian Journal of Chemistry and Chemical Engineering, 2021.
  57. Jafari A, Khademi S, Farahmandjou M, et al. Preparation and Characterization of Cerium Doped Titanium Dioxide Nanoparticles by the Electrical Discharge Method. Journal of Advanced Materials in Engineering, 2019, 38(2): 83-90. https://doi.org/10.29252/jame.38.2.83
  58. Farahmandjou M and Golabiyan N. Synthesis and characterisation of Al2O3 nanoparticles as catalyst prepared by polymer co-precipitation method. Materials Engineering Research, 2019, 1(2): 40-44. https://doi.org/10.25082/MER.2019.02.002
  59. Farahmandjou M. One-step synthesis of TiO2 nanoparticles using simple chemical technique. Materials Engineering Research, 2019, 1(1): 15-19. https://doi.org/10.25082/MER.2019.01.004
  60. Moghimi A and Farahmandjou M. Preconcentration of Cd (II) by chemically converted graphene sheets adsorbed on surfactant-coated C18 before determination by flame atomic absorption spectrometry (FAAS). African Journal of Pure and Applied Chemistry, 2014, 8(1): 1-8. https://doi.org/10.5897/AJPAC2013.0542
  61. Farahmandjou M. Self-cleaning measurement of nano-sized photoactive TiO2. Journal of Computer & Robotics, 2014, 7(2): 15-19.
  62. FarahmandjouMand Abaeyan N. Simple Synthesis of Vanadium Oxide (V2O5) Nanorods in Presence of CTAB Surfactant. Colloid Surface Science, 2016, 1(1): 10-13. https://doi.org/10.15406/jnmr.2017.05.00103
  63. Farahmandjou M, Sebt SA, Parhizgar SS, et al. The Effect of NaCl Prepared by Ultra-sonic Vibration on the Sintering of Annealed FePt Nanoparticles. Journal of Physics: Conference Series, 2009, 153(1): 012050. https://doi.org/10.1088/1742-6596/153/1/012050
  64. Farahmandjou M. Liquid Phase Synthesis of indium tin oxide (ITO) nanoparticles using In (III) and Sn (IV) salts. Australian Journal of Basic and Applied Sciences, 2013, 7(4): 31-34.
  65. Farahmandjou M. Comparison of the Fe and Pt nanoparticles with FePt alloy prepared by polyol process: Shape and composition study. Acta Physica Polonica A, 2013, 123: 277-278. https://doi.org/10.12693/APhysPolA.123.277
  66. Farahmandjou M. The effect of reflux process on the size and uniformity of FePt nanoparticles. International Journal of fundamental physical sciences. 2011, 1(3): 57-59. https://doi.org/10.14331/ijfps.2011.330014
  67. Farahmandjou M. Synthesis and Morphology Study of Nano-Indium Tin Oxide (ITO) Grains. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2013, 2(2): 373-378.
  68. Farahmandjou M and Salehizadeh SA. Investigation on calorimetric and elastic properties of 50TeO2- (50-x) V2O5-xK2O glassy systems. Chalcogenide Letters, 2015, 12(11): 619-631. https://doi.org/10.1016/j.jnoncrysol.2016.03.012
  69. Farahmandjou M and Abaeiyan N. Chemical synthesis of vanadium oxide (V2O5) nanoparticles prepared by sodium metavanadate. Journal of Nanomedicine Research, 2017, 5(1): 00103. https://doi.org/10.15406/jnmr.2017.05.00103
  70. Farahmandjou M and Abaeiyan N. Simple synthesis of new nano-sized pore structure vanadium pantoxide (V2O5). Journal of Bio-Inorganic Hybrid Nanomaterials, 2015, 4(4): 243-247.
  71. Farahmandjou M and Shadrokh S. Chemical synthesis of the Co3O4 nanoparticles in presence of CTAB surfactant. Journal of Bio-Inorganic Hybrid Nanomaterials, 2015, 4(3): 129-134.
  72. Behrouzinia S, Khorasani K and Farahmandjou M. Buffer gas effects on output power of a copper vapor laser. Laser Physics, 2016, 26(5): 055003. https://doi.org/10.1088/1054-660X/26/5/055003
  73. Farahmandjou M and Behrouzinia S. Fe Lauded TiO2 Nanoparticles Synthesized by Sol-gel Precursors. Physical Chemistry Research, 2019, 7(2): 395-401.
  74. Farahmandjou M. The stability of monodisperse FePt Nanoparticles. Journal of Optoelectronics and Advanced Materials, 2009, (12): 2145-2149.
  75. Farahmandjou M, Dastpak M and Panji Z. CTAB-assisted of Fe2O3/CeO2 nanosized prepared by coprecipitation method. Journal of Bio-Inorganic Hybrid Nanomaterials, 2018, 7(3): 221-226.
  76. Farahmandjou M. The Effect of 1, 2-Hexadecadeniol and LiBEt3H Superhydride on the Size of FePt Nanoparticles. AIP Conference Proceedings, 2011, 1415(1): 193-195. https://doi.org/10.1063/1.3667254
  77. Farahmandjou M. Shape and composition study of iron-platinum (FePt) nanoalloy prepared by polyol process. International Journal of Physical Sciences, 2012, 7(12): 1938-1942. https://doi.org/10.5897/IJPS11.1710
  78. Farahmandjou M. Two step growth process of iron-platinum (FePt) nanoparticles. International Journal of Physical Sciences, 2012, 7(19): 2713-2719. https://doi.org/10.5897/IJPS11.1456
  79. Farahmandjou M. Preparation of Ferromagnetic Co3O4 Nanoparticles by Wet Chemical Synthesis Method. To Physics Journal, 2019, 3: 89-99.
  80. Farahmandjou M, Shadrokh S and Moghimi A. Borohydride Reduction of Cobalt Oxide (Co3O4) Nanoparticles. To Physics Journal, 2019, 4: 33-39.
  81. M Farahmandjou. Liquid Phase Synthesis of indium tin oxide (ITO) nanoparticles using In (III) and Sn (IV) salts. Australian Journal of Basic and Applied Sciences, 2013, 7(4): 31-34.
  82. Farahmandjou M. Synthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles. International Journal of Bio-Inorganic Hybrid Nanomaterials, 2013, 2(3): 443-447.