Open Access Peer-reviewed Research Article

Trust and AI Adoption for Mobile Learning in Higher Education: Evidence from Tanzanian Universities

Main Article Content

Renatus Michael Mushi corresponding author

Abstract

Artificial intelligence (AI) is transforming practices across multiple domains, including education, where adaptive teaching methods are enhancing learning processes. This study examines whether trust influences AI acceptance in higher learning institutions (HLIs) in Tanzania. Using a quantitative approach based on structural equation modeling (SEM) with data from 215 respondents, we extended the Technology Acceptance Model (TAM) by integrating trust as an external variable. While the model was generally supported, perceived trust did not emerge as a significant predictor of behavioral intention to use AI in Tanzanian HLIs. These findings provide theoretical and policy insights for AI adoption in higher education and suggest avenues for future research.

Keywords
Artificial Intelligence, Technology Acceptance Model (TAM), mobile learning, higher education, Tanzania

Article Details

How to Cite
Mushi, R. M. (2025). Trust and AI Adoption for Mobile Learning in Higher Education: Evidence from Tanzanian Universities. Advances in Mobile Learning Educational Research, 5(2), 1597-1610. https://doi.org/10.25082/AMLER.2025.02.014

References

  1. Adewale, O. S., Agbonifo, O. C., Ibam, E. O., Makinde, A. I., Boyinbode, O. K., Ojokoh, B. A., Olabode, O., Omirin, M. S., & Olatunji, S. O. (2022). Design of a personalised adaptive ubiquitous learning system. Interactive Learning Environments, 32(1), 208–228. https://doi.org/10.1080/10494820.2022.2084114
  2. AI HLEG. (2018). Ethics Guidelines for Trustworthy AI, European Commission, 2018. https://ec.europa.eu
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-t
  4. Akata, Z., Balliet, D., de Rijke, M., Dignum, F., Dignum, V., Eiben, G., Fokkens, A., Grossi, D., Hindriks, K., Hoos, H., Hung, H., Jonker, C., Monz, C., Neerincx, M., Oliehoek, F., Prakken, H., Schlobach, S., van der Gaag, L., van Harmelen, F., … Welling, M. (2020). A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer, 53(8), 18–28. https://doi.org/10.1109/mc.2020.2996587
  5. Al-Emran, M., Elsherif, H. M., & Shaalan, K. (2016). Investigating attitudes towards the use of mobile learning in higher education. Computers in Human Behavior, 56, 93–102. https://doi.org/10.1016/j.chb.2015.11.033
  6. Alsharida, R. A., Hammood, M. M., & Al-Emran, M. (2021). Mobile Learning Adoption: A Systematic Review of the Technology Acceptance Model from 2017 to 2020. International Journal of Emerging Technologies in Learning (IJET), 16(05), 147. https://doi.org/10.3991/ijet.v16i05.18093
  7. Alzahrani, L., Al-Karaghouli, W., & Weerakkody, V. (2018). Investigating the impact of citizens’ trust toward the successful adoption of e-government: A multigroup analysis of gender, age, and internet experience. Information Systems Management, 35(2), 124–146. https://doi.org/10.1080/10580530.2018.1440730
  8. Athanassopoulos, S., Manoli, P., Gouvi, M., Lavidas, K., & Komis, V. (2023). The use of ChatGPT as a learning tool to improve foreign language writing in a multilingual and multicultural classroom. Advances in Mobile Learning Educational Research, 3(2), 818–824. https://doi.org/10.25082/amler.2023.02.009
  9. Augmented Reality and Artificial Intelligence. (2023). In V. Geroimenko (Ed.), Springer Series on Cultural Computing. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-27166-3
  10. Awang, Z. (2015). SEM made simple: A gentle approach to learning Structural Equation Modeling. MPWS Rich Publication.
  11. Brandhofer, G., & Tengler, K. (2024). Acceptance of artificial intelligence in education: opportunities, concerns and need for action. Advances in Mobile Learning Educational Research, 4(2), 1105–1113. https://doi.org/10.25082/amler.2024.02.005
  12. Brislin, R. W. (1970). Back-Translation for Cross-Cultural Research. Journal of Cross-Cultural Psychology, 1(3), 185–216. https://doi.org/10.1177/135910457000100301
  13. Bruess, L. (2003). University ESL instructors' perceptions and use of computer technology in teaching. University of New Orleans.
  14. Burgess, T. F. (2001). A general introduction to the design of questionnaires for survey research. University of Leeds, UK.
  15. Byomire, G., & Maiga, G. (2015). A model for mobile phone adoption in maternal healthcare. 2015 IST-Africa Conference, 1–8. https://doi.org/10.1109/istafrica.2015.7190562
  16. Chang, S. E., Liu, A. Y., & Shen, W. C. (2017). User trust in social networking services: A comparison of Facebook and LinkedIn. Computers in Human Behavior, 69, 207–217. https://doi.org/10.1016/j.chb.2016.12.013
  17. Chita, E.-I., Dumitrescu-Popa, S., Motorga, B., & Panait, M. (2023). Artificial Intelligence – Source of Inspiration or a Problem? Proceedings of the International Conference on Business Excellence, 17(1), 895–903. https://doi.org/10.2478/picbe-2023-0082
  18. Choung, H., David, P., & Ross, A. (2022). Trust in AI and Its Role in the Acceptance of AI Technologies. International Journal of Human–Computer Interaction, 39(9), 1727–1739. https://doi.org/10.1080/10447318.2022.2050543
  19. Creswell, J. W., Plano Clark, V. L., Gutmann, M. L., & Hanson, W. E. (2003). Advanced mixed methods research designs. Handbook of Mixed Methods in Social and Behavioral Research, 209, 240.
  20. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
  21. Ejdys, J. (2018). Building technology trust in ICT application at a university. International Journal of Emerging Markets, 13(5), 980–997. https://doi.org/10.1108/ijoem-07-2017-0234
  22. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
  23. Gallego, M. D., Luna, P., & Bueno, S. (2008). User acceptance model of open source software. Computers in Human Behavior, 24(5), 2199–2216. https://doi.org/10.1016/j.chb.2007.10.006
  24. Gillespie, N., Lockey, S., Curtis, C., Pool, J., & Ali Akbari. (2023). Trust in Artificial Intelligence: A global study. The University of Queensland; KPMG Australia. https://doi.org/10.14264/00d3c94
  25. Glikson, E., & Woolley, A. W. (2020). Human Trust in Artificial Intelligence: Review of Empirical Research. Academy of Management Annals, 14(2), 627–660. https://doi.org/10.5465/annals.2018.0057
  26. Harari, Y. N. (2017). Reboot for the AI revolution. Nature, 550(7676), 324–327. https://doi.org/10.1038/550324a
  27. İnci Kavak, V., Evis, D., & Ekinci, A. (2024). The Use of ChatGPT in Language Education. Experimental and Applied Medical Science, 5(2), 72–82. https://doi.org/10.46871/eams.1461578
  28. James, E. E., Sampson, E. A., Usani, N. E., & Inyang, I. B. (2025). A Principal Component Analysis of the Factors Influencing University Students’ Trust in AI-Based Educational Technologies. African Journal of Advances in Science and Technology Research, 18(1), 111–141. https://doi.org/10.62154/ajastr.2025.018.010691
  29. Karaiskos, D. C., Drossos, D. A., Tsiaousis, A. S., Giaglis, G. M., & Fouskas, K. G. (2012). Affective and social determinants of mobile data services adoption. Behaviour & Information Technology, 31(3), 209–219. https://doi.org/10.1080/0144929x.2011.563792
  30. Khan, S., Umer, R., Umer, S., & Naqvi, S. (2021). Antecedents of trust in using social media for E-government services: An empirical study in Pakistan. Technology in Society, 64, 101400. https://doi.org/10.1016/j.techsoc.2020.101400
  31. Kim, S. H. (2008). Moderating effects of Job Relevance and Experience on mobile wireless technology acceptance: Adoption of a smartphone by individuals. Information & Management, 45(6), 387–393. https://doi.org/10.1016/j.im.2008.05.002
  32. Lampropoulos, G., & Papadakis, S. (2025). The Educational Value of Artificial Intelligence and Social Robots. Social Robots in Education, 3–15. https://doi.org/10.1007/978-3-031-82915-4_1
  33. Lancelot Miltgen, C., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103–114. https://doi.org/10.1016/j.dss.2013.05.010
  34. Lavidas, K., Papadakis, S., Manesis, D., Grigoriadou, A. S., & Gialamas, V. (2022). The Effects of Social Desirability on Students’ Self-Reports in Two Social Contexts: Lectures vs. Lectures and Lab Classes. Information, 13(10), 491. https://doi.org/10.3390/info13100491
  35. Lavidas, K., Petropoulou, A., Papadakis, S., Apostolou, Z., Komis, V., Jimoyiannis, A., & Gialamas, V. (2022). Factors Affecting Response Rates of the Web Survey with Teachers. Computers, 11(9), 127. https://doi.org/10.3390/computers11090127
  36. López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359–364. https://doi.org/10.1016/j.im.2008.05.001
  37. Mambile, C., & Mwogosi, A. (2024). Transforming higher education in Tanzania: unleashing the true potential of AI as a transformative learning tool. Technological Sustainability, 4(1), 51–76. https://doi.org/10.1108/techs-03-2024-0014
  38. Marchewka, J. T., & Kostiwa, K. (2014). An Application of the UTAUT Model for Understanding Student Perceptions Using Course Management Software. Communications of the IIMA, 7(2). https://doi.org/10.58729/1941-6687.1038
  39. Mushi, R. (2024). Investigating the Role of Self-Efficacy on Acceptance of E-Government in Tanzania. Journal of Engineering, Management and Information Technology, 2(3), 139–146. https://doi.org/10.61552/jemit.2024.03.005
  40. Mushi, R. M. (2020). Assessing the Influence of Self-Efficacy on the Acceptance of Mobile Phone Technology within the SMEs. Journal of International Technology and Information Management, 29(2), 100–122. https://doi.org/10.58729/1941-6679.1450
  41. Mushi, R. M. (2024). Assessing the factors influencing intention to use e-government in Tanzania: the perspective of trust, participation and transparency. Journal of Electronic Business & Digital Economics, 3(2), 156–169. https://doi.org/10.1108/jebde-08-2023-0017
  42. Mushi, R., Jafari, S., & Ennis, A. (2017). Measuring Mobile Phone Technology Adoption in SMEs. International Journal of ICT Research in Africa and the Middle East, 6(1), 17–30. https://doi.org/10.4018/ijictrame.2017010102
  43. Nyholm, S. (2024). What Is This Thing Called the Ethics of AI and What Calls for It? Handbook on the Ethics of Artificial Intelligence, 13–26. https://doi.org/10.4337/9781803926728.00006
  44. Papadakis, S., Kiv, A. E., Kravtsov, H. M., Osadchyi, V. V., Marienko, M. V., Pinchuk, O. P., ... & Striuk, A. M. (2023b). Unlocking the power of synergy: the joint force of cloud technologies and augmented reality in education. In Joint Proceedings of the 10th Workshop on Cloud Technologies in Education (CTE 2021) and 5th International Workshop on Augmented Reality in Education (AREdu 2022), Kryvyi Rih, Ukraine, May 23, 2022. CEUR Workshop Proceedings.
  45. Papadakis, S., Kiv, A. E., Kravtsov, H. M., Osadchyi, V. V., Marienko, M. V., Pinchuk, O. P., Shyshkina, M. P., Sokolyuk, O. M., Mintii, I. S., Vakaliuk, T. A., Azarova, L. E., Kolgatina, L. S., Amelina, S. M., Volkova, N. P., Velychko, V. Ye., Striuk, A. M., & Semerikov, S. O. (2023). ACNS Conference on Cloud and Immersive Technologies in Education: Report. CTE Workshop Proceedings, 10, 1–44. https://doi.org/10.55056/cte.544
  46. Pedersen, P. E. (2005). Adoption of Mobile Internet Services: An Exploratory Study of Mobile Commerce Early Adopters. Journal of Organizational Computing and Electronic Commerce, 15(3), 203–222. https://doi.org/10.1207/s15327744joce1503_2
  47. Pérez-Jorge, D., González-Afonso, M. C., Santos-Álvarez, A. G., Plasencia-Carballo, Z., & Perdomo-López, C. de los Á. (2025). The Impact of AI-Driven Application Programming Interfaces (APIs) on Educational Information Management. Information, 16(7), 540. https://doi.org/10.3390/info16070540
  48. Ritter, S., & Koedinger, K. R. (2023). Large-scale commercialization of AI in school-based environments. Handbook of Artificial Intelligence in Education, 524–536. https://doi.org/10.4337/9781800375413.00035
  49. Rodríguez-Ruiz, J., Marín-López, I., & Espejo-Siles, R. (2024). Is artificial intelligence use related to self-control, self-esteem and self-efficacy among university students? Education and Information Technologies, 30(2), 2507–2524. https://doi.org/10.1007/s10639-024-12906-6
  50. Shah, A. R., Ghorayeb, K., Mustapha, H., Ramatullayev, S., Droubi, N. E., & Kloucha, C. K. (2021). Unleashing the Potential of Relative Permeability Using Artificial Intelligence. Abu Dhabi International Petroleum Exhibition & Conference. https://doi.org/10.2118/207855-ms
  51. Shidiq, M. (2023). The use of artificial intelligence-based chat-gpt and its challenges for the world of education; from the viewpoint of the development of creative writing skills. Proceeding of International Conference on Education, Society and Humanity, 1(1), 353–357.
  52. Tanzania Commission for Universities (TCU). (2022). Tanzania Commission for Universities (TCU). Annual report. https://www.tcu.go.tz
  53. Tanzania Education and Training Policy (ETP). (1995). Tanzania Education and Training Policy (ETP). Ministry of Education, Science and Technology, Tanzania.
  54. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd
  55. Velli, K., & Zafiropoulos, K. (2024). Factors That Affect the Acceptance of Educational AI Tools by Greek Teachers—A Structural Equation Modelling Study. European Journal of Investigation in Health, Psychology and Education, 14(9), 2560–2579. https://doi.org/10.3390/ejihpe14090169
  56. Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
  57. Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4), 342–365. https://doi.org/10.1287/isre.11.4.342.11872
  58. Wangpipatwong, S., Chutimaskul, W., & Papasratorn, B. (2008). Understanding Citizen’s Continuance Intention to Use e-Government Website: A Composite View of Technology Acceptance Model and Computer Self-Efficacy. Electronic Journal of E-Government, 6(1), pp55-64.
  59. Zerilli, J., Bhatt, U., & Weller, A. (2022). How transparency modulates trust in artificial intelligence. Patterns, 3(4), 100455. https://doi.org/10.1016/j.patter.2022.100455